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Weak Krull-Schmidt theorem

LADISLAV BICAN

Abstract. Recently, A. Facchini [3] showed that the classical Krull-Schmidt theorem fails
for serial modules of finite Goldie dimension and he proved a weak version of this theorem
within this class. In this remark we shall build this theory axiomatically and then we
apply the results obtained to a class of some modules that are torsionfree with respect
to a given hereditary torsion theory. As a special case we obtain that the weak Krull-
Schmidt theorem holds for the class of modules that are both uniform and co-uniform.
A simple example shows that this generalizes the result of [3] mentioned above.

Keywords: monogeny class, epigeny class, weak Krull-Schmidt theorem, hereditary tor-
sion theory, uniform module, co-uniform module

Classification: 16D70

1. An axiomatical approach

By a ring R we shall mean an associative ring with the unit element 1 # 0 and
all modules are right unital R-modules elements of the category Mod-R.

Roughly speaking the weak Krull-Schmidt theorem characterizes the unicity
of finite direct sums of modules up to the isomorphism in terms of monogeny
and epigeny classes introduced by A. Facchini in [3]. In the first part we shall
investigate a condition on the endomorphism ring of a module M under which this
ring is semilocal with at most two maximal (one-sided) ideals. Further, we shall
investigate two conditions working with “unusual cancellation” of monorphisms
and epimorphisms. Following the ideas of [3], from these three properties together
with a “direct summand property” we then derive a weak Krull-Schmidt theorem.
In the second part we shall work with modules that are torsionfree with respect to
a given hereditary torsion theory o for Mod-R and that satisfies an injectivity-like
condition. We show that these modules which are o-uniform and o-co-uniform
satisfy the conditions from the first part and consequently the weak Krull-Schmidt
theorem holds for classes of such modules. In the brief last item the results
obtained are applied to the trivial torsion theory ¢ = 0 to prove the weak Krull-
Schmidt theorem for the class of uniform co-uniform modules. A simple example
(due to G. Baccella) shows that this is a proper generalization of the results of [3].

This research has been partially supported by the grants GACR 201/95/1453 (60%) of the
Czech Republic Grant Agency and GAUK 10/97/B-MAT/MFF (40%) of Charles University
Grant Agency.
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1.1 Definition. For the modules A, B we shall use the notation [A],, < [Blm
whenever there is a monomorphism from A to B. Similarly, [A]e < [B]e means
that there exists an epimorphism from A to B. Following [3] we shall say that the
modules A and B belong to the same monogeny class, [Aly, = [Blm, if [Alm <
[B]m and [Blm < [A]m. Similarly we shall say that A and B belong to the same
epigeny class, [Ale = [Ble, if [A]e < [Ble and [Ble < [Ale.

1.2 Definition. We say that a module M satisfies the condition (2M) if the
subset I = {a € E | « is not injective} is a right ideal and the subset J = {a €
E | « is not surjective} is a left ideal of the endomorphism ring £ = Endg(M) of
the module M.

1.3 Definition. Let A and B be modules. We say, that B has the property
(A-CI), if for the homomorphisms o : A — B and 3 : B — A the homomorphism
[ is injective whenever the composition S« is. Further, we say that a class 97 of
modules has the property (CI) if for any two modules A, B from 9t the module
B has (A-CI) whenever [A]m, < [B]m.

1.4 Definition. Let A and B be modules. We say, that B has the property
(A-CS), if for the homomorphisms o : A — B and §: B — A the homomorphism
« is surjective whenever the composition Sa is. Further, we say that a class 9 of
modules has the property (CS) if for any two modules A, B from 9% the module
B has (A-CS) whenever [Ble < [4]e.

1.5 Proposition. Let M be a module satisfying the condition (2M). Then
(a) I and J are two-sided ideals of E;
(b) M is an indecomposable module;
(c) for every injective non-surjective o € E and every surjective non-injective
0 € E the sum o + (8 is an automorphism of M;
(d) the ideals I and J are completely prime;
(e) every proper one-sided ideal K of FE is contained either in I or in J;
(f) I and J are the only maximal left and right ideals of E.

PROOF: (a) Obvious.

(b) Assuming M = U ¢ V non-trivial and denoting ir7, ¢ty and 7y, my the

canonical injections and projections, respectively, we have (yny, tymy € INJ,

which is impossible since (i + ty iy = 1.

(c) Clearly, if o + 3 is not a unit, then either « + 5 € I, or « + 8 € J and so

either a € I or B € J, which is impossible.

(d) For a, 8 ¢ I the composition af is injective, i.e. a3 ¢ I. Similarly for J.

(e) Let K < E be a proper one-sided ideal. Then K contains no units and so
KCIUJ={aeFE|a " does not exist}.

If neither K C I nor K C J, then there are « € K\ T and § € K\ J, ie. «

injective non-surjective and S is surjective non-injective. Consequently, by (c),

a+ [ € K is a unit, which is impossible.
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(f) It follows immediately from (e). O

1.6 Corollary. Let A be a module satisfying the condition (2M) and B,C be
arbitrary. If A@ B2 A® C, then B=C.

PrOOF: The endomorphism ring of A is semilocal by the preceding proposition
and [5, Theorem 2] applies. O

1.7 Lemma. If a module A satisfies the condition (2M) and f1,...,fn: A — B
are non-isomorphisms such that f = ) ' ; f; is an isomorphism, then there are
i # j such that f; is injective non-surjective and f; is surjective non-injective.

PROOF: The homomorphisms ¢; = f~1f; € E = End A are non-isomorphisms.
Moreover, > " ; g; = 14 and so E is not local. Thus the condition (2M) yields
the existence of 7 # j such that g; € J\ I and g; € I\ J and the assertion follows.

([

1.8 Proposition. Assume that the module A satisfies the condition (2M) and
that A B=C1®--- D C)y, with n > 2. Then there are two indices i # j such
that A" ® B' = C; ® Cj where A= A" and B = B' & (®; ;Cr).

ProOF: For A = 0 it suffices to take i = 1, j = 2 and put B’ = C1 @ Cs. So
assume that A # 0 and F = End A is local. Denoting ¢;, t4, tp, 7, T4, Tg the
corresponding canonical mappings we have 14 = w14 = Y ;"1 TALiTiLg and so
there is an index ¢ such that o = m4¢;mL4 is a unit in F and consequently the
composition (o~ 7 41;)(m;14) is the identity map 14 of A. Thus A is isomorphic
to a direct summand of C;, C; = A’ ® X, A’ = A. Taking j # i arbitrarily, we
have C; 6 Cj = A @ XaCj = A @B, Ao B = A® B & (®h4,;C;) and
Corollary 1.6 yields B = B' @ (@i ;Cr) = B’ ® (®ri ;Cr)-

Assuming finally that E is non-local Lemma 1.7 and Proposition 1.5 (c) yield
the existence of i # j such that m4¢;me4 € I\ J, maLjmjeg € J\ 1 and their sum
a is an automorphism of A. Denoting ¢/, 7’ the canonical maps of the summand
C; ® Cj of A® B we clearly have o = mgt/n’14. As above, the composition
(a7 44") ("1 4) is the identity map of A and A is isomorphic to a direct summand
of C;a Cj, C;aCj =A@ B, A= A Finally, A B= A& B' ® By ;Cr)
and Corollary 1.6 applies. (I
1.9 Proposition. If the module A satisfies the condition (2M) and the module
B has the properties (A-CI) and (A-CS), then the following are equivalent:

(i) A~ B;

(i) [Alm = [Blm, [Ale = [Ble.

PRrROOF: It clearly suffices to prove that (ii) implies (i). By hypothesis there
are monomorphisms o : A — B, 8 : B — A and epimorphisms v : A — B,
0 : B — A. Proving indirectly we can assume that no of the mappings o, 3, 7,
is an isomorphism. Using the notations from Definition 1.2 we have: fa € J\I for
otherwise we easily obtain that ( is an isomorphism and ¢ € I\ J for otherwise
« is an isomorphism. Thus ¢ = Sa + §v is a unit by Proposition 1.5 (¢).
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Further, 8y € I N J for otherwise it is either injective and so 7 is an isomor-
phism, or it is surjective and so 3 is an isomorphism. Similarly, da € I N J, for
otherwise it is either injective and so § is an isomorphism by the property (A-CI),
or it is surjective and so « is an isomorphism by the property (A-CS).

Finally, the homomorphism ¢ = (8 + §)(« +7) = fa + By + da + §v is a unit
in F, since p € [ yields 0 = p— 3y —9da €I and p € J yields o € J. Thus a +~
is injective, and assuming it is not an isomorphism we have oo+ € J \ I and so
~ € J, which contradicts the choice of v and completes the proof. ([

1.10 Proposition. Let the module A # 0 satisfy the condition (2M) and let
Ui,...,Upn, n > 2 be indecomposable modules such that A 2% U; for every i =
1,...,n. If A is isomorphic to a direct summand of U1 & - - - ® U,,, then there are
i,j € {1,...,n}, i # j, such that [A]p, < [Uj]lm and [Ujle < [Ale. If, moreover, U;
has the property (A-CI), then [Al];, = [Ujlm and if U; has the property (A-CS),
then [Ujle = [Ale.
PROOF: Applying Proposition 1.8 we see that for some i # j, A’ @ B' = U1 ®
- ®Up, AA=Aand M = A" o B" =U;0U;, A’ = A", B' = B" & (®p4 jUs)-
Consider the natural mappings and an isomorphism ¢ : A — A”:
UiAMEUZ’, UjiMin
AL T oA B”AMLB”
and denote f = mp : A — U, g :,Wjup A= Uj, h= o my U — A,
= <p_17TLj :Uj — A. We have hf +1g = o Y ryminp + ga_lmjijga =1y.
First we show that hf,lg: A — A are not isomorphisms. Using the symmetry

and proving indirectly we may suppose that ¢ = hf is a unit in £ = End A.
-1,-1
Q0 "p Tl

Then the composition map A Tite U, A is the identity map on
A which yields that A is isomorphic to a direct summand of U;. However, the
indecomposability of U; gives A = U;, which contradicts the hypothesis. Thus h f
and /g are not units in F.

Now F is not local, for otherwise hf +lg = 14 € I, the maximal ideal of E.
Thus, in view of Proposition 1.5 we have either lg € T\ J and hf € J\ I, or con-
versely. With respect to the symmetry we may assume the first possibility. Thus
lg is surjective non-injective, hf is injective non-surjective and so f is injective
and [ is surjective, which yields the first part. Under the respective additional
hypotheses, h is injective and g is surjective and we are through. O

1.11 Proposition. Let the module A satisfy the condition (2M) and U,V be
such that [Alpy = [Ulm, Ae = [V]e. Then A® X =2 U &V for some module X
which is unique up to isomorphism. Moreover, X is either equal to U or to V
or it is of the form ™1 (a(U)) where oo : U — A is injective and 3 : V — A is
surjective.

PROOF: The unicity follows at once from Corollary 1.6. Consider the monomor-
phisms a: U — A, v: A — U and the epimorphisms 3:V — A, §: A — V. If
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one of the modules A, U,V is zero, then all three are and so we may assume that
they are all non-zero. If oy is an isomorphism, then « is so and X = V works.
Similarly, if 39 is an isomorphism, then ¢ is so and X = U works.

Thus it remains to investigate the case where neither -y nor 36 is an isomor-
phism. Then ay € J\ I, 86 € I'\ J (in the notation of Definition 1.2) and so
0 = ay+3¢ is aunit in F = End A by Proposition 1.5 (¢). Denoting A : A — U®V
the diagonal map induced by v and §, A(a) = v(a) +0(a), and p: UV — A
the codiagonal map induced by « and 3, p(u + v) = a(u) + S(v), one can easily

verify that the composition map S AU eV 9—1“> A is the identity on A and
consequently A is isomorphic to a proper direct summand of U @ V, A being
indecomposable by Proposition 1.5(b). Thus U @ V = A @ Ker pu showing the
first part. Now Kerpy = {u+v € U@V | a(u) + B(v) = 0} = 3~1(a(U)) which
finishes the proof. (I
1.12 Lemma. Let Uy, Us, V1, Vo be non-zero modules satisfying the condition
(2M) and such that the set {Uy,Usa, V1, Va} has the properties (CI) and (CS). If
Ur @ Uz = V1 @ Va, then {[Ut]m, [U2Jm} = {[Vilm, [Valm} and {[Ui]e, [Uz]e} =
{Vile, [Vale}-

PRrROOF: Under suitable enumeration of modules we may assume first that Uy =2
Vi. Then Uy @ Uy 2 V7 @ Vo 2 Uy @ Vo, hence Us =2 V5 by Corollary 1.6 and
Proposition 1.9 applies.

Assume now that no U; is isomorphic to any V;. By Proposition 1.10 we have
[Ui]lm = [Vilm, [Uile = [Va]e (for A = U under a suitable enumeration of V1, V3).
Using Proposition 1.10 for Vi, and V5 we see that [Vi]e = [Us2]e and [Va]m = [Uz]m
and we are through. (I

1.13 Definition. We say that the class 9t of modules satisfies the condition
(DSP) iffor A@ X =U @V with A,U,V in 9 the module X lies in 9, too.

Following [3] we define the m-e collection of a finite family of module to be the
collection of monogeny classes of its terms, each monogeny class being counted
as often as it occurs, together with the collection of epigeny classes of the terms,
again counting multiplicity.

Recall that a class 91 of modules is called abstract if it is closed under iso-
morphisms and it is called hereditary if it is abstract and closed under submod-
ules. For the sake of brevity we shall say that a class 9 of modules satisfies
the weak Krull-Schmidt theorem if, whenever Uq,...,Upn, V1,...,V; are non-zero
modules from M, then U1 & --- U, Z V1 & --- P V4 if and only if n = ¢ and the
families {Uy,...,Up} and {V4,...,V,} have the same m-e collections, i.e. there
are two permutations o, 7 of the set {1,...,n} such that [Us)lm = [Vilm and
[Ur@iyle = [Vile for every i =1,... n.

1.14 Theorem. If 9 is an abstract class of modules satisfying the conditions

(DSP), having the properties (CI) and (CS) and such that each member of I
satisfies the condition (2M ), then 9 satisfies the weak Krull-Schmidt theorem.
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PrROOF: Assume first that U1 @ --- ® U, = V1 @ --- ® Vi and continue by the
induction on n, the case n = 1 being trivial by Propositions 1.5 (b) and 1.9.
If V1 2 U; (under suitable enumerations of modules Uy, ... Uy, V1,...,V;), then
Us®- - U, 2 Vo --dV; by Corollary 1.6 and the induction hypothesis together
with Proposition 1.9 works. In the remaining case we have [V1|m, = [Ui]m, [Vi]e =
[Uz]e by Proposition 1.10, hence V1 @& X = Uy @ Uy by Proposition 1.11, where
X € M by the condition (DSP). Thus Vi@ X @ Us&--- U, =2U1&--- U, =
Vi ®dVy, 50 XOU3D - U, =X Vo@---®V; by Corollary 1.6 and n = ¢
by the induction hypothesis. Moreover, {X,Us,...,Up} and {Va,...,Uy,} have
the same m-e collections and the same holds for the sets {V1, X,Us,...,Up} and
{V1,...,Va} by Proposition 1.9. Further, {V1, X} and {Uy, Uz} have the same
m-e collections by Lemma 1.12, the same is obviously true for {V;, X, Us, ..., Up}
and {Uq,...,Up} and the assertion follows easily.

Assume now that {Uy, ..., Uy} and {V7, ..., V},,} have the same m-e collections.
Again, we shall use the induction on n, the case n = 1 being trivial by Proposi-
tion 1.9. With respect to Proposition 1.10 we may assume that [U1]m = [Vi]m and
[Uile = [Vi]e. For ¢ = 1 Proposition 1.9 yields U; = V; and since {Us,...,Up}
and {V5, ..., V,} have the same m-e collections the induction hypothesis gives the
desired result. Assuming now that i = 2, Proposition 1.11 gives U1 ® X =2 V1 d 15
for some X € M (by (DSP)). It follows from the first part of the proof that
{U1,X,V3,...,Vp} and {V3,...,V,} have the same m-e collections as well as
{U1,...,Up} has by the hypothesis. Clearly, {X,V3,...,V,} and {Us,...,Un}
have the same m-e collections, hence X Vs ®--- @V, X2 Ua & - - - @ Uy, by the in-
duction hypothesis. Thus U ®Us®- - -®Up X U1 XDV3D- -V, X ViD--- DV
and we are through. (Il

1.15 Corollary. If 9 is a hereditary class of modules having the properties (CI)
and (CS) and such that each member of M satisfies the condition (2M), then I
satisfies the weak Krull-Schmidt theorem.

PROOF: The class MM, being hereditary, satisfies the condition (DSP) by Propo-
sition 1.11 and Theorem 1.14 applies.
O

2. The relative case

Let o be a hereditary torsion theory for the category Mod-R of right R-modules
and £ the Gabriel filter associated to o. See [1], [4] and [6] for basic results on
torsion theories.

Let M be a module and N be a submodule of M. The submodule

CM(Ny={zeM|(N:z)e L}

of M is called the o-closure of N in M. We say that N is o-closed in M if
CIM(N) = N and that N is o-dense in M if CIM (N) = M.
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It is easy to see that a o-torsionfree module M is uniform if and only if the
intersection of any two non-zero o-closed submodules of M is non-zero. However,
the dual of this fact does not hold in general. To see it we shall consider the
ordinary torsion theory o on the category of abelian groups. Since every non-zero
subgroup of Z is o-dense in Z, the only o-closed submodules of Z are 0 and Z and
so the sum of any two o-closed proper submodules of Z is a proper submodule
of Z. On the other hand, the sum of proper submodules 27 + 3Z = Z is not
proper. Thus we are led to the following definition.

2.1 Definition. A o-torsionfree module M is said to be o-co-uniform (o-hollow)
if the o-closure of the sum of any two o-closed proper submodules is a proper
submodule of M. Further, we say that a module M is o-cuniform provided it is
both uniform and o-co-uniform.

2.2 Definition. We say that a o-torsionfree module M satisfies the condition
(Ie) if for all submodules A, B, K of M, with K o-closed in M and A o-dense in
B every homomorphism f: A — M/K extends to g: B — M/K.

2.3 Lemma. If a o-torsionfree module M satisfies the condition (I.) and « :
M — M is any homomorphism, then a(M) is o-closed in M.

PROOF: Let us suppose that «(M) is not o-closed in M and denote V =

CIM(a(M)). Taking v € V \ a(M) we have vR N a(M) # 0, for otherwise

vR = vR ~ oM)iuR < a(‘g/[) is both o-torsion and o-torsionfree and

vRNa(M) —  o(M)
hence zero. This also shows that vR N (M) is o-dense in vR. Let K = Ker«
and & : M/K — a(M) be the induced isomorphism. Consider the diagram
vRNa(M) —— R

&t | g

M/K M/K
where the existence of g is given by the condition (I.). Setting g(v) = y + K
we can define the homomorphism 9 : vR + o(M) — M/K via ¢¥(vr + a(u)) =
yr + u + K. Show first that ¢ is well-defined. For vr + a(u) = v + a(t) we
have v(r — 7) = a(t —u) € vRN (M) and so y(r —7) + K = 4 —u + K, i.e.
yr+u+ K =yr +u+ K, as desired.

Now we are going to show that % is injective. If not, we take 0 # x = vr+a(u) €
Kert. Since o(M) NwvR is o-dense in vR, M is o-torsionfree and vr ¢ a(M)
(otherwise vr = a(u), 0 = ¥ (z) = Y(a(u+v')) =u+v and z = a(u+u') = 0),
thereis s € (a(M) : vr)\ (0 : x). Hence 0 # zs = vrs+a(u)s € a(M)NKer ¢ and
so ¢(xs) = 0 = ', where a(u') = vrs+a(u)s. This yields zs = 0, a contradiction
showing that Ker = 0.

Finally, y € M and v ¢ o(M) implies that v — a(y) # 0, while ¥ (v — a(y)) =
y —y = 0, which contradicts the monicity of .

This finishes the proof of Lemma 2.3. (I
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2.4 Lemma. Let A # 0 be a o-torsionfree module satisfying the condition (I.)
and E = Endg(A). Then
(i) if A is uniform, then I = {« € E | o is not injective} is a right ideal of E;
(i) if A is o-co-uniform, then the set J = {a € E | « is not surjective} is a
left ideal of E.
ProoF: (i) For o, € I we have Keraw NKer C Ker(aw — ) showing that
a — 3 € I. Further, for 8 € I and o € E we have fa € I, for otherwise S«
injective yields « injective, and Ima N Ker 8 = 0 gives § injective, Im o being
o-closed in A by the preceding lemma.

(ii) For «, 8 € J we have Im(a — 3) CIm«a + Im 3 and so o« — @ € J. Further,
for « € J and B € E assume (o surjective. Then, taking a € A arbitrarily,
B(a) = Ba(a’) for some a’ € A and consequently A = a(A) + Ker 8, Ker 3 # A,
B being surjective. By Lemma 2.3 the submodule a(A) is o-closed in A and so
a(A) = A, which contradicts « € J. O

2.5 Lemma. Let U,V be non-zero o-torsionfree modules satisfying the condition
(Ie). If (U]l = [V]m and a : U — V is a monomorphism, then the image a(U)
is o-closed in V.

PROOF: By hypothesis there is a monomorphism §: V' — U. If v is an arbitrary
element of C1V (a(U)), then vI C a(U) for some I € £ and so (6(v))I = B(vI) C
Ba(U). However, fa(U) is o-closed in U by Lemma 2.3, hence 3(v) € fa(U) and
consequently v € a(U), 8 being injective. O

2.6 Lemma. Let A, B be non-zero o-torsionfree modules satisfying the condition
(I¢). Then

(i) if B is uniform, then B has the property (A-CI);

(ii) if B is o-co-uniform, then B has the property (A-CS).

PROOF: Assume that o : A — B, 3 : B — A are such that the composition
Qo is injective and show that (3 is injective, too. So, the injectivity of Sa yields
Ima NKerB =0. So Ker 8 = 0 since a(A) # 0, « being injective.

(ii) In the notation of the preceding part assume Sa surjective and show that
« is. As in the proof of Lemma 2.4 we have B = «(A) + Ker 5 and Ker3 C B
is a proper o-closed submodule, § being surjective. Thus it remains to show that
a(A) is a o-closed submodule of B. However, §(B) = A, and so a(4) = af(B)
is o-closed in B by Lemma 2.3. O

2.7 Lemma. If V is a o-closed submodule of a o-torsionfree module M satisfying
the condition (I.), then V satisfies the condition (I¢), too.

ProoOF: Let A, B, K be submodules of V' such that K is o-closed in V and A
is o-dense in B. If f : A — V/K is an arbitrary homomorphism, then there is
g: B — M/K extending f and it remains to show that g(B) C V/K. However,
for b € B we have bl C A for suitable I € £ and consequently ¢g(b)I = g(bl) =
f(bI) CV/K, which yields ¢g(b) € V/K, V/K being o-closed in M/K. O
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2.8 Theorem. The weak Krull-Schmidt theorem holds for any class 9 of o-
cuniform modules satisfying the condition (I.).

PRrOOF: With respect to Theorem 1.9, Lemma 1.7 and Proposition 1.8 it suffices
to verify that the class 90t satisfies the condition (DSP). So,let A6 X =UaV
with A, U,V € 9. Applying the ideas of Goldie’s dimension to o-closed submod-
ules, we obtain easily that X should be of the dimension 1, i.e. uniform. Similarly,
using the dual Goldie dimension we get that X is o-co-uniform. It remains to
verify that X satisfies the condition (). By Proposition 1.11 we know that ei-
ther X = V, or X = U, or X is isomorphic to a submodule W = =1 (a(U))
of V, where o : U — A is injective and 3 : V — A is surjective. Moreover, by
Lemma 2.6 the image a(U) is a o-closed submodule of A. Taking w € C1V W, we
have wI C W for some I € £ . Hence (8(w))I C «(U), which yields g(w) € a(U)
and consequently w € W showing that W is o-closed in V. An application of
Lemma 2.7 completes the proof. 0

2.9 Definition. We say that a o-torsionfree module M is o-uniserial if its o-
closed submodules form a chain under the inclusion.

2.10 Proposition. The following are equivalent for a o-torsionfree module M :
(i) M is o-uniserial;
(ii) every o-closed submodule of M is o-co-uniform;
(iii) every o-torsionfree factor-module of M is uniform.

PROOF: Since every o-closed submodule and every o-torsionfree homomorphic
image of a o-uniserial module is o-uniserial, the condition (i) implies both (ii) and
(iii). Conversely, if M is not o-uniserial and K, L are two o-closed submodules
of M incomparable in the inclusion, then C1™ (K + L) is not o-co-uniform and
M/(K N L) is not uniform. O

2.11 Corollary. The weak Krull-Schmidt theorem holds for the class of o-
uniserial modules satisfying the condition (I¢).

PrOOF: By Proposition 2.10 and Theorem 2.8. O

2.12 Example. Let o be the torsion theory on the category Ab of abelian groups
such that the torsion class consists of all torsion groups with zero p-primary
component, p a prime. The group M = Z, of all rationals with denominators
prime to p is o-torsionfree and the o-closed submodules p* M form the chain under
inclusion. Since o-density of A in B means that B/A is torsion and (B/A), =0,
the module M satisfies the condition (I.). We conclude that the weak Krull-
Schmidt theorem holds for the o-uniserial module M.

O

3. The absolute case

If 0 = 0 is the trivial torsion theory for Mod-R, then we shall call the o-
cuniform modules simply cuniform. The next two consequences of Theorem 2.8
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have been discovered independently by N.V. Dung and D. Herbera at the end of
1996 (the word biuniform is used instead of cuniform). This fact has been commu-
nicated to the author by Alberto Facchini together with the fact that these results
have been already included in his Lecture Notes [8] “Module Theory. Endomor-
phism rings and direct decompositions in some classes of modules”, Progress in
Mathematics, Birkhauser Verlag, which will appear in Summer 1998.

3.1 Theorem. The weak Krull-Schmidt theorem holds for the class of cuniform
modules.

In view of Proposition 2.10 above as a special case we obtain Theorem 1.9
of [3].

3.2 Corollary. The weak Krull-Schmidt theorem holds for the class of uniserial
modaules.

The following example showing that the class of uniserial modules is a proper
subclass of the class of all cuniform module has been communicated to the author
by G. Baccella.

3.3 Example. Let F be a field and consider the ring

F F F F
0 F 0 F
R= 0 0 F F
0 0 0 F
and the idempotent
10 00
o 0 0 0O
10 000
0 0 0O

The right R-module M = eR can be obviously identified with Ft = (F,F,F,F)
(as the right R-module). Now K = (0,0,0, F') is the socle of M, A = (0,0, F, F)
and B = (0, F,0, F) are incomparable submodules of M containing K and L =
A+ B=(0,F,F, F) is the maximal submodule of M. Hence M is cuniform but
not uniserial. 0

Recall that an abstract class 9 is said to be cohereditary if it is closed un-
der factor-modules. Example 3.3 shows that the class of all cuniform modules
is neither hereditary, nor cohereditary. On the other hand, this class has the
properties (CI) and (CS), which were very important in our proofs of the weak
Krull-Schmidt theorem. We conclude this remark by showing that all hereditary
and cohereditary classes of modules satisfying conditions (CI) and (CS) lay in the
class of all uniserial modules.
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3.4 Proposition. The class 9 of all uniserial modules is the largest hereditary
and cohereditary class of modules satistfying conditions (CI) and (CS).

PROOF: Let 9t be a hereditary and cohereditary class of modules containing the
class of all uniserial modules. If M ¢ 91, then M contains two submodules A, B

which are incomparable with respect to the inclusion. Then 1—4% and ‘—;‘ﬁ—g =

7‘% &) 7‘% are in 9, the composition AﬁB = AﬁB &) AgB A, AéB of natural

injection and projection is the identity map of 71%, but « is not surjective and
0 is not injective. (|
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