
Commentationes Mathematicae Universitatis Carolinae

Petr Holický; M. Šmídek; Luděk Zajíček
Convex functions with non-Borel set of Gâteaux differentiability points

Commentationes Mathematicae Universitatis Carolinae, Vol. 39 (1998), No. 3, 469--482

Persistent URL: http://dml.cz/dmlcz/119025

Terms of use:
© Charles University in Prague, Faculty of Mathematics and Physics, 1998

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/119025
http://project.dml.cz


Comment.Math.Univ.Carolin. 39,3 (1998)469–482 469

Convex functions with non-Borel set

of Gâteaux differentiability points

P. Holický, M. Šḿıdek, L. Zaj́ıček

Abstract. We show that on every nonseparable Banach space which has a fundamental
system (e.g. on every nonseparable weakly compactly generated space, in particular on
every nonseparable Hilbert space) there is a convex continuous function f such that the
set of its Gâteaux differentiability points is not Borel. Thereby we answer a question
of J. Rainwater (1990) and extend, in the same time, a former result of M. Talagrand
(1979), who gave an example of such a function f on ℓ1(c).

Keywords: convex function, Gâteaux differentiability points, Borel set, fundamental sys-
tem

Classification: Primary 46G05; Secondary 46B20

0. Introduction

In [18, Theorem 1], M. Talagrand proved the existence of a convex contin-
uous function f : ℓ1([0, ωc)) (= ℓ1(c)) → R such that the set of points at
which f is Gâteaux differentiable has any prescribed intersection with a fixed
one-dimensional subspace of ℓ1(c).
Hence there is a continuous convex f on X = ℓ1(c) such that the set G(f)

of Gâteaux differentiability points of f is non-Borel. Clearly, f can be chosen
even such that G(f) does not have the Baire property in the restricted sense (i.e.
G(f) ∩ F has not the Baire property in some closed F ⊂ X).
On the other hand, it is known that, for some Banach spaces X , G(f) must be

a “nice set” for each continuous convex function f on X :

(i) By the classical Mazur theorem the set G(f) is a residual Gδ set whenever
X is a separable Banach space (see [13, Theorem 1.20]).

(ii) If X is a weak Asplund space, then G(f) is residual and thus it has the
Baire property.

Rainwater ([15, p. 320]) asked whether the set G(f) is necessarily Borel if f :
X → R is continuous convex and X is a GDS space. (A space X is GDS if G(f)
is dense for every continuous convex function f : X → R.) Notice that obviously
every weak Asplund space is GDS and, of course, ℓ1(c) is not GDS.

Our investigation was supported by GAUK 190/1996, GAČR 201/94/0069,

GAČR 201/94/0474.
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In our Theorem (see Section 3) we give a negative answer to the above question.
In fact, for “almost all” standard nonseparable spaces X , we show that G(f) can
be non-Borel and, under continuum hypothesis, even that G(f) may not have the
Baire property in the restricted sense.
As Talagrand in [18], we construct a continuous convex function f with any

prescribed intersection of G(f) with a fixed one-dimensional subspace of X . How-
ever, the method of our construction of f is different.
We leave the following question open.

Question 1. Is there some nonseparable Banach space X such that the set G(f)
has the Baire property in the restricted sense (or is even Borel) if f : X → R is

a continuous convex function?

For example, we do not know whether C(K), with K a Kunen compact, gives
the positive answer to Question 1.
We do not know either the answer to the following question which is natural

in connection with (ii) above.

Question 2. Is there a Banach space X which is not a weak Asplund space and
such that G(f) has the Baire property for every continuous convex function f
on X?

We conclude the introduction by pointing out some further notation. We write
C(f) for the set of all points of continuity of f and D(f) for the set of all points
of discontinuity of f . By f ′

G(x) we denote the Gâteaux derivative of f at x, and

D+
h

f stands for the one-sided derivative of f at x in direction h, i.e. D+
h

f(x) =

lim
t→0+

f(x+th)−f(x)
t .

We also use the notation Ae = {ae | a ∈ A} for e ∈ X and A ⊂ R.

1. A construction of convex functions

We get our results by using only one method of construction of continuous
convex functions which differs from Talagrand’s one and originates in [20].

Lemma 1. Let X be a Banach space, Y ⊂ X a closed linear subspace of codi-
mension one, e ∈ X \ Y with ‖e‖ = 1, g : R → (Y ∗, w∗) and M > 0 be such that
‖g(r)‖ ≤ M for all r ∈ R. Then there is a continuous convex function f : X → R

such that G(f) ∩ R e = C(g)e.

Proof: Every point x ∈ X can be uniquely written in the form x = yx + rxe,
where yx ∈ Y and rx ∈ R. We shall use this notation in what follows.
Let us define ar : X → R, a continuous affine function for every r ∈ R, by

(1) ar(x) = g(r)(yx) + r2 + 2r(rx − r) (= g(r)(yx) + r2x − (rx − r)2).

So

(2) ar(x) ≤ ‖g(r)‖‖yx‖+ r2x ≤ M‖yx‖+ r2x and ar(re) = r2
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for every r ∈ R and x ∈ X .
Let us define the function f : X → R by

(3) f(x) = sup
r∈R

ar(x).

Since all ar are affine, f is convex. We see from (2) that

(4) f(x) ≤ M‖yx‖+ r2x

and so f is locally bounded from above. As such it is a locally Lipschitz function.
(It follows e.g. from the fact that due to (3), or the convexity itself, it is also
locally bounded from below and we can use [13, Proposition 1.6] and the remark
following its proof.) Due to (4), (3), and (2), we have the identity

(5) f(re) = r2 for every r ∈ R.

1. Let r ∈ C(g) and h ∈ X be fixed. We shall show that

D+
h

f(re) = g(r)(yh) + 2rrh,

i.e. that the continuous linear function ϕ(h) = g(r)(yh) + 2rrh is the Gâteaux
derivative of f at re.
Since D+

h
f(re) = 2rrh for h ∈ Re by (5) and f is convex and continuous, it

suffices to prove that D+
h

f(re) = g(r)(h) for h ∈ Y (the sufficiency of this condi-
tion is quite simple, it follows easily from the fact that f is Gâteaux differentiable
at re if and only if the subdifferential ∂f(re) ⊂ X∗ of f at re contains (at most)
one element).
Let ε > 0 be arbitrary. The mapping g : R → (Y ∗, w∗) is continuous at r and

so there is a δ > 0 such that

(6) |g(s)(h)− g(r)(h)| < ε for every s ∈ (r − δ, r + δ).

Hence, for t > 0 and s ∈ (r − δ, r + δ), we have, using also (1),

(7) as(th+ re) ≤ g(s)(th) + r2 ≤ g(r)(th) + r2 + tε.

Otherwise, if |s − r| ≥ δ, then the following relations hold.

(8) as(th+ re) = g(s)(th) + r2 − (s − r)2 ≤ g(s)(th) + r2 − δ2 =

= g(r)(th) + r2 + tε+ [g(s)(th)− g(r)(th) − tε − δ2].

There is a θ = θ(r, ε, h) > 0 such that, for |t| < θ,

(9) g(s)(th)− g(r)(th)− tε − δ2 ≤ 2Mθ‖h‖+ θε − δ2 ≤ 0,
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and we conclude that, by (7), (8), and (9),

(10) as(th+ re) ≤ g(r)(th) + r2 + tε

for all s ∈ R and |t| < θ. By (3) and (10) we get the inequality

(11) f(th+ re) ≤ g(r)(th) + r2 + tε

for |t| < θ.
The one-sided derivative of the convex function f at re in direction h ∈ Y can

be now, using (5) and (11), estimated by

D+
h

f(re) = lim
t→0+

1

t
(f(th+ re)− f(re)) ≤

≤ lim
t→0+

1

t
(g(r)(th) + r2 + tε − r2) = g(r)(h) + ε.

Since ε > 0 was arbitrary, we get

(12) D+
h

f(re) ≤ g(r)(h).

We also have

(13) g(r)(h) ≥ D+
h

f(re) ≥ −D+−h
f(re) ≥ g(r)(h).

The last equality follows from (12) used for −h instead of h. The second inequality
uses the convexity of f . Now, (13) gives

D+
h

f(re) = g(r)(h)

and we have proved that re ∈ G(f).

2. Now, let r /∈ C(g). Since as + s2 is contained in the subdifferential of f
at se for s ∈ R due to (3) and (5), and g is not continuous at r, we see that
the selection of the subdifferential which maps every se to the element as + s2 of
the subdifferential of f at se is not norm to weak star continuous at re, because
(as + s2) ↾ Y = g(s) by (1), and thus the function f is not Gâteaux differentiable
at re (see [13, the proof of Proposition 2.8]). �

Now we shall describe a way how to obtain a function g : R → (Y ∗, w∗) with
a prescribed set D(f) of discontinuity points. To this end we need the existence
of a special family of functionals in Y ∗.
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Definition. We say that a set F ⊂ Y ∗ of functionals on the Banach space Y is
a system with property (Z0) if every injective sequence of elements of F converges
to zero in (Y ∗, w∗). An uncountable system of nonzero functionals of norm at
most one, F ⊂ Y ∗, with property (Z0) is called a Z-system or, equivalently, a
system with property (Z).

Remark 1. If F∗ is an uncountable family of elements of Y ∗ with property (Z0),
then the family F = {f ∈ Y ∗ | f = g

max(1,‖g‖)
, g ∈ F∗ \ {0}} is a system with

property (Z). The cardinality of F is the same as that of F∗ because the sets
of functionals g ∈ F∗ with norm greater than one and the same g

‖g‖
are clearly

finite.

Lemma 2. Let Y be a Banach space and F ⊂ Y ∗ have property (Z). Let D ⊂ R

be a set of cardinality at most cardF . Then there is a mapping g : R → (Y ∗, w∗)
such that D = D(g).

Proof: We put g(r) = 0 ∈ Y ∗ if r /∈ D. Let g ↾ (D \ Do) be any one-to-one
map of D \ Do into F , and g(r) = [χQ(r)min(1, dist(r, R \ Do))] · f for r ∈ Do,
where f is any element of Y ∗\{0} with ‖f‖ = 1 and χQ denotes the characteristic
function of the set of all rational numbers. (We denote the interior of D by Do.)
The mapping g : R → (Y ∗, w∗) is obviously discontinuous at each point t ∈ Do

and ‖g(r)‖ ≤ 1 for r ∈ R.

Let t ∈ D \ Do. There is a y ∈ Y such that g(t)(y) 6= 0. But t ∈ R \ D and
g(s)(y) = 0 for s /∈ D. Hence g : R → (Y ∗, w∗) is not continuous at t.
Now, let t ∈ R \ D and so g(t) = 0. We have g(r) = 0 for r /∈ D, ‖g(r)‖ ≤

dist(r, R\Do) ≤ |r− t| for r ∈ Do and lim
r→t,r∈D\Do

g(r) = 0 by property (Z) of F .

Therefore g is continuous at t. �

Due to Lemma 1 and Lemma 2 we come immediately to the following conclu-
sion.

Lemma 3. Let X be a Banach space, Y be a closed linear subspace of X and R
be a one-dimensional subspace of X , and let X = Y ⊕ R. Let F ⊂ Y ∗ be a set

with property (Z). Then, for every D ⊂ R of cardinality at most that of F , there
is a convex continuous function f : X → R with R \ G(f) = D.

Proof: We use Lemma 2 to get g : R → Y ∗ and we use it as in Lemma 1 to get
f with the desired properties. �

Remark 2. Let us point out that our above construction works with small changes
as well if we suppose that X = Y ⊕ H , where H is a nontrivial Hilbert subspace
of X , Y is a closed linear subspace of X and F ⊂ Y ∗ is a Z-system. Having a
set D ⊂ H of cardinality at most that of F , we can construct g : H → Y ∗ like in
Lemma 2 and we get, as in Lemma 1, a convex continuous function f : X → R

such that G(f) ∩ H = H \ D.

We can see immediately that the orthonormal basis in any nonseparable Hilbert
space H gives an example of a set of functionals having property (Z). Thus, by
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Lemma 3, for any one-dimensional subspace R and any D ⊂ R of cardinality at
most the weight of H , there is a convex continuous function f with R\G(f) = D.
If the weight of H is continuum, we get a result analogous to that of M. Talagrand
for H instead of ℓ1([0, ωc)).

2. Systems with property (Z)

Now, we are going to give several sufficient and several necessary conditions
for a Banach space to admit a family of functionals having property (Z) of given
cardinality.
We recall that a system (xa, fa)a∈A ⊂ X × X∗ which is biorthogonal (i.e.

fa(xb) = δa,b for a, b ∈ A) is called a fundamental system of X if the linear span
of the set {xa | a ∈ A} is dense in X , i.e. if {xa | a ∈ A} is complete.
It is easy to check and well-known (remarked also in [6]) that a system (xa)a∈A

is minimal if and only if there are fa, a ∈ A, such that (xa, fa)a∈A is biorthogonal.
Hence there is a fundamental system (xa, fa)a∈A on X if and only if there is a
minimal system (xa)a∈A which is complete in X . We recall that (xa)a∈A is a
minimal system in a Banach space X if no proper subsystem has the same closed
linear span as {xa | a ∈ A} itself (see [6]).

Proposition 1. Let X be a nonseparable Banach space with a (uncountable)
fundamental system (xa, fa)a∈A. Then there is a system F with property (Z)
and the same cardinality as A.

Proof: We put F = { fa

‖fa‖
| a ∈ A} and notice that F is of the same cardinality

as A by the properties of the fundamental system. Now any injective sequence
(fn) of elements of F converges pointwise to zero on {xa | a ∈ A}. Since the
functionals in F are of norm one and the linear span of {xa | a ∈ A} is dense in
X , the sequence (fn) converges pointwise to zero on X and F has property (Z).

�

Proposition 2. Let X, Y be Banach spaces and L : X → Y be a continuous
linear surjection. If Y ∗ contains a system FY with property (Z), then X∗ contains

a system FX with property (Z) such that cardFX = cardFY .

In particular, if Y is a complemented subspace of X and FY ⊂ Y ∗ is a system

with property (Z), then there is a system FX ⊂ X∗ with property (Z) and the
same cardinality as FY .

Proof: It suffices to put F∗
X = {f ◦ L | f ∈ FY } and use Remark 1. If Y is

a complemented subspace of X we take some continuous linear projection of X
onto Y for L first. �

Example 1. The Banach space ℓ∞(N) admits a system of functionals with prop-
erty (Z) and cardinality c because it is proved in [6, Theorem] that ℓ∞(N) contains
a minimal complete system of cardinality c.
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Example 2. Every Banach space that is weakly Lindelöf determined (i.e. the
closed dual unit ball is a Corson compact endowed with the weak-star topology, see
[1, Proposition 1.2]) admits a fundamental system, even a Markushevich basis ([19,
Theorem 2]). Thus also all weakly countably determined or weakly compactly
generated spaces as well as all reflexive spaces have a fundamental system.

Example 3. Every space C(K) of continuous functions on a Valdivia compact
K has a Markushevich basis and thus also a fundamental system. The existence
of a Markushevich basis of C(K) follows by the standard induction procedure
from [3, Remark 7.7, p. 256].

Example 4. Unfortunately, there are nonseparable spaces which do not have a
fundamental system. The space ℓ∞c (Γ) of bounded functions having countable
support in Γ for any set Γ of cardinality greater than c has no fundamental
system ([14, Theorem 3]). For more examples of subspaces of ℓ∞(Γ) without a
fundamental system see [8, Theorem 1]. Nevertheless, every space ℓ∞c (Γ) with
Γ infinite contains clearly a complemented subspace isometric to ℓ∞(N) (any
restriction of elements of ℓ∞c (Γ) to a countable subset of Γ is a projection to such
a subspace). In Example 1 above we remarked that ℓ∞(N) admits a system of
functionals with property (Z) and cardinality c. So by Proposition 2 there is a
system of functionals on ℓ∞c (Γ) with property (Z) and cardinality c.

Example 5. The space C(K) of continuous functions on the Kunen compact, the
existence of which was proved under the continuum hypothesis (see e.g. [12, Chap-
ter 7]), is another well-known example of a space having no fundamental system.
We shall show that (C(K)∗, w∗) is hereditarily separable and that (therefore)
there is no system with property (Z) in C(K)∗.

Before it we notice several obvious properties of a system with property (Z0),
and thus also of a system with property (Z), in the following proposition.

Proposition 3. If F ⊂ X∗ has property (Z0), then (F , w∗) is a discrete space
and K = F ∪ {0} is a compact and sequentially compact subset of (X∗, w∗).

Proof: Let us suppose that 0 6= f ∈ X∗ is a w∗-accumulation point of F . We
find w∗-open subsets U, V of X∗ such that 0 ∈ U , f ∈ V and U ∩ V = ∅. Now
F∩V is infinite and so we can choose an injective sequence (fn) in V ∩F ⊂ X∗\U .
The property (Z0) of F ensures that (fn) tends to zero in (X

∗, w∗), but this is
a contradiction.
It follows that (F , w∗) is discrete and K is w∗-closed and thus w∗-compact

because K ⊂ BX∗ . Obviously, K is w∗-sequentially compact. �

Corollary. If X∗ contains a system with property (Z), then (X∗, w∗) is not
hereditarily separable.

Remark 3. Example 6, and the remark before it, show that we cannot write
separable instead of hereditarily separable in the above corollary.
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Proposition 4. If K is a nonmetrizable scattered compact space, or equivalently,
an uncountable scattered compact space, such thatKn is hereditarily separable for

every n ∈ N, e.g. the Kunen compact considered in Example 5, then (C(K)∗, w∗)
is hereditarily separable and therefore there is no system with property (Z) in
C(K)∗.

Proof: Let us define T : KN × ℓ1 → C(K)∗ by

T ((ki), (ai)) =
∑

i∈N

aiδki
,

where δx is the Dirac measure in the point x ∈ K. It is well known and easy to
prove that the mapping T is surjective as K is scattered.
We shall show that T is continuous if we consider KN with the product

topology, ℓ1 with the norm topology and C(K)∗ with the w∗–topology. Let

µ =
∑

i∈N

aiδki
∈ C(K)∗, where a = (ai)i∈N

∈ l1 and k = (ki)i∈N
∈ KN. Further

let f ∈ C(K), ‖f‖ = 1 and ε > 0.

There is a number n ∈ N such that
∑

i>n

|ai| < ε
5 . There is an open set U ⊂ KN

containing k such that

(∀ (li)i∈N
∈ U) (∀ i ≤ n) (|f(ki)− f(li)|)‖a‖ <

ε

5
.

For ((li), (bi)) ∈ U × B(a, ε
5 ), where B(a, r) denotes the open ball with center a

and radius r, we have

|(µ − T ((li), (bi)))(f)| ≤
∑

i≤n

|aif(ki)− bif(li)|+
∑

i>n

[|ai||f(ki)|+ |bi||f(li)|] ≤

≤
∑

i≤n

[(|aif(ki)− aif(li)|+ |aif(li)− bif(li)|)] +
∑

i>n

(|ai|+ |bi|) ≤

≤ sup
i≤n

|f(ki)− f(li)|‖a‖+ ‖a − b‖‖f‖+
∑

i>n

|ai|+
∑

i>n

(|ai|+ |bi − ai|) < ε.

Thus T is continuous.
The product KN is hereditarily separable because each Kn is. Namely, let A

be any subset of KN. For any n ∈ N we choose a countable set Tn ⊂ Kn which
is dense in the projection pn(A) of A to the “first n coordinates”. Let Sn be
an arbitrary at most countable subset of A which projects onto Tn by pn. Put
S =

⋃

n∈N

Sn. The set S is obviously at most countable and dense in A.

As ℓ1 is a separable metric space and KN is hereditarily separable, KN × ℓ1 is
also hereditarily separable. Namely, let A ⊂ KN×l1 be arbitrary. Let (Bn)n∈N

be

a countable base of open sets of ℓ1 and choose an at most countable dense subset
Ln of πKN((KN × Bn) ∩ A) and Sn ⊂ (KN × Bn) ∩ A an at most countable set
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such that πKNSn = Ln. The set S =
⋃

n∈N

Sn is at most countable and dense in A.

So KN × ℓ1 is hereditarily separable and hence C(K)∗ is also w∗–hereditarily
separable due to the continuity of T .
Thus there is no system with property (Z) in (C(K))∗ by the corollary of

Proposition 3. �

We may notice that the space ℓ∞, which can be identified with the space of
continuous functions on the separable compact space K = βN, is an example of
a Banach space X for which (X∗, w∗) is separable, but a system of functionals
in X∗ with property (Z) still exists (see Example 1). In this example, K is not
hereditarily separable. The next example shows that even the heredity of the
separability of K cannot help to exclude the existence of a system with property
(Z) in C(K)∗.

Example 6. Let K be the “double-arrow” space (see [18], K = {x | x ∈
(0, 1]} ∪ {x+ | x ∈ [0, 1)}). Then K is a hereditarily separable compact space
and there is a system with property (Z) in (C(K))∗ (in particular, (C(K)∗, w∗)
is not hereditarily separable).
The space ((C(K))∗, w∗) is separable since the signed measures with finite

support in some countable dense subset of K form a dense subset.
We denote by F the set {µx | x ∈ (0, 1)} of all measures µx =

1
2δx+ − 1

2δx.

The set F has cardinality of continuum and it has property (Z) because (f(x+)−
f(x))x∈(0,1) ∈ c0((0, 1)) for every f ∈ C(K). The last statement is a well known

and easy fact. We can get the system with property (Z) in (C(K))∗ also by
Proposition 2 and Example 2 due to the fact that the WCG space c0([0, 1]) is a
quotient space of C(K).

In our only example of a nonseparable space X with no system of continuous
functionals with property (Z), (X∗, w∗) is hereditarily separable. We do not know
whether the existence of a system with property (Z) in X∗ can be characterized
by the existence of a (special) w∗-nonseparable subset of X∗.

Question 3. Does a system of functionals with property (Z) exist in every dual
space (X∗, w∗) which contains a weak-star closed nonseparable sequentially com-
pact (or a weak-star nonseparable compact) subset?

Lemma 4. Let X be a Banach space, Y a closed subspace of X and S = X/Y .
Let S be separable (or (S∗, w∗) be hereditarily separable) and let FX ⊂ X∗ be

a system with property (Z). Then there is a system FY ⊂ Y ∗ with property (Z)
and the same cardinality as FX .

Proof: It is not difficult to verify that the separability of S implies that (S∗, w∗)
is hereditarily separable. Thus we suppose the latter condition in what follows.
We consider the set FY of restrictions of elements of FX to Y . It is obvious

that it is a system with property (Z0) and thus, by Remark 1, the only fact to
prove is that the cardinalities of FX and of FY are equal.
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Let R : X∗ → Y ∗ be the restriction operator.
Let f ∈ FY be fixed and non-zero. We consider the set R−1(f). It is finite by

property (Z).
Every element g ∈ R−1(0) can be expressed in the form g = hg ◦ L, with

hg ∈ S∗ and L : X → S the quotient map, in a unique form. As FX has property

(Z), FS = {hg | g ∈ FX ∩R−1(0)} has (Z0). Thus, by Remark 1 and the corollary

of Proposition 3, FS is at most countable and the same is true for FX ∩R−1(0).
Hence the (uncountable) cardinalities of FX and of FY coincide and the proof

is finished. �

Remark 4. In particular, we may apply Lemma 4 when X = Y ⊕ S, Y, S are
closed subspaces of X and S is separable.

The existence of a system of functionals with property (Z) on a nonseparable
space seems to be related to the deep Josefson-Niessenzweig theorem, see e.g. [2,
Chapter XII]. We are going to give another sufficient condition for the existence
of a system with property (Z) which is closely related to a part of the proof of
Josefson-Niessenzweig theorem in [2, p. 223].
We formulate first an easy lemma which gives a characterization of Banach

spaces X for which a system F ⊂ X∗ with property (Z) exists.

Lemma 5. Let X be a Banach space. Let Γ be an uncountable set with car-
dinality κ. Then there is a subset of X∗ with cardinality κ and with property
(Z) if and only if there is a continuous linear operator T : X → c0(Γ) such that
densT (X) = κ.

Proof: Let F ⊂ X∗ be a family of elements of X∗ which has property (Z)
and let cardF = κ. We define the operator T by T (x) = (f(x))

f
∈ F , for

x ∈ X . As F has the property (Z), we easily obtain that T (x) ∈ c0(F) for
every x ∈ X and that T : X → c0(F) is a bounded operator. Now let γ be
the least ordinal of cardinality κ. For every f ∈ F we choose xf ∈ X such that
f(xf ) = 1. By property (Z), the set Af = {g ∈ F | g(xf ) 6= 0} is obviously
at most countable. Now we will construct by induction a transfinite sequence
(fα)α<γ ⊂ F such that fβ(xfα

) = 0 for 0 ≤ α < β < γ. We choose an arbitrary
f0 ∈ F . Now let β < γ and suppose that fα, α < β are already chosen. Since

card

(

⋃

α<β

Afα

)

≤ ℵ0 cardβ ≤ max(ℵ0, cardβ) < cardγ, we can choose fβ ∈

F \
⋃

α<β

Afα
. Clearly fβ(xfα

) = 0 for 0 ≤ α < β < γ. For 0 ≤ α < β < γ

we have ‖T (xfα
) − T (xfβ

)‖ ≥ ‖fβ(xfα
) − fβ(xfβ

)‖ = 1. Thus densT (X) ≥

cardγ = κ. Since clearly densT (X) ≤ dens c0(Γ) = κ, as cardΓ is infinite, we
have densT (X) = κ. Identifying Γ and F , we obtain the first implication.
Now suppose that there exists a continuous linear mapping T : X → c0(Γ) such

that densT (X) = κ. Without loss of generality we may suppose that ‖T ‖ ≤ 1.
For each γ ∈ Γ put fγ(x) = (T (x))γ and F = {fγ | γ ∈ Γ} \ {0}. The family F
has clearly the property (Z0) and ‖f‖ ≤ 1 for every f ∈ F . We choose Γ∗ ⊂ Γ
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such that fγ1 6= fγ2 for γ1 6= γ2, γ1, γ2 ∈ Γ∗ and F = {fγ | γ ∈ Γ∗}. Thus
the canonical “restriction” mapping R : c0(Γ) → c0(Γ

∗) is clearly an isometry
when restricted to T (X) and consequently ℵ0 cardΓ

∗ ≥ dens c0(Γ
∗) ≥ dens(R ◦

T (X)) = densT (X) = κ. It implies that κ ≥ cardF = cardΓ∗ ≥ κ, because κ is
uncountable, and we are done. �

Proposition 5. Let X be a Banach space and let ℓ1(Γ) be isomorphic to a sub-
space of X , where Γ is an arbitrary infinite set. Then there is a linear continuous
operator T : X → c0(Γ) such that densT (X) = cardΓ. In particular, if Γ is un-
countable, there is a system F ⊂ X∗ with property (Z) and the same cardinality
as Γ.
Proof: By Lemma 5, it suffices to prove the existence of T with the mentioned
properties.
We consider an Abelian group of cardinality cardΓ (e.g. the free Abelian group

generated by Γ) endowed with the discrete topology. We shall denote it also Γ
further on.
In all what follows we mean by ‘linear’ the respective property of a space or

a map related to the field of reals also when we are considering the spaces of
complex-valued functions and operators among them.
We need several basic facts from the harmonic analysis which can be found in

[17] and [11]. Let G be the dual group to Γ, i.e. the group of all characters of
the group Γ. As Γ is discrete, G is compact and Abelian and so there is a Haar
probability measure ν on G.

Let F be the Fourier transform on Γ, i.e. F : f 7→ f̂ . By [17, Theorem 1.2.4 (d)],

F : ℓ1(Γ, C)→ C0(G, C) is continuous. We denote by F̃ the inverse Fourier trans-

form to F , i.e. F̃ : f 7→ f̌ (see [11, 3.1.2]). It follows from [17, Theorem 1.2.4 (d)]

that F̃ : L1(G, C, ν)→ c0(Γ, C) is continuous. Since C0(G, C) = C(G, C) embeds
naturally to L1(G, C, ν) as ν is finite, we get by the inverse formula [11, 31.44 (b),

p. 241] that F̃ ◦ F is the identity on ℓ1(Γ, C).
We identify ℓ1(Γ) with its isomorphic copy in X . Let R : c0(Γ, C)→ c0(Γ) be

the operator taking every complex-valued function from c0(Γ, C) to its real part.
We use without mentioning it explicitly the natural embeddings of ℓ1(Γ) to

ℓ1(Γ, C), of C(G, C) to L∞(G, C, ν), and of L∞(G, C, ν) to L1(G, C, ν).
Since it is well known that L∞(G, ν) is “injective” in the sense that every

bounded linear map from a subspace X0 of a Banach space X into L∞(G, ν) can
be extended to a bounded linear map of X into L∞(G, ν) (see [2, p. 223]), we
can find a bounded linear operator L : X → L∞(G, C, ν) which extends F by
extending the real and imaginary parts of F : ℓ1(Γ)→ L∞(G, C, ν) separately.

We put now T = R ◦ F̃ ◦ L. Notice that T (ℓ1(γ)) = ℓ1(γ) because of the

inversion formula mentioned above, i.e. due to the fact that F̃ ◦ F is the identity
map on ℓ1(Γ, C). It follows that the density of T (X) in c0(Γ) is the cardinality
of Γ. It is not smaller because T (X) contains ℓ1(Γ) and it is not greater because
the cardinality of Γ is infinite and so the density of c0(Γ) equals the cardinality
of Γ. �
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Remark 5.
(i) Suppose that an infinite set T of nonzero continuous linear mappings F :

X → Y “having property (Z0)” is given, i.e.
(Z0) lim

n→∞
Fn(x) = 0 for every injective sequence (Fn)n∈N ⊂ T and every

x ∈ X .
It is easy to see that there exists a system F ⊂ X∗ which has the property

(Z0) and cardF = cardT . In fact, we can choose for each F ∈ T a gF ∈ X∗

such that ‖gF‖ = 1 and fF = gF ◦ F 6= 0. Then clearly F = {fF | F ∈ T } has
property (Z0). Suppose that cardF < cardT . Then there necessarily exists an
f ∈ F such that f = fFn

for some injective sequence (Fn)n∈N ⊂ T . Then, for
every x ∈ X , |f(x)| = |gFn

(Fn(x))| ≤ ‖Fn(x)‖ → 0. Consequently, f = 0 which
is a contradiction.

(ii) Suppose that there exists a projectional resolution of identity {Pα | ω0 ≤
α ≤ µ} on a Banach space X (cf. [3, p. 236]) such that the system of operators
T ∗ = {Pα+1 − Pα | ω0 ≤ α < µ} is uncountable. By [3, Lemma 1.2 (ii), p. 236],
T = T ∗ \{0} “has the property (Z0)” and thus, by (i) and Remark 1, there exists
a system F ⊂ X∗ with property (Z) such that cardF = cardT .

(iii) However, at present, we do not know any Banach space admitting a system
F ⊂ X∗ with property (Z) to which we could apply the observation (ii) and no
other sufficient condition noticed before.

3. The main result

We summarize our results concerning convex functions in the following state-
ment.

Theorem. Let X, Y be Banach spaces, L : X → Y be continuous linear and
surjective, and one of the following conditions holds:

(a) there is a fundamental system of uncountable cardinality κ on Y ;

(b) ℓ1(Γ) is isomorphic to a subspace of Y and the uncountable cardinality of
Γ is κ.

If D is a subset of some one-dimensional subspace R of X with cardinality
at most κ, then there is a continuous convex function f : X → R such that

R \ G(f) = D.
In particular, there is a continuous convex function f : X → R such that

G(f) is not Borel. If moreover κ ≥ c, then there is a continuous convex function

f : X → R such that G(f) does not have the Baire property in the restricted
sense.

Proof: Whenever Y fulfills (a) or (b), we deduce, from previous propositions,
that there is a Z-system of cardinality κ in X∗. We may use Proposition 1 and
Proposition 2 if (a) holds, and Proposition 5 and Proposition 2 if (b) is satisfied.
Let Z be a closed subspace of X complemented to R. We use Remark 4

and Lemma 3 to X = Z ⊕ R to get a convex continuous function f on X with
G(f) ∩ R = R \ D.
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To prove the other statements, we may choose any one-dimensional subspace
R of X and any subset D of R of cardinality ℵ1 (hence at most κ) which is not
Borel. Indeed, if ℵ1 = c we can choose any non-Borel set D ⊂ R and we may
choose any set D ⊂ R of cardinality ℵ1 if ℵ1 < c (since each uncountable Borel
subset of R has cardinality c). By the preceding we can find a continuous convex
function f : X → R with G(f) ∩ R = R \ D which is obviously not Borel.
If moreover κ ≥ c, we choose any subset D of the R above such that D, and

so also R \D, does not have the Baire property in R (so R \D does not have the
Baire property in the restricted sense). Now cardD ≤ κ and we may find f as
above. �

Remark 6. We note that Examples 1, 2, 3, 4, 6 describe great number of nonsep-
arable spaces for which Theorem can be applied.

Acknowledgment and remarks. We express our gratitude to the referee who drew
our attention to the fact that our result is already quoted in [4, p. 50] for the case
of nonseparable Hilbert spaces and it is also mentioned in [9, p. 297] for the case
of nonseparable WCG spaces.
He also pointed out that the papers [7] and [5] are related to our Section 2.
Indeed, one may check that our Proposition 5 can be proved as follows. Fol-

lowing the first part of the proof of Theorem 4 from [7], we get that there is
some quotient space of X which is isomorphic to ℓ2(Γ) and thus clearly has a
fundamental system of cardinality cardΓ. Now applying our Proposition 1 and
Proposition 2 we get the system F ⊂ X∗ with property (Z) of cardinality cardΓ.
The mentioned part of the proof of Theorem 4 in [7] is not easy, it is based on
[10, Proposition 2.2] and [16, Proposition 1.5].
Recall that Lemma 5 implies that the nonexistence of an (uncountable) system

with property (Z) in X∗ is equivalent to the fact that the image of X by any
continuous linear map T of X to any c0(Γ) is separable. Thus we may notice that
our Proposition 4 gives a solution of the first part of the exercise from IV.3 in
[5] and that any solution of it gives the nonexistence of a system with property
(Z) in X∗, where X = C(K) is the space of continuous functions on the Kunen
compact.
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