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Results on Colombeau product of distributions

BLAGOVEST DAMYANOV

Abstract. The differential C-algebra G(R™) of generalized functions of J.-F. Colombeau
contains the space D'(R™) of Schwartz distributions as a C-vector subspace and has a
notion of ‘association’ that is a faithful generalization of the weak equality in D/(R™).
This is particularly useful for evaluation of certain products of distributions, as they are
embedded in G(R™), in terms of distributions again. In this paper we propose some
results of that kind for the products of the widely used distributions x4 and 5@ (),
with  in R™ that have coinciding singular supports. These results, when restricted to
dimension one, are also easily transformed into the setting of regularized model products
in the classical distribution theory.

Keywords: multiplication of Schwartz distributions, Colombeau generalized functions
Classification: 46F10

1. Notation and definitions

We will recall first the basic definitions of Colombeau algebra G(R™), following
their recent presentation in [7, Chapter 3].

Notation 1. If Ny stands for the nonnegative integers and p = (p1,p2,.-.,Pm)
is a multiindex in N, we let |p| = >/ p; and p! = p1!...py!. Then, if
z = (z1,...,2m) is in R™, we denote by zP = (2f*,25?,...,20") and 0P, =
8|p|/8x1171...8x%”. Also, by x < 0 is meant: z1 < 0,...,z;;, < 0 and = # 0.
Now for any ¢ in Np, denote by A4(R) = {¢(z) € D(R) : [p x) p(z)de = dg; for
0 < j < q, where dg0 = 1, dgj = 0 for j > 0}. This also extends to R™ as an
m-fold tensor product: Aq(R™) = {p(z) € DR™) : p(x1,...,2m) = [[121 x(xi)
for some y in A4(R)}. Finally, we will denote by ¢z = e (e~ tz), for any ¢
in Ag(R™) and ¢ > 0.

Definition 1. Let &[R™] stand for the set of functions f(p,z) : Ag(R™) x
R™— C that are C°°-differentiable with respect to x by a fixed ‘parameter’ @,
which, with the point-wise function operations, is clearly a C-algebra. Then
each generalized function of Colombeau is an element of the quotient algebra
G(R™) = E[R™]/ Z[R™]. Here the subalgebra £y;[R™] of £ [R™] is the set
of ‘moderate’ functions f(p,x) in £ [R™] such that for each compact subset K of
R and any p in Ni* there is a ¢ in N so that: for each ¢ in A4(R™) there are
¢ > 0, n > 0 satisfying sup,c g |0Pf(pe,x)| < ce™9 for 0 < € <. In turn, the
ideal Z [R™] of £4[R™] is the set of functions f(y, z) such that for each compact
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subset K of R™ and any p in N{j* there is ¢ in N so that: for every r > ¢ and
each ¢ in A,(R™) there are ¢ > 0, n > 0 satisfying sup,c g [0P f(pe, z) | < "9,
for 0 <e <.

The Colombeau algebra G(R™) contains all distributions (and C°°-differenti-
able functions) on R™, canonically embedded as a C-vector subspace (respectively,
a subalgebra) by the map i : D'(R™)— G(R™) : u — @ = [i(p,z)]. The repre-
sentatives here are given by @(p,z) = (u x @)(z), with ¢(x) = ¢(—x) and ¢
in A4(R™). Equivalently, one writes (¢, x) = (uy, p(y — x)). A basic example
is the embedding 4 in G(R™) of the Dirac d-function given by a representative

3(p, ) = (dy, p(y — 7)) = p(—x), for any ¢ in Ag(R™).

Definition 2. A generalized function f in G(R™) is said to admit some u in
D'(R™) as associated distribution, which is denoted by f ~ wu, if f has a repre-
sentative f(pg, z) in Ey7[R™] such that for any test-function ¢ (x) in D(R™) there
exists ¢ in Ng so that, for all ¢(z) in A4(R™),

lim /[R  Fpeayila)dr = ().

e—0

This definition is independent of the representative chosen and the distribution
associated is unique if it exists; the image in G(R™) of every distribution is asso-
ciated with that distribution ([1]). The concept of association is thus a faithful
generalization of the equality of distributions in D’(R™).

Now by ‘Colombeau product of distributions’ is denoted the product of some
distributions as they are embedded in Colombeau algebra G(R")whenever the
result admits an associated distribution in D'(R™) (see [5] for a comparison with
other distribution products). This notion helps to bring the results ‘down to the
level’ of distributions, connecting thus Colombeau theory with the classical distri-
bution theory. Below we give some results on products of distribution with coin-
ciding singularities in Colombeau algebra G(R™), or else — on their Colombeau
product.

2. Preliminary results

The technical lemmas below will be needed later to prove our main results.
Lemma 1. For an arbitrary ¢ in Ag(R), i.e. ¢ in D(R) with [p(t)dt = 1,
suppose that supp ¢ C [a, b], for some a,b in R. Then, for any p in Ny, it holds

(—=1)Pp!
—

b t
(1) / ) / (v — P o) (y) dy dt =
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PROOF: On expanding the term (y — ¢)P on the L.h.s. of (1) and then on multiple
integrating by parts, we get:

Ip = zp:(—l)j (I;) /ab t (1) /at P P) (y) dy dt

7=0
_ zp:(_l)j (?) /b o () Ig(_l)k%g—j—%(p—k—l)@ gt
7=0 @ k=0 ’
= ip_]<—1>f+’“],(p _pj' ) / (D)
j=0k=0 ' tJa
S kP L j(P
-t S ()

Here we have denoted by J,_j, = fCIZ P~k o(t)P—k=1) () dt, where, if k = p,
(=1 (t) stands for f; o(y)dy. For any ¢ = p — k > 0, however, it holds (see
[6, §21.5-1(b)]): 1_o(=1)(%) = 0. Whence I, = (=1)Pp!Jo. As for the
remaining term with p — k = j = 0, we get, by our assumption,

Jo—/abw(t) </:90(y)dy> dt—/ab (/:sa(y)dy) d</:<ﬂ(y)dy)

b

Il
DN | —
N\
a\a

~

S
—
<
S—

U
<
~_

N

This proves equation (1). O

Lemma 2. Letu and v be distributions in D'(R™) such that u(z) = [/~ u(x;),
v(z) = [[, vi(z;) with each u' and v* in D'(R), and suppose that their em-
beddings in G(R) satisfy @'.0" ~ w', for i = 1,...,m. Then 4.0 ~ w, where
w = ]2 w'(2).

PROOF: Suppose we have confined ourselves to the subspace of test-functions
Y(x) = T2 ¥i(x;), with each ¢; in D(R). In view of the tensor-product struc-
ture of the distributions u,v in D'(R™) as well as that of the elements ¢ of

Ap(R™), by applying a Fubini-type theorem for tensor-product distributions (see
[4, §4.3]), we get:

(U(pe, 2)0(pe, ), Y (x)) (@ (e, 23) 0 (Xe, ), i (25))

|

@
Il
—

I

@
Il
—

(tw (), vit)) + £1(2))
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Here, by assumption, one has the asymptotic evaluation f’(¢) = o(1) (e—0)
foreach : =1,... ;m. Thus

;E}r%) <ﬂ(@87$)ﬁ(§067 7 1:[ w)

where w = [[/*; wi(z;) is a uniquely determined distribution in D’'(R™). More-
over, since ¥(z) = [/, ¥;(z;) is running a dense subset of D(R™) ([4, §4.3]), it
follows, by Definition 2, that the product @.7 in G(R™) admits w as associated
distribution. O

3. Main results

Proposition 1. For an arbitrary p in Nj*, let 5 (x) and :i‘i be the embeddings
in G(R™) of the distributions 6(P)(z) and :cﬂ)_ = {2 for x > 0, = 0 elsewhere} in
D'(R™). Then

@) 50 ~ %5@).

PROOF: In the one-variable case (z € R,p € Np), x+ is represented by

#(pea) =7 [T ol —a/edy= [ (et ot i

—z/e

where the substitution (y — z)/e = t is made. Also, on differentiation in D’'(R),
we have

8P (pe,z) = (~1)Pe P15, 0P ((y — 2) /) = (~1)Pe P 1@ (—a/e).

Now if supp p(z) C [a,b] for some a,b in R, then supp p(—z/c) C [—eb, —eal].
Thus, replacing z—y = —z /¢, we get for any ¢(z) in D(R)

(@ (e, ) 6P (e, ), ¥(z))

_ —ae b
-5 / ( /_ x/€<x+et> ()dt) o P (~a/e)(x) d

/ b(—ey) 0P (1) / (v — 1P (t) di dy.

By the Taylor theorem, we have ¢ (—cy) = 1(0) + (—ey)v’(ny) for some n €
[0,1]. Now the integrand function in the latter equation, that reads

b _
v (ny) P (y) / (y — t)P(t) dt = yo' ()P (y)—(p i)f (t’i“ * w(t)) (v),
Y
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is clearly a product of differentiable functions, and is thus integrable on the finite
interval [a,b]. Therefore, by taking the limit as e—0 and applying the Dirichlet
formula for changing the order of integration (which is permissible here), we get

b
e—0 Y

B b
lim (2% (e, 2) 5P (02, 2), ¥(x)) = / $(0)0?) (y) / (y— () dt dy
b

t
— (0) / o(t) / (v — )P o) (y) dy dt.

Employing now Lemma 1, we obtain equation (2) for m = 1.
Further, in the multi-variable case, in view of the tensor-product structure of
the distributions 2% and 6(®) () in D'(R™), we can apply Lemma 2 that yields

@Ji,[g(p)(x) = ﬁj»ﬁ_'g(pi)(xi) ~ ﬁ (% 5(552.)) = L\Iﬂp! §(z),

om
i=1 i=1

which completes the proof. (I

Corollary 1. If 7P is the embedding of the distribution a® , then it holds for
any p in Nij*

(4) P 5P (z) ~ 21’—;5(;0).

PROOF: For any p in NJ', we have 2 = (—:v)‘i. The result in (4) therefore follows

by replacing z— — z in equation (2) and taking into account that §()(—z) =

(_1)|p|5(p)(x)_ 0

Remark 1. Equations (2) and (4) are consistent in dimension one with the known
formula in D'(R)

(5) 2P 5P (z) = (~1)Ppld(x) (p € No).

Indeed, taking in view that o« = xﬁ_ + (=1)P2” | the equations in consideration
combine to give (5).

Notation 2. Extending further the multiindex notation, consider now the or-
dered m-tuples a = (a1,...,am) in R™ with the vector operations there. We
specify that a + k stands for (a; + k,... ,am + k) for any k in Z (integers) and
that 0 denotes the zero-vector in R"™. Then we shall use the short-hand notations
x® = («f*, ..., xzlm) and [[72; T'(a;) = I'(a) (= p! whenever a — 1 = p € Nj*).

Finally, we denote Q = {a € R : a # —1,-2,...} and by Q™ the m-fold tensor
product © x ... x . Now one has the following:
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Proposition 2. The product of the generalized functions % and i in G(R™)
admits an associated distribution for any a,b in Q™ such that a +b+ 1 =0, and
it holds

T(a+1)T(b+1)

(6) 1} 2l ~ S

5(x).

PROOF: In the one-variable case (x,a € R), recall first the definition of the
distribution z9. If a > —1, then x +— 2% is locally-integrable, thus defining
the distribution (z9,v) = [5° 2%)(z)dz (¢ € D(R)), and it also holds 2% =

(a+ 1)_18x17$+1). Now we can define a distribution 2% for any a in {2, choosing
a k in Ng subject to the condition a + k + 1 > 0, if we set

L0 1 Okt — [la+1) P and
T (at+k)atk-1)...(a+1)" Tla+k+1) "
Suppose further that & in Ny is such that k > max{—a — 1, —b — 1}. Then, to

get the embedding in G(R™) of the distribution 29 we use the notion of derivative
in Colombeau algebra, which gives:

(o) =< s o [T el - o)) dy

= (‘”k“’l_k% /ooo y B (y — 2)/e) dy

_ Lat+1) [ a
= (—1)ke km /_w/e(a:+5u) ‘H‘f@(k)(u) du,

where, it is assumed that supp ¢(z) C [c, d] for some ¢, d in R and the substitution
u = (y — x)/e is made. Similarly, with the same choice of k, we have

0
(o) = (et O [ Py ) dy
—x/e
= (—1)'{5_’{% (—x — av)b+kcp(k) (v) dw.
Then, for any ¢ in D(R),

(7)
T(a+ 1)I(b+1)

Tatktr )Ib Lkl
—ce d —x/e
xe 2k / Y(x) / ") (u) / (@ + eu) ™ (—z — e0)" oW (v) dv du dx

—de —zx/e

<£Z.(—1i-(90€7 ‘T) ;Z'b_(spa., (E), 1/’(55» =

P+ D0b+1)
T Tla+k+D)I(b+k+1)

(e).
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Here it is taken into account that ¢ < —z/e < d, and thus —de < z < —ce.
Further, on making the substitution w = —x/¢ and taking in view the require-
ment a + b+ 1 =0, we obtain

d d w
5):/ 1/)(—510)/ w(k)(U)/ (U—w)a+k(w—v)b+k<p(k)(v)dvdudw.

Now, by the same argument as that used in Proposition 1 and by changing twice
the order of integration, we get for I, := lim._, I3 ()

d
Iy :/ »(0)e / / ) (w — v)" ) () do dw du

:w(O)/ (k)(u)/ cp(k)(v)/ (u — )T (w — 0)"*F dw dv du.

Then the substitution w—t = (w — v)/(u — v), together with the relations
w—v=(u—v)t,u—w = (u—v)(1—1t), and the definition of the first-order Euler
integral ([6, §21.4-4]) yield
(®)

d U 1
Iy = w(o)/ (p(k) (u)/ (u— ’U)a+b+2k+1(p(k) (v) (/ (1- t)a+ktb+kdt) dv du
c c 0
Tla+k+1)I0b+Ek+1) (@ u
— (R [P0 [ = o) du
N C (&

where the requirement a + b + 1 = 0 is again taken into account.
Hence, by equations (7) and (8), we have

lim. o (2% (e, 2) 32 (@e, ), 9(2))  (0) [9 u
Fat DRG0+ 1) = |, #00 [ e dvdn

_1)k d u
= %/C o(u) oF (/c (u— U)%go(k)(v) dv) du
= 7(_1)k¢(0) /d o(u) /u(u — v)k<p(k) (v)dvdu = @ ,

k!

where finally the result of Lemma 1, for the particular choice of k in Ny, is applied.
Thus, in the one-variable case, we get, by Definition 2,

o p  Tl@+DI'OB+1)

9.0 =~ 5 5(z).
To prove our result in G(R™), it only remains to apply Lemma 2: for any
a = (a,...am), b=(b;,... ,by) in Q™ such that a + b+ 1 = 0, we have
m
I(a; + DT(b; + 1 Tla+1I'(b+1
I+x HI z% ( (ai )2(2 )5(x2)>—%5($)
=1

This ﬁnlshes the proof. O
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Remarks 2. The result of the above proposition, symmetric in the parameters
a, b, can be rewritten taking into account the connection between them : replacing
b= —a—1 or, respectively, « = —b — 1 in (6), we have by [6, §21.4-1(c)| that,
for any a € R\Z,

9) @43 t=z7""15" ~ W §(x) = (—m/2)™ cosec(ma)d(z).

3. The proofs of equations (2), (4) and (6) can be modified — in dimension one
only — so as to obtain the same formulas for the regularized model product of
the corresponding distributions (denoted by [,]; see [7, Chapter 2]). This is due
to the fact that, replacing ¢(x) by p (—z), where ¢ is in Ag(R) (which is the only
requirement on ¢ we have used), we get for any ¢ in D(R):

lim._,q (@(e, ) D(pe, x), ¥()) = lime— ((u * pe) (v * pe), ) = ([u, v], ¥), where
p satisfies exactly the requirements imposed on the mollifiers for general model
products. Finally, we note that equations (2), (4) and (9) were derived in [2] and
[3] for dimension one and for the particular choice of the mollifiers p(x) being
even functions of x.
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