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1.
Let 2 C R™ (n > 2) be a domain, let 0 < T < 400 and set Q@ = Q x (0,7). We

On the Holder continuity of weak solutions

to nonlinear parabolic systems in two space dimensions

J. NaAuMANN, J. WoLF, M. WOLFF

Abstract. We prove the interior Holder continuity of weak solutions to parabolic systems

ou? o . .
E—Daaj(w,t,u,Vu):O in @ (j=1,...,N)

(Q = Q2x(0,T),Q C R?), where the coefficients a;?‘ (z,t,u, &) are measurable in x, Holder
continuous in ¢ and Lipschitz continuous in w and &.

Keywords: nonlinear parabolic systems, Holder continuity, Fourier transform

Classification: 35B65, 35K55

Introduction. Statement of the main result

consider the following system of nonlinear PDE’s:

o’

(1.1) —— = Doaf(z,t,u,Vu)=0"' in Q (j=1,...,N),

ot

where

In this paper we study the interior Holder continuity of weak solutions to (1.1)

w={ul,... uN} (N >2)
0

Da=—2-
*7 Oz

(a=1,...,n), Vu={Dau’} (= matrix of spatial derivatives).

under the following assumptions on the functions a?‘:

xra®(x,t,u, &) is measurable on QY (t,u, &) € (0, T) x RVx RN

(1.2) J

a%(-,0,0,0) € L7(Q) (o > 2);

IThroughout the paper, a repeated Greek (resp. Latin) index stands for the summation over
1,...

,n (resp. 1,...,N).
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238 J. Naumann, J. Wolf, M. Wolff

6% _ (7
|aj (z,8,u,m) aj (z,t,0,8)] <

< co{ s— (L + ulHD/? 4 o] D/ ] + Jg])

(1.3) Hu—o] + -1}

Yz eQ, V(s,u,n), (t,v,€) € (0,T)x RY x RMV
(co = const, 0 < pu<1);

{ (a9 (x, t,u,m) — a9 (2,8, u, €)) (7 — &) > voln — &2
V(z,t,u) € Qx (0,T) xRN, Vi, & € R™N (19 = const > 0)
(a=1,...,n;5=1,...,N).

By (1.2), (1.3) and (1.4),
0% (2, t,u,€)] < ex(1+ Jul + [€]) + a2 (2,0,0,0)],

n N
a% (b, u, €&, > °|;g|2_02(1+|u|2 33 (af(2,0,0,0)) )

B=1k=1
for all (z,t,u,&) € Q@ x (0,7) x RN x R™Y (o = 1,....n; j = 1,...,N;
c1,co = const).

By WI} () (1 < p < +00) we denote the usual Sobolev space. If 2 is a bounded
domain with smooth boundary 92 we denote

(1.4)

o

W;,(Q) ={pe WI}(Q) | =0 a.e. on 00N}.

Next, define
WH(Q) = {¢ € L*(Q) | Dap € LXQ) (a=1,... ,n)},
Vo '(Q) = {w e Wy'(Q) | esssup / o2 (z, ) dw < +oo},

o 4

W§’1(Q)—{¢€W§’( >|—eL2<@>} (= W3(Q)).

The following imbedding theorem is well-known (cf. e.g. [9]):
Let Qg CR™ be a bounded domain with smooth boundary 0.
Then :

/2
(1.5) { el 22 m o, T))<Co(esssup/ (2t dw+//|vw|2dwdt>

(0,7) 0

for all p € V21’O(Qo x (0,7)), ¢ =0 a.e. on Iy x (0,7T)
(co = const < +00).




On the Holder continuity of weak solutions to nonlinear parabolic systems ...

Obviously, W;’I(Q) C Vgl’o(Q)~

Next, ' cC Q means: ' open, bounded and @ C Q. Given 0 < v < 1 we
define

Q) ={v:Q >R |VQ cc Q, ¥t € (0,T)
K = const : [u(z, s) —v(y,t)] < K(lz —y[” +|s — t|/?)
V(z,5), (y,1) € ¥ x (¢, T)}

(notice that the constant K may depend on dist()’,9Q) and t').

Let X be any normed vector space with norm ||-|| x. By LP(a,b; X) (—o0 < a <
b < 400; 1 < p < +00) we denote the vector space of all (classes of equivalent)
Bochner measurable functions ¢: (a,b) — X such that ||¢(-)||x € LP(a,b). Then
LP(a,b; X) is a normed vector space with respect to the norm

b
1/p
(/ le®)% at) i 1<p < 4o,

el Lo (a,bx) = u
esssup [|¢(t)]| x if p=+4o0.

a,b
The linear isometry LP(a,b; LP(Q)) = LP(Q2 X (a,b)) (1 < p < 400) permits to
identify these spaces.

Finally, set

PQ.BY) = (7@, Wyt (@RY) =W, (@ ete. -

Definition. A vector function u € Vzl’O(Q; RY) is called a weak solution to (1.1)
if

W )
‘/ “jaai; dedi + / af (w,t,u, Vu) Doy’ dz dt =0,
(1.6) Q Q

V€ Wy (Q), supp(p) C Q.

The interior Holder continuity of weak solutions to (1.1) with coefficients aj =
a3 (§) has been proved in [11] for dimensions n = 2,3 and 4. For the case n = 2,
an analogous result with coefficients a% = a?‘ (z,t,u,€&) which are either Lipschitz
continuous in x and measurable in ¢, or measurable in x and Lipschitz continuous
in ¢t (ie. g = 1 in (1.3)) is presented in [6]. The Hoélder continuity of weak

solutions to nonlinear parabolic systems for arbitrary n > 2, but under additional
[e%

restrictions on aj has been established in [7] and [8]. In [3], the author proves

856
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for the case n < 2 the interior Hélder continuity, and for dimensions n > 3 the
interior partial Holder continuity of weak solutions to nonlinear parabolic systems
the coefficients of which fulfil an appropriate uniform continuity property with
respect to = and ¢ (notice that this paper also includes right-hand sides obeying
strictly controlled growth conditions).

The aim of the present paper is to prove the interior Holder continuity of any
weak solution to (1.1) when n = 2 and the exponent p in (1.3) is “sufficiently
near to 1”. Our main result is the following

Theorem. Let n = 2. Let (1.2)—(1.4) be satisfied. Then there exists 0 < pg < 1
such that: if (1.3) is fulfilled with g < p < 1, then for any weak solution

w e V21’0(Q;RN) to (1.1) there holds

ue C"V(QRN).

We note that pg is determined only by the exponent of integrability > 2 of the
gradient of weak solutions to the nonlinear elliptic system associated with (1.1)

(cf. [5]).

The paper is organized as follows. In Section 2 we prove some estimates on
t-differences of weak solutions u to (1.1) which are based on an idea from [10].
The following section is concerned with the proof of the existence and regularity

ou
of —; here we make full use of the Fourier transform of vector valued functions.

The results presented in these sections are of an independent interest. The proof

3}
of our main result is then given in Section 4. Following [11] we consider —1;(, t)

as right-hand side of the associated nonlinear elliptic system and apply then the
theory of higher integrability of Vu(:,t) via reverse Holder inequality.
2. Estimates on t-differences

Let f € LP(Q) (1 < p < +00). We extend f by zero onto  x (T, +00) and denote
this extension again by f.
The Steklov average of f with respect to ¢ is defined by

4+

iz, t) = % / f(z,s)ds for a.a. (x,t) € Q, A>0.

t
It is readily seen that, for any 0 < tg <t1 < T,

t1 T

(2.1) //|f>\|pd:vdt§//|f|pdxdt VO <A< T—t,

to Q to Q
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and that fy, — f in LP(Q) as A — 0. The function f) possesses the weak t-
derivative

%(x,t) — %(f(x,t+)\) — f(z,t)) fora.a. (z,t)€@, VA>0.

In addition, if there exists the weak spatial derivative Do f € LP(Q) (o €
{1,...,n}) then

(2.3) (Dafy)(@,t) = (Daf)r(z,) for aa. (z,t)€Q, YA > 0.

(2.2)

O

Assume (1.2), (1.3). Let u € V21’0(Q;RN) be a weak solution to (1.1). Let
' cc Qand 0 < t; <T. Observing (2.2) and (2.3) we may localize (1.6) with
respect to t:

J
[ wtwi @ de+ [(@)ae0Dar?(2)dr =0
(2.4) Q 5
for a.a. t€(0,t1), VO<A<T —t1, VY € Wzl(Q;RN)

with =0 a.e. in Q\Q
(cf. [10]; notice that the set of measure zero of those ¢ for which (2.4) fails, does

not depend on \).
Define

(Ahf)(xvt) = f(:Z?,t+ h) - f(Iat)'

The localized version (2.4) is the point of departure for proving the following
result whose idea of proof is developed in [10].

Lemma 1. Let Q" cc ' cc Q,0<tg <ty <T. Then

“ 1/2
%//|Ahu|2d$dfSC<1+/(|u|2("+2)/n+|Vu|2)dxdt> x

to Q' Q

t1 1/2
X <//(|Ahu|2+|AhVu|2)dxdt>

to

(2.5)

for all 0 < h < T — t1, where ¢ = const depends on dist(Q”, 9€') 2.

PROOF: Let ¢ € C°(€Y) (= set of all infinitely differentiable functions in R™ with
compact support in ') be a cut-off function such that 0 < ¢ < 1in @/, ( =1
in Q.

2In what follows, by ¢ we denote positive constants which may change their numerical value
from line to line, but are independent of h.
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Let 0 < h < T —t1. Setting A = h in (2.2) gives
0 1
gth( x,t) = E(Ahu)(x,t) for a.a. (z,t) € Q x (0,¢1).

We may insert ¢(z) = (Apu)(z, t)¢(x) ((z,t) € Qx (to,t1)) into (2.4). Integrating
over the interval (tg,t1) and observing (2.1) yields

t1
%//|Ahu|2§dxdt

to

// n(ALDau? )¢ + (Apu?) Do) dz dt

to Y
1/2 , t1 1/2
< ( / (a?‘)2dxdt> < / / [(ApDau?)C + (Ahuj)Da§]2dxdt> .
Q to Q
Hence (2.5) holds. O

From (2.5) it follows that

t1
(2.6) // |Apul? dzdt < c<1 + /(|u|2("+2)/" + |Vul?) da dt) h
Q

tO QH

for all 0 < h < T — t1. Based on this estimate we have

Proposition 1. Assume (1.2)—(1.4). Let u € Vzl’o(Q; RY) be a weak solution to
(1.1). Then, for any ' cC Q and 0 <ty <ty <T,

t1
(2.7) //|Ahu|2d:cdt < chltr,
to &
t1
(2.8) esssup/|Ahu| dx+//|AhVu|2d:cdt< ch2H
(to,t1)
to

for all 0 < h < T —t; (c = const).

PrROOF: Let Q" cC Q' cCc Q, 0 <t <tg <t1 <T. Let ¢ € C°(Q') be a cut-off
function such that 0 < ¢ < 1in @, ¢ =1 on Q”, and let p € C°(R) satisfy
p=0in (—oo,tp], p=1in (tg,+00) and 0 < p < 1inR. Let 0 < h < T —t;.
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We form the difference Ay, in (2.4) for a.a. t € (tp,t1) 3 (0 < A < T —t; — h),

insert ¥ (z) = (Apu)(z,t)¢(2)p?(t) into (2.4), integrate over the interval (t),t)
(t € (ty,t1)) and let tend A — 0. It follows that

5 [ 13m0 ) oo / / Apa?) (A Dotsd )20 da ds

(2.9) . . o @ .
=2 [ [(na)@n)cDa0P drds+ [ [ 18wulcopf aras
ty ty ©
y (1.3) and (1.4),
(Apad)(ApDan)

>
> %mhw? { (1 + |u(, ) 2D/ 4y, 4 bR/

+ IVu(e, O + [Vu(z, t + B)) + |Apul?}

for a.a. (z,t) € QX (ty,t1). The first integral on the right of (2.9) can be estimated
by the aid of (1.3). Thus,

t
l/|Ahu x t)|2c2(:17)dxp2(t)+%//|AhVu|2C2p2 dz ds

i Q
(2.10) <ch2“/ (1 + P2/ | Vu?) dzds
Q
t1
+ ¢(1 + max | V¢|? 4+ max(p’ //|Ahu|2dxds
t/ Q/

for a.a. ¢ € (t,t1). Now we insert (2.6) (with t;, in place of ¢, ' in place of Q)
to the right-hand side of the latter inequality to obtain
t1

(2.11) esssup/ |Apul? dx—|—// |ARVul? dzds < e(h®* + h).
(to,t1) i G
Next, given any Q’ " cc Q" we combine the inequality just obtained and (2.5)
(with Q" in place of Q”, Q” in place of Q). Hence
t1
(2.12) / / |Apul?dzdt < c(h* + h1/?)h,

to Q///

3Notice that Ap fx = (Anf)a-

243
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If0o<p< % we have finished (i.e. (2.7) and (2.8) hold with Q"’). However, if

% < p < 1 we consider (2.10) with Q" in place of Q' and insert (2.12) therein.
We obtain estimates of the type (2.11) and (2.12) with appropriately chosen sub-
domains of Q" and right-hand sides c(h?* + h1t1/2) and c(h# + hA+1/2)/2)p,
respectively. Clearly, after a finite number of steps,

m

> (5) 2 1em

k=0

3. Existence and regularity of %%

Let 0 < tg <t1 < T and p € C((tg,1)), 0 < p < 1 on (tg,t1) be fixed. Given
pE W;’l(Q;RN), supp(p) C @ we replace ¢ in (1.6) by ¢p to obtain

(3.1) —/ujpaai; dzdt = —/a?‘pDa(pj dzdt + /ujp/<pj dx dt
Q Q Q
dp
(Where p E)
Define
{ u(z,t)p(t) for a.a. (z,t) € Q x (to,t1),
v(x,t) =
0 for a.a. (z,t) € Q x (R\ (to,%1)),
{ u(z,t)p'(t) for a.a. (z,t) € Q x (to,t1),
w(x,t) =
0 for a.a. (x,t) € Q x (R\ (to,%1)),
af(z,t,u,§)p(t) fora.a. (z,t) € Qx (to, 1),
aj(z,t,u,§) =4 0 for a.a. (z,t) € Q x (R\ (to,t1))

VueRN, vee R,
Then (3.1) takes the form

O . o
(3.2) —/vja—sidxdt: —/d?Dacp] d:vdt—i—/wjgo] dz dt.
Q Q Q (|

Let Q' cC Q (without loss of generality we may assume that 9Q is smooth).
By introducing the Steklov average as above, from (3.2) it follows that

o’ _ .
Awﬂ do = —/(df)ADaW dz + /wg\z/ﬁ da
(33) QO Q QO

[0)
for a.a. t € (0,t1), Yo € WA(Q;RYN), VO< A< T —t5.
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Clearly,
vg\ = wg\ =(aj)r =0 foraa. (z,1)€ Q' x ((—00,0) U (t1, +00))

for all 0 < A < min{tg, T —t1} (j = 1,...,N; « = 1,...,n). Thus, (3.3) is
equivalent to

/ aMpJ dr = — /(d?),\Dawj dx+/w§¢j dz
(3.3") o e
(o]
for a.a. t€R, Vip € WHQRY), VO < X < min{tg, T —t1}.
Let 0 < h < T —t1 and 0 < A < min{tg,T — ¢t1 — h}. Then from (3.3’) we

obtain
9 N
// (aAh’Ui)g@] dx dt

(3.4) R o

// Ap(@¥))) Doy’ da:dt—l—//(Ahwi)ga] dx dt

R R Q/

[¢]
for all ¢ € L2(R; Wi (Q/;RY)). O

(o]
Let ¢ € L2(R; W1(Q;CN)). Then (3.4) is separately true for the real and the
imaginary part of ¢, and thus for @ (= the conjugate complex of ).
In what follows, we identify real valued functions in the canonical way with
complex valued functions. O
Let H be a complex Hilbert space with scalar product (-,-) and norm || - || =
(-,-)1/2. The Fourier transform of ¢ € L(R; H) N L%(R; H) is defined by

- —th
(Fo)(t) = p(t r/ fdr, teR.

We note that F is a unitary mapping on the dense subset of all step functions
in L?(R; H); then F may be defined on the whole space L?(R; H) by continuous
extension.

The inverse Fourier transform of ¢ € L2(R; H) N LY(R; H) is given by

(‘7:_ ©)(t) teR;

\/ﬁ/m

there holds
FoFt=rloF=id
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Let 0 < 6 < 1. We define:

H%R¢n={weL%R¢n\/u+nﬁm|<m%u<+m}

R
Clearly, H 4 (R; H) is a Hilbert space with respect to the scalar product
0 R
(W) moaoany = [ (L )00, 9(0)
R

It is well known that

liols) = )1
[ a2 = /w Ww+c//——7m@—®%

R

where 1 1 ;
— cos
— =2 [ —————dt 0<f<1),
cp |t|1+2€ ( )
R

and
1
HY(R; H) c L2/(1_29)(R; H) continuously (O <h< 5)

Finally, if ¢ € L?(a,b; H) (—00 < a < b < 400) and ¢ > 0 then

b—a

b b g 5 b—a
//Mggﬁgiwng/%</wm+m—ww%QM-
a a 0 a

To proceed we make use of (2.7) to obtain

t1

//|Ahv|2dxdt://|Ahv|2d:17dt

R & 0
ti—h —

<2 / /|Ahu|2dxdt+2h2max / /|u|2dxdt
to—h —

< ch1+u

forall 0 < h < %min{to,T —t1}. Thus, v € HY2(R; L2(9; CM)).
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Next, observing the Plancherel formula and that

d. —
aAh’UA( ) =it Apuy(t) for a.a. t€R,
we find
// Ath jdxdt:i/ (Ahv)\, @)z dt *
Q R
for all ¢ € L%(R; (Q’ CN)) and all 0 < A < min{tg, T — t; — h}. Obviously,
o it 1 —
Apvy(t) = 7 Apv(t) for a.a. t€R,
)
and thus -

Apvy — @) in L2(R; L2(;CN)) as X\ — 0.
The passage to the limit A — 0 in (3.4) gives

i / t(Apv, @) 2 dt

- —//(Ahd?)Dagbj d:cdt—i—//(Ahwj)gbj dz dt

R Q' R Q'

(3.5)

for all ¢ € L*R;Wi(Q;CVN)) with i—feL2(R;L2(Q’;CN)) (o < h <

%min{to,T - tl}). By an approximation argument, (3.5) holds for all ¢ €
[}
LYR; WH(Q;CN)) 0 HY2(R; L2(Q'; CN)). O

We are now able to prove

Proposition 2. Let 2 < o < 3. Let (1.2)—(1.4) be satisfied with < _2_ <p<l

Then
do
qu S Lz/(3 7) (R; 1/2(9/;RN)) 5,

PROOF: We estimate the integrals on the right of (3.5) for any
[}
¢ € L2(R; W%(Q’;(CN)). To this end, let 0 < h < %min{to,T — t1}. Firstly, we

4By (¢,n)2 = [ ¢(z)n(z) dz we denote the scalar product in L2(Q/;CN) (' CC Q fixed);
Q

1/2
Il = €7
v
5Here — has to be understood in the sense of vector-valued distributions (cf. e.g.

(1, Appendices]).
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have
//(Aha VDo @ dadt
R Q/
t1—h
=— / /a?‘(:z:, t+ h),u(z,t + h), Vu(z,t + h)p(t + h) D@ (x,t) dz dt
—h
// (z,t, u(z, 1), Vu(z, t)p(t) Do @ (z,t) dz dt
to Qf
ti—h
=— / /[aj (x,t + h,u(z,t + h), Vu(z,t + h))
o—h
—aj(z,t,u(z,t), Vu(z,t))]p(t + h)Do@ (x,t) dz dt
t1
_ / / 0 (1w, 1), Yl £) [p(t + h) — ()] Dac@ (1, 1) da
to—h Q'
=0+ 1.

To estimate 7, we make use of (1.3) and (2.8) ( with %Q in place of t0>. It follows
that
t1—h
(L <c / /{h”(l + uz, )| D/ 4 |u(z, t + b)|(PFD/
o—h Q/

+ [Vu(e, )] + [Vu(e, t+h)]) + [Apul + A, Vul } [ Vi| da dt

t1
< c{h2“ / /(1 + w2/ | Tu?) da dt

to/2
i 1/2 1/2
4 / /(|Ahu|2+|AhVu|2)dxdt} (//|V<p|2d:z:dt>
to/2 R O

1/2
§ch“<//|V<p|2dxdt> .

R
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Clearly,

t 1/2
|I2|§CmaX|P/|h<1+//(|u|2(”+2)/2+|Vu|2)da:dt> x

to/2
1/2
X <//|V<p|2 dxdt) .

R &
Secondly, using (2.7) (or (2.8)) we find

//(Ahwj)@dxdt SChu(//hﬁdedt)l/z

R R €

(c = const depending on max |p’| and max |p”]).

Thus, (3.5) implies
1/2
< ch”(//(ls&|2 + IV@I2)d$dt>

R

(3.6)

[ 18092
R

(0]
for all € L2(R; W3(Q,CN))n HY/2(R; L2(€/;CN)) and all 0 < b <
 min{to, T — t1}. The function ¢ = F ! (sign(-)Ayv) is admissible in (3.6). We
have

[ [t +190P)deat = [ (&0 + 19 (B0 ds di

R Q R Q/

- //(|Ahv|2 1AL V2) dzdt ©
R &

< chZH

with ¢ = const depending on max |p/|. Here we have used once more (2.8) (with

%Q in place of to). Observing that @)(t) = (e’ —1)o(t) for a.a. t € R, from

(3.6) we deduce

, 1
3.7 t)]e™ — 12 |a(t)||22 dt < ch® VO < h < =min{ty,T —t1 }.
L 2
R

6We have V(m) = Vm)
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This estimate implies the claim of Proposition 2. To see this, set
ho = %min{to,T —t1}. Let 2 < o < 3. We have

h0|eiht_1|2 h0|ei7—_1|2
(3.8) /7dh2 |t|"_1/7d7 Vit > 1.
ho o
0 0

Now we proceed in two steps. Firstly, (3.7) and (3.8) (with o = 2) imply

ho hO

iht _ ]2
C/h2(u—1) dh > /|t|(/%dh)”@(0”%2 d

0 R 0
ho .
e’ — 1) .
> [ 2[6()]12 dt.
0 {11121}
Obviously,
[ eroBas [loBas [P
{t||t|]<1} R Q

and therefore

ho
/t2||ﬁ(t)|\%2 dt < c<1+/h2(“—1) dh) < 400 7.
R 0

It is well known that this estimate (together with v € L2(R;L%(Q;RN))) is

equivalent to
dv

E €
Secondly, observing that % = itd for a.a. t € R, and combining (3.7) and
(3.8) (with 2 < 0 < 3) we find

L2(R; L2(Y, RM)).

ho ho T 2
-1

c/hm‘_"dhz/'eTio'dT / 1172 lito(6) 12
0 0 {111y

h0| T 1|2 a\ 2

e — v
Y G 1 t0_2’ iyt }
ity [,
0 {111y

"Recall that p > & > 1 >

D=



On the Holder continuity of weak solutions to nonlinear parabolic systems ...

Hence L
— 0
d 2
/|t|2(0/2—1)‘ d—z(t)‘ < c<1 + /hQ“‘” dh) < 400
R 0
(for 2p — o > —1). Thus
do 2 2

4 € L(&; L2(Q;RYY), ¢= _

(cf. above). O

Let ' cC Q,0<tyg <t1 <T,andlet p € C((0,T)) satisfy 0 < p < 1 on

(0,T), p=1 on (tg,t1). Let the assumptions of Proposition 2 be fulfilled. Then,

for any weak solution u € V21’O(Q; RY) to (1.1) we have
du

1
(39) T e LG, 0 L(@5RY)) (2 <o<3, UT <u< 1).

Hence u possesses the weak derivative % such that

/tl (]2 ) < s
J

to 0

4. Proof of the Theorem

First of all, from (1.6) we infer

oud

/ W(I’ ) () da + /a‘;‘(:zr, t,u, V) Do) () dz = 0

Q Q
for a.a. t € (0,7), Vib € WHQ;RY), supp(v) C Q

(4.1)

(cf. (3.9)).

Let Q' cc Q" cc Q" cc Q (without loss of generality, we may assume that
Q' is smooth). Let ¢ € C° (") be a cut-off function such that 0 < ¢ < 1 in
Q" ¢ =1on Q" Inserting () = u(z,t)¢?(z) into (4.1) gives

aj (z,t,u, Vu) (Dau?)¢? da
Q///

J o )
= — / %UJCQ dzr —2 / aj (z,t,u, Vu)u! (Do dz,
Q/// Q///

251
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and therefore

(4.2) /|Vu z,t)2de < c<1+esssup/|u|2dx—|— / ’

Q// Q/H

for a.a. t € (0,7).

On the other hand, for a.a. t € (0,T), u(-,
to a nonlinear elliptic system with right-hand side —3—( t) € L2(Q",RN) (recall

that af'(-,0,0,0) € L7(Q2) (0 > 2); cf. (1.2)).
Thus, by reverse Holder inequality, there exists a p > 2 such that

1/p 1/2
2 8’& 2
</|Vu|pd:v> §c{ / (|Vu| +‘E‘ )dw} for a.a. ¢t € (0,T),
Q/ Q//

where neither p nor ¢ = const depend on ¢ (cf. [5, pp.137-139]). Without loss of
generality we may assume that 2 < p < 4. Now we add

([l
/

) and make use of the well-known multiplicative inequalities

t) may be considered as weak solution

to both sides of (4.3
(n =2) (cf. e.g. [9]). Thus, combining (4.2) and (4.3) gives

1/2
SO <eql+ /‘—u(x t)‘2dx
[Ju(, WHQRN) = ot

Ql//

for a.a. t € (0,7).
From the Sobolev imbedding theorem (n = 2) we obtain: for a.a. ¢t € (0,7)
there exists a representative @(-,t) € u(-,t) such that

1/2
- - _ Oou 2

Q///
Va,ye Q.

Deﬁneuo—l—— Let pp < < 1in (1.3). We fix 1 +2ug < 0 < 1+ 2u.

1 o—1 2 2
2148y <o Tlou B
+p <0< 5 <H 3_0>1_%

Then
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and
5 ) 1/2
< / ‘8_1;(2’ ')‘ dZ) e L2/G=)(Ty, 1)
Q///
for any 0 < Ty < T1 < T (ct. (3.9)), i.e. (Al) of the appendix below is satisfied
with @ =1 — 2.

p
Finally, given (zg,t9) € Q' x (T",T1) (Tp < T' < T1) and
0<r< %min{dist(ﬂ', o), /TT =Ty} we have

to . 2
(W (z,s) —ul (2,1))% < r? / <%(m)> dr  (j=1,...,N)

tg—r2

for a.a. x € By(z9) & and a.a. s,t € (tg — r2,t). Thus,

/|uxs—u:ct)|2d:17dt<r / /‘ ‘ dzdr

to— TZBT
3—0o
§4+202{/</‘ ‘dx) dr} ,
TO Q/”
i.e. (A2) is satisfied with § =0 — 2.

By Lemma 2 (Appendix),

uEC’%'Yﬂ(Q;RN), 7:0—2(1—!—%).

Appendix

Define
By = Br(wg) = {z € R" | |z — xo| <1},
Qr = Qr(z0,t0) = Br(x0) x (to — 1%, t0).

Let 2 C R™ be an open set, —oo < Ty < T < +00. Set Q = Q x (Tp,T1). We
have the following

8¢f. the appendix for the notations.
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Lemma 2. Let w € L?(Q). Suppose that for any Q' cC Q and Ty < T' < Ty
there holds

for a.a. t e (Tp,T1) 3w(-,t) € w(-,t):
(A1) [0(z,t) — w(y,1)| < |z —y|%(t) YVa,ye
(0<a<1,geri(Ty,T)(¢>2), 9(t) 20
for a.a. t € (Tp,T1)),
/(w(x, 5) — w(z, )2 dedt < Cornt2+28
42) Qr 1
VO<r<g min{dist(Q’,9Q), VT — To}, V (wo,t0) €
Q' x (T',T1) and for a.a. s € (tg—72,t9) (0 < <1)?
Then
(A3) wGC%'Yﬂ(Q), ”y:min{a—z,ﬁ}.

PROOF: Let |E| denote the n-dimensional (resp. (n + 1)-dimensional) Lebesgue
measure of a set £ C R (resp. E C R*1).

Let (wg,t9) € Q' x (T",T1), 0 <r < %min{dist(Q/,aQ), VI —Tp}. For any
((E,t) € QT = QT(x07t0)7

w(x,t) — @ /w(y,s) dyds

(A4) / /
|Br| w(z,t) — w(y,t))dy + — o] w(y,t) —w(y,s))dyds
=1+ Ig.
By (A1),
I} < wm/ () dy < 22 (g(0)
to
/ I dzdt < 22%|By |rn T2 / (g(t))?dt
Qr t0—7‘2
! 2/q
sﬂmmwﬂwmﬁ@</m@ww> :
To

9In (A2) the constant Co may depend on dist(Q’,0Q) and T’ — Tp.
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and by (A2),

/ 12 dedt < Cor 2428,
Qr

Thus,

2
/ w(z,t) — @ /w(y, s)dy ds | dxdt

r

: / [ (#600- 2 [t rana e
Qr

to—r2 Br

< eptt2t2y,

Then (A3) follows from the well-known integral characterization of Holder con-
tinuous functions (cf. [2], [4]).

(1]
(2]

(3]

d
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