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A generalization of the exterior product

of differential forms combining Hom-valued forms

Christian Gross

Abstract. This article deals with vector valued differential forms on C∞-manifolds.
As a generalization of the exterior product, we introduce an operator that combines
Hom(

Ns(W ), Z)-valued forms with Hom(
Ns(V ), W )-valued forms. We discuss the

main properties of this operator such as (multi)linearity, associativity and its behavior
under pullbacks, push-outs, exterior differentiation of forms, etc. Finally we present
applications for Lie groups and fiber bundles.
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1. Introduction

The C∞(M)-module of differential forms on a differentiable manifold M , which
we will denote by A(M) =

⊕∞
p=0Ap(M), is an associative exterior algebra with

respect to the exterior or wedge product ∧. The wedge product can also be
extended to vector valued forms, if V,W,Z denote (finite or infinite dimensional)
vector spaces and a bilinear mapping m:V ×W → Z is given, we may define a
bilinear exterior product ∧m: (A(M)⊗ V )× (A(M)⊗W )→ (A(M)⊗ Z) by

(α⊗ v) ∧m (β ⊗ w) := (α ∧ β)⊗m(v, w) for all α, β ∈ A(M), v ∈ V,w ∈ W.

If V = R orW = R andm is scalar multiplication, we simply use ∧ instead of ∧m.
Also if V is an algebra with multiplicationm:V ×V → V , one uses ∧V rather than
∧m, e.g., for a Lie algebra g the notation ∧g implies m(X,Z) := [X,Y ]. ∧V turns
the C∞(M)-module A(M)⊗V into a (non-associative) algebra. Let d denote the
exterior differentiation of forms, and for a vector field X ∈ D1(M), let ıX denote
the interior product with respect to X and LX denote the Lie differentiation with
respect to X , which is given by LX = ıX ◦ d+ d ◦ ıX . Then for αp ∈ Ap(M)⊗ V

and ω ∈ A(M)⊗W ,

d(αp ∧m ω) = dαp ∧m ω + (−1)pαp ∧m dω,

ıX (αp ∧m ω) = ıXαp ∧m ω + (−1)pαp ∧m ıXω,

LX (αp ∧m ω) = LXαp ∧m ω + αp ∧m LXω.
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Thus with respect to ∧V , d and ıX are skew-derivations of degree 1, resp., −1 of
A(M)⊗ V and LX is a derivation of degree 0 of A(M)⊗ V .
Further properties of ∧m, resp., ∧V depend on m. If m:V ×V → V is associa-

tive, then ∧V is so, too; if αr ∈ Ar(M)⊗V and βs ∈ As(M)⊗V , then αr∧V βs =
(−1)rsβs ∧V αr if m is commutative, resp., αr ∧V βs = (−1)

rs+1βs ∧V αr if m is
anti-commutative.
For some applications one needs generalizations of these wedge products, e.g.,

to combine a Hom(
⊗sW,Z)-valued r-form χs

r with s W -valued p-forms φp. We
will examine the main properties of this Z-valued (r + sp)-form χs

r • φp. In fact,
for the sake of generality, we will consider the case where φ also is a Hom-valued
form, say φ

q
p ∈ Ap(M)⊗ Hom(

⊗q V,W ). In that case the computations require
some multilinear algebra and the derived expressions become quite voluminous.
Nevertheless, in many applications, where one or more of the integers p, q, r, s are
zero, we obtain more familiar results.
For notational convenience, we will recall the basic definitions from differential

geometry on C∞-manifolds and multilinear algebra according to Helgason [5] and
Kobayashi, Numizu [6]. Then we introduce the operator •, look for associativity
(Section 3) and examine its behavior under pullbacks and push-outs (Section 4).
In Section 5 we need to define further operators ◭ and ◮ in order to compute
d(χs

r •φp), ıX (χ
s
r •φp) and LX (χ

s
r •φp). Finally the last two sections are devoted

to applications for Lie groups and fiber bundles.

2. Basic definitions

For any (real) vector space V let C∞(M,V ) denote the C∞(M)-module of all
weakly differentiable maps from M to V , i.e., all maps f :M → V with ω ◦
f ∈ C∞(M) for every linear functional ω:V → R. The C∞(M)-module of
all vector fields on M will be denoted by D1(M). Every vector field X ∈
D1(M) differentiably associates with every x ∈ M an element Xx in the tan-
gent space Tx(M). Next Dp(M,V ) and Ap(M,V ) denote the C∞(M)-modules of

all C∞(M)-p-linear, resp., all alternating C∞(M)-p-linear maps αp:D1(M) ×
· · · × D1(M) → C∞(M,V ). They associate with every x ∈ M an element
φx = (φp)x in Hom(

⊗p Tx(M), V ), resp., in Altp(Tx(M), V ), where Altp(W,V )
means the vector space of all alternating p-linear maps from W p to V . The al-
ternations Ap:Dp(M,V )→ Dp(M,V ) are the canonical projections of Dp(M,V )
onto Ap(M,V ). We put D∗(M,V ) :=

⊕∞
p=0Dp(M,V ) and A(M,V ) :=⊕∞

p=0Ap(M,V ).

The canonical embedding ı :C∞(M) ⊗ V → C∞(M,V ), defined by [ ı (f ⊗
v)](x) := f(x)v ∈ V for all f ∈ C∞(M), x ∈ M and v ∈ V , is injective and
induces canonical embeddings of D∗(M)⊗ V into D∗(M,V ), resp., of A(M)⊗ V
into A(M,V ).
If V ∼= Rn with its natural differential structure, then C∞(M,V ), resp.,

A(M,V ) exactly contain the differentiable maps from M to V , resp., differen-
tial forms on M with values in V and the embeddings are bijective. This enables
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us to identify A(M)⊗ V with A(M,V ), etc. Of course, we also identify A(M,R)

andA(M), etc. Omitting ı we write for X (i) ∈ D1(M), f ∈ C∞(M), ω ∈ Ap(M),
x ∈M and v ∈ V :

X (f ⊗ v) := Xf ⊗ v, (f ⊗ v)(x) := f(x) v ∈ V,

d(ω ⊗ v) := dω ⊗ v, (ω ⊗ v)(X 1, . . . ,X p) := ω(X 1, . . . ,X p)⊗ v,

(ω ⊗ v)x(X
1
x , . . . ,X

p
x ) := (ω ⊗ v)(X 1, . . . ,X p)(x) = ωx(X

1
x , . . . ,X

p
x )⊗ v ∈ V.

Analogously to Altp(W,V ), the vector space of all symmetric p-linear maps
from W p to V will be denoted by Symp(W,V ). For convenience we define

Sym±(W,V ) :=
⊕∞

p=0 Sym
±
p (W,V ) by Sym

+
p (W,V ) := Symp(W,V ) and

Sym−
p (W,V ) := Altp(W,V ).
If f :M → N is differentiable, we denote the differential of f at x ∈M by dfx.

We have [dfx(Xx)]g = Xx(g ◦ f) for all Xx ∈ Tx(M), g ∈ C∞(N).
For α ∈ Dr(N,V ), r ∈ N and Xi ∈ Tx(M), the pullback f

⋆α ∈ Dr(M,V ) is de-
fined by (f⋆α)x(X1, . . . , Xr) = αf(x)(dfx(X1), . . . , dfx(Xr)). For α ∈ C∞(N,V )

we have f⋆α := α ◦ f , linear extension defines the pullback on D∗(N,V ). Obvi-
ously f⋆(A(N,V )) ⊆ A(M,V ) and — if we insert D∗(M)⊗ V into D∗(M,V ) —
f⋆(D∗(N)⊗ V ) ⊆ D∗(M)⊗ V and f⋆(A(N)⊗ V ) ⊆ A(M)⊗ V .
If f is a diffeomorphism, then for X ∈ D1(M) the push-out f⋆X ∈ D1(N) is

defined by (f⋆X )f(x) = dfx(Xx) for all x ∈M .

Let T (V ) denote the tensor algebra of V . Then every linear map Λ:V → W

defines a pullback Λ⋆: Hom(T (W ), Z)→ Hom(T (V ), Z): for K ∈ Hom(
⊗pW,Z)

and Xi ∈ V we have Λ⋆K(X1, . . . , Xp) := K(Λ(X1), . . . ,Λ(Xp)), so

Λ⋆(Sym±(W,Z)) ⊆ Sym±(V, Z). Λ◦: Hom(T (Z), V ) → Hom(T (Z),W ) is de-
fined by Λ◦K = Λ ◦K, thus also Λ◦(Sym±(Z, V )) ⊆ Sym±(Z,W ).
Finally Λ defines the push-out Λ⋆:D∗(M,V ) → D∗(M,W ) by Λ⋆ω = Λ ◦ ω.

Again Λ⋆(A(M,V )) ⊆ A(M,W ) and Λ⋆(D∗(M) ⊗ V ) ⊆ D∗(M) ⊗W , where we
have Λ⋆(α⊗ v) = α⊗ Λ(v) for all α ∈ D∗(M), v ∈ V .
Pullbacks and push-outs obey (f ◦ g)⋆ = f⋆ ◦ g⋆, (f ◦ g)⋆ = g⋆ ◦ f⋆, which one

may prove using the chain rule d(f ◦ g)x = dfg(x) ◦ dgx. We have:

Lemma 2.1. If f :M → N is differentiable, Λ:V → W and G:X → Y linear,

α, β ∈ A(N)⊗ V , γ ∈ A(N)⊗W , ω ∈ A(N) and K ∈ Hom(T (W ), X), then

(1) f⋆ and Λ⋆ commute: f
⋆(Λ⋆α) = Λ⋆(f

⋆α), analogously Λ⋆(G◦K) =
G◦(Λ

⋆K);
(2) f⋆ and Λ⋆ commute with d: d(f⋆α) = f⋆(dα), d(Λ⋆α) = Λ⋆(dα);
(3) f⋆(ω ∧ α) = (f⋆ω) ∧ (f⋆α), Λ⋆(ω ∧ α) = ω ∧ (Λ⋆α);
(4) f⋆(α ∧m γ) = (f⋆α) ∧m (f

⋆γ), for any bilinear m:V ×W → Z;

(5) Λ⋆(α∧V β) = (Λ⋆α)∧W (Λ⋆β), if in addition Λ◦φV = φW ◦ (Λ×Λ), thus
Λ⋆ is an algebra homomorphism, if Λ is one.
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Definition 2.2. For any χs
r ∈ Ar(M,Hom(

⊗sW,Z)), where s ∈ N, r ∈ N0, and

Fj ∈ Hom(
⊗q V,W ), j = 1, . . . , s, we define χ

F1,... ,Fs
r ∈ Ar(M,Hom(

⊗sq V, Z))
by

χF1,... ,Fs
r = [(F1 ⊗ · · · ⊗ Fs)

⋆]⋆χ
s
r.

Thus if χs
r ∈ Ar(M)⊗Hom(

⊗sW,Z), then χF1,... ,Fs
r ∈ Ar(M)⊗Hom(

⊗sq V, Z).

Since (F1 ⊗ · · · ⊗ Fs) ∈ Hom(
⊗sq V,

⊗q W ), χ
F1,... ,Fs
r (X 1, . . . ,X r) is well

defined. It is multilinear in Fj : for all λ, µ ∈ K and all j ≤ s

χ
F1,... ,λFj+µF ′

j ,... ,Fs

r = λχ
F1,... ,Fj ,... ,Fs
r + µχ

F1,... ,F ′

j ,... ,Fs

r .

Note that if q = 0 and Ej ∈ W , then (E1 ⊗ · · · ⊗ Es) is just the canonical

evaluation morphism and χ
E1,... ,Es
r ∈ Ar(M,V ) is the push-out of χs

r under this

morphism: χ
E1,... ,Es
r := (E1 ⊗ · · · ⊗Es)⋆χ

s
r, i.e., for all x ∈M and X i ∈ D1(M),

i = 1, . . . , r,

(χE1,... ,Es
r )x(X

1
x , . . . ,X

r
x ) := (E1 ⊗ · · · ⊗Es) ◦ (χ

s
r)x(X

1
x , . . . ,X

r
x ).

Now we are prepared for the definition of the operator •.

Definition 2.3. For χs
r ∈ Ar(M,Hom(

⊗sW,Z)) and φ
q
p ∈ Ap(M) ⊗

Hom(
⊗q V,W ), p, q, r, s− 1 ∈ N0, let d

sq
r+sp ∈ Dr+sp(M,Hom(

⊗sq V, Z)) with

d
sq
r+sp(X

1, . . . ,X r+sp)(x) :=

[χx(X
1
x , . . . ,X

r
x )]◦[φx(X

r+1
x , . . . ,X r+p

x )⊗· · ·⊗φx(X
r+(s−1)p+1
x , . . . ,X r+sp

x )]

for all x ∈ M and define χs
r • φ

q
p := Ar+sp(dr+sp) ∈ Ar+sp(M,Hom(

⊗sq V, Z)).

χ0r • φq
p := χ0r and linear extension defines χ • φq

p ∈ A(M,Hom(T (V ), Z)) for all
χ ∈ A(M,Hom(T (W ), Z)).

In other words, the operator • means the following: for any x ∈ M and X i ∈
D1(M), χx(X 1x , . . . ,X

r
x ) defines an element in Hom(

⊗sW,Z). Instead of using
s vectors in W as input for this map, we may also use s maps in Hom(

⊗q V,W )
as input to obtain an element in Hom(

⊗sq V, Z). But again for any x ∈ M and
Yi ∈ D1(M), φx(Y1x , . . . ,Y

p
x) defines such a map in Hom(

⊗q V,W ). Altogether
the combination of χ and s factors φ defines an element
d
sq
r+sp ∈ Dr+sp(M,Hom(

⊗sq V, Z)). Using the alternation Ar+sp, we finally ob-

tain a form in Ar+sp(M,Hom(
⊗sq V, Z)).

As was said before, • is a generalization of the wedge product. The following
lemma, whose proof is straightforward, makes this more transparent.
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Lemma 2.4. For p, q, r, s − 1 ∈ N0 and φ
q
p =

m∑
i=1

φi ⊗ Fi ∈ Ap(M) ⊗

Hom(
⊗q V,W ),

χs
r • φ

q
p =

m∑

i1,... ,is=1

χ
Fi1

,... ,Fis
r ∧ φi1 ∧ · · · ∧ φis .

Thus if χs
r ∈ Ar(M) ⊗ Hom(

⊗sW,Z), then also χs
r • φq

p ∈ Ar+sp(M) ⊗
Hom(

⊗sq V, Z).

Lemma 2.4 proves that if p is even and q = 0, then only the symmetric part of
χs

r counts: χ
s
r • φ

0
p = (Sym⋆ χ

s
r) • φ

0
p. On the other hand, if p is odd, Lemma 2.4

yields:

Lemma 2.5. For p, q, r, s− 1 ∈ N0, p odd, and φ
q
p =

∑m
i=1 φ

i ⊗ Fi, we have

(1)

χs
r • φ

q
p =

∑

1≤i1<···<is≤m

∑

ρ∈Ss

χ
Fiρ(1)

,... ,Fiρ(s)
r ∧ φiρ(1) ∧ · · · ∧ φiρ(s)

=
∑

1≤i1<···<is≤m

( ∑

ρ∈Ss

(−1)ρ χ
Fiρ(1)

,... ,Fiρ(s)
r

)
∧ φi1 ∧ · · · ∧ φis .

Thus χs
r • φ

q
p = 0 if s > m; if V and W are finite dimensional and

s > dimW (dimV )q , then χs
r • φ

q
p = 0 for all φ

q
p ∈ Ap(M)⊗Hom(

⊗q V,W ).

Proof: φi ∧ φi = 0, because p odd, and dimHom(
⊗q V,W ) = dimW (dimV )q.

�

Recall Symς for ς = ±. If χ ∈ A(M, Symς (W,Z)) (e.g., if χ = χs
r with s = 0, 1),

it is quite natural to ask for a resulting form χ •φq
p ∈ A(M, Symς(V, Z)). We can

achieve this by the push-out (Symς )⋆(χ • φq
p). Define

(2) ℓ := ςq+1(−1)p = ±1,

then the following lemma holds.

Lemma 2.6. For p, q, r, s−1∈N0, φ
q
p =

∑m
i=1 φ

i⊗Fi ∈ Ap(M)⊗Hom(
⊗q V,W )

and χs
r ∈ Ar(M, Symς

s(W,Z)), we have

(Symς
sq)⋆(χ

s
r • φ

q
p) =

m∑

i1,... ,is=1

(Symς
sq)⋆(χ

Fi1
,... ,Fis

r ) ∧ φi1 ∧ · · · ∧ φis ,

if (−1)p = ςq+1 = −1 : = s!
∑

1≤i1<···<is≤m

(Symς
sq)⋆(χ

Fi1
,... ,Fis

r ) ∧ φi1 ∧ · · · ∧ φis ,

if s > 1 and ℓ = −1 : = 0.
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Proof: The first equation is trivial from Lemmas 2.4 and 2.1.3. Now for s > 1,
φi1 ∧ · · · ∧φij ∧ · · · ∧φik ∧ · · · ∧φis = (−1)pφi1 ∧ · · · ∧φik ∧ · · · ∧φij ∧ · · · ∧φis and

(3) (Symς
sq)⋆(χ

Fi1
,... ,Fij

,... ,Fik
,... ,Fis

r ) = ςq+1(Symς
sq)⋆(χ

Fi1
,... ,Fik

,... ,Fij
,... ,Fis

r )

yield

(4) (Symς
sq)⋆(χ

Fi1
,... ,Fij

,... ,Fik
,... ,Fis

r ) ∧ φi1 ∧ · · · ∧ φij ∧ · · · ∧ φik ∧ · · · ∧ φis

= ℓ (Symς
sq)⋆(χ

Fi1
,... ,Fik

,... ,Fij
,... ,Fis

r ) ∧ φi1 ∧ · · · ∧ φik ∧ · · · ∧ φij ∧ · · · ∧ φis .

Thus evaluating
∑

ρ∈Ss
in (1) proves the rest. �

3. Associativity

In general, • is not associative. Yet the terms κu
t • (χs

r • φq
p) and (κ

u
t • χs

r) • φ
q
p

only differ (at most) by a sign, as the following proposition states.

Proposition 3.1. Let κu
t ∈ At(M,Hom(

⊗uX,Y )), χs
r ∈ Ar(M)⊗

Hom(
⊗sW,X) and φq

p ∈ Ap(M)⊗Hom(
⊗q V,W ) for p, q, r, s, t, u ∈ N0. Then

(5) κu
t • (χs

r • φ
q
p)

= (−1)prs
u(u−1)
2 (κu

t • χs
r) • φ

q
p ∈ At+ur+usp(M,Hom(

⊗usq V , Y )).

Proof: Let χs
r =

∑n
j=1 χ

j ⊗Gj and φ
q
p =

∑m
i=1 φ

i ⊗ Fi. By Lemma 2.4 we find

κu
t • (χs

r • φ
q
p) =

n∑

j1,... ,ju=1

m∑

i11,... ,isu=1

κ
Gj1

◦(Fi11
⊗···⊗Fis1

),... ,Gju◦(Fi1u
⊗···⊗Fisu )

t ∧

∧ χj1 ∧ φi11 ∧ · · · ∧ φis1 ∧ · · · ∧ χju ∧ φi1u ∧ · · · ∧ φisu ,

while

(κu
t • χs

r) • φ
q
p =

n∑

j1,... ,ju=1

m∑

i11,... ,isu=1

(κ
Gj1

,... ,Gju

t )
Fi11

,... ,Fis1
,... ,Fi1u

,... ,Fisu

t ∧

∧ χj1 ∧ · · · ∧ χju ∧ φi11 ∧ · · · ∧ φis1 ∧ · · · ∧ φi1u ∧ · · · ∧ φisu .

Now

χj1 ∧ φi11 ∧ · · · ∧ φis1 ∧ · · · ∧ χju ∧ φi1u ∧ · · · ∧ φisu

=(−1)prs(1+2+···+(u−1))χj1 ∧ · · · ∧ χju ∧ φi11 ∧ · · · ∧ φis1 ∧ · · · ∧ φi1u ∧ · · · ∧ φisu

=(−1)prs u(u−1)
2 χj1 ∧ · · · ∧ χju ∧ φi11 ∧ · · · ∧ φis1 ∧ · · · ∧ φi1u ∧ · · · ∧ φisu .

On the other hand (Fi11⊗· · ·⊗Fis1⊗· · ·⊗Fi1u ⊗· · ·⊗Fisu
)⋆◦(Gj1⊗· · ·⊗Giu)

⋆ =
[Gj1 ◦ (Fi11 ⊗ · · ·⊗Fis1), . . . , Gju

◦ (Fi1u ⊗ · · ·⊗Fisu
)]⋆, so both κ-expressions are

identical for each set of indices. �
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Corollary 3.2. If κ ∈ A(M,Alt(X,Y )), then for p, q, r or s even:

(6) κ • (χs
r • φ

q
p) = (κ • χs

r) • φ
q
p.

Proof: Whenever for a κu
t in (5) prs

u(u−1)
2 is odd, r + sp and sq are even and

u > 1, thus the left side of (5) vanishes by Lemma 2.6. �

In most applications, q will be zero and thus κ • (χs
r • φ

0
p) and (κ •χ

s
r) • φ

0
p are

identical. Nevertheless note that this does not hold for expressions that involve
three operators •: according to Proposition 3.1, [κ • (χs

r • φ
q
p)] • ξ

0
t and [(κ •χ

s
r) •

φ
q
p] • ξ

0
t will differ, in general.

4. Behavior under pullbacks and push-outs

Now we are looking for the behavior of • under the various pullbacks and push-
outs we defined in Section 2. Due to the following lemma, we find that this
behavior is canonical.

Lemma 4.1. Let M,N be C∞-manifolds and V,W, Y, Z vector spaces.

1. If f :M → N is differentiable and χ ∈ A(N,Hom(T (W ), Z)), then

(∀φq
p ∈ Ap(N)⊗Hom(

⊗qV,W )) f⋆(χ • φq
p)

= (f⋆χ) • (f⋆φq
p) ∈ A(M,Hom(T (V ), Z));

2. If A:W → Y is linear and χ ∈ A(M,Hom(T (Y ), Z)), then

(∀φq
p ∈Ap(M)⊗Hom(

⊗qV,W ))χ • [(A◦)⋆φ
q
p]

= [(A⋆)⋆χ] • φ
q
p ∈ A(M,Hom(T (V ), Z)),

(∀ θp ∈ Ap(M)⊗W ) χ • (A⋆θp) = [(A
⋆)⋆χ] • θp ∈ A(M,Z);

3. If B:Y → Z linear and χ ∈ A(M,Hom(T (W ), Y )), then

(∀φq
p ∈Ap(M)⊗Hom(

⊗qV,W )) (B◦)⋆(χ • φq
p)

= [(B◦)⋆χ] • φ
q
p ∈A(M,Hom(T (V ), Z)),

(∀ θp ∈ Ap(M)⊗W ) B⋆(χ • θp) = [(B◦)⋆χ] • θp ∈ A(M,Z).

Analogous results hold for (anti)symmetrized forms in A(M, Symς(W,Z)), etc.
If in 1. we have χ ∈ A(N) ⊗ Hom(T (W ), Z), the result will be in A(M) ⊗
Hom(T (V ), Z), etc.

Proof: 1. follows from Lemmas 2.1 and 2.4; 2. and 3. are easily proved directly
or by Proposition 3.1: let a10 := 1 ⊗ A ∈ A0(M) ⊗ Alt1(W,Y ), then [(A◦)⋆φ

q
p] =

a10 •φ
q
p and [(A

⋆)⋆χ] = χ•a
1
0; analogously with b

1
0 := 1⊗B ∈ A0(M)⊗Alt1(Y, Z),

[(B◦)⋆χ] = b
1
0 • χ, which is well-defined in this special case. �
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5. The operators ◭ and ◮

Let us check (multi)linearity now. Obviously χ • φq
p is A(M)-linear only in χ.

Moreover, if χ ∈ A(M,Hom(
⊗sW,Z)), then

(7) χ • (f φq
p) = f

s (χ • φq
p) for all f ∈ C∞(M).

In addition, we would like to give an expression for χ • (φq
p + ψ

q
p). First we

observe that every χs
r ∈ Ar(M, Symς

s(W,Z)), ς = ±, naturally defines

(8) χs′;s′′
r ∈ Ar(M, Symς

s′(W, Sym
ς
s′′(W,Z))) for all s

′, s′′ ∈ N0, s
′ + s′′ = s.

For any such combination of s′ and s′′, χs
r • (φq

p + ψ
q
p) will contain terms, where

s′ factors of φq
p and s

′′ terms of ψq
p serve as input for χ

s
r. In order to cover this

situation, we need the following two definitions.

Definition 5.1. For χ
s′;s′′
r ∈ Ar(M,Hom(

⊗s′ W ′,Hom(
⊗s′′ W ′′, Z))), s′, s′′ ∈

N, r ∈ N0, and any Gi ∈ Hom(
⊗q V,W ′), i = 1, . . . , s′, Hj ∈ Hom(

⊗q V,W ′′),

j = 1, . . . , s′′, we define:

χ
G1,... ,Gs′ ;s

′′

r := [(G1 ⊗ · · · ⊗Gs′)
⋆]⋆χ

s′;s′′
r

∈ Ar(M,Hom(
⊗s′q V,Hom(

⊗s′′ W ′′, Z)))

χ
s′;H1,... ,Hs′′
r := [((H1⊗ · · · ⊗Hs′′)

⋆)◦]⋆χ
s′;s′′
r

∈ Ar(M,Hom(
⊗s′ W ′,Hom(

⊗s′′q V, Z)))

If χ
s′,s′′
r ∈ Ar(M)⊗Hom(

⊗s′ W ′,Hom(
⊗s′′ W ′′, Z)), then

χ
G1,... ,Gs′ ;s

′′

r ∈ Ar(M)⊗Hom(
⊗sqV,Hom(

⊗s′′W ′′, Z)), χ
s′;H1,... ,Hs′′
r ∈Ar(M)⊗

Hom(
⊗s′W ′,Hom(

⊗s′′q V, Z)).

Definition 5.2. For any χ
s′;s′′
r ∈ Ar(M,Hom(

⊗s′ W ′,Hom(
⊗s′′ W ′′, Z))) and

any φ
q
p ∈ Ap(M) ⊗ Hom(

⊗q V,W ′), where p, q, r, s′, s′′ ∈ N0, let Z
′ :=

Hom(
⊗s′′ W ′′, Z) and χ̃s′

r := χ
s′;s′′
r ∈ Ar(M,Hom(

⊗s′ W ′, Z ′)), and define

χs′;s′′
r ◭ φq

p := χ̃
s′
r • φq

p ∈ Ar+s′p(M,Hom(
⊗s′q V,Hom(

⊗s′′ W ′′, Z))).

Be ψ
q
p ∈ Ap(M)⊗Hom(

⊗q V,W ′′) and :
⊗s′ W ′ → [Hom(

⊗s′ W ′, Z)→ Z] the
evaluation morphism. Define

χ
s′;s′′
r ◮ ψ

q
p ∈ Ar+s′′p(M,Hom(

⊗s′ W ′,Hom(
⊗s′′q V, Z))) by

(w1⊗· · ·⊗ws′)⋆(χ
s′;s′′
r ◮ψq

p) := [(w
1⊗· · ·⊗ws′)⋆χ

s′;s′′
r ]•ψq

p for all wi ∈W ′.

Thus for χ ∈ Ar(M,Hom(
⊗sW,Z)), the direction of the triangle indicates

whether the second form is used as input for the first s′ or the last s′′ factors in
χx(X 1x , . . . ,X

r
x ) ∈ Hom(

⊗sW,Z).
Analogously to Lemma 2.4, we obtain for the new operators:
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Lemma 5.3. Using the notation of the previous definitions, we have

χs′;s′′
r ◭ φq

p =

m∑

j1,... ,js′=1

χ
Gj1

,... ,Gj
s′
;s′′

r ∧ φj1 ∧ · · · ∧ φjs′ if φq
p =

m∑

j=1

φj ⊗Gj ,

χs′;s′′
r ◮ ψq

p =

m∑

k1,... ,ks′′=1

χ
s′;Hk1

,... ,Hk
s′′

r ∧ ψk1 ∧ · · · ∧ ψks′′ if ψq
p =

m∑

k=1

ψk ⊗Hk.

χ
s′;s′′
r ◭ φ

q
p ∈ Ar+s′p(M) ⊗ Hom(

⊗s′q V,Hom(
⊗s′′ W ′′, Z)) and χs′;s′′

r ◮ ψ
q
p ∈

Ar+s′′p(M)⊗Hom(
⊗s′ W ′,Hom(

⊗s′′q V, Z)) if

χ
s′;s′′
r ∈ Ar(M)⊗Hom(

⊗s′ W ′,Hom(
⊗s′′ W ′′, Z)).

Thus the terms in the sums for (χ
s′;s′′
r ◭ φ

q
p′)◮ψ

q
p′′ , resp., (χ

s′;s′′
r ◮ψ

q
p′′)◭ φ

q
p′

contain exterior products of s′ p′-forms φj in front of s′′ p′′-forms ψk, resp., s′′ p′′-

forms ψk in front of s′ p′-forms φj . As a consequence, (χ
s′;s′′
r ◭ φ

q
p′) ◮ ψ

q
p′′ and

(χ
s′;s′′
r ◮ ψ

q
p′′)◭ φ

q
p′ differ by a factor (−1)

p′p′′s′s′′ :

Lemma 5.4. Let χ
s′;s′′
r , φ

q
p′ and ψ

q
p′′ be defined as before. Then

(χs′;s′′
r ◭ φ

q
p′)◮ ψ

q
p′′

= (−1)p
′p′′s′s′′(χs′;s′′

r ◮ ψ
q
p′′)◭ φ

q
p′ ∈ Ar+s′p′+s′′p′′(M,Hom(

⊗sqV, Z))

For χs
r ∈ Ar(M, Symς

s(W,Z)) with ς = ± and χs′;s′′
r from (8),

(Symς
sq)⋆[(χ

s′;s′′
r ◭ φ

q
p′)◮ ψ

q
p′′ ] = ς

(q+1)s′s′′ (Symς
sq)⋆[(χ

s′′;s′
r ◮ φ

q
p′)◭ ψ

q
p′′ ].

Proof: With the previous notation, the first two terms are both equal to
m∑

i1,... ,is′+s′′=1

χ
Gi1

,... ,Gi
s′
;Hi

s′+1
,... ,Hi

s′+s′′

r ∧ φi1 ∧ · · · ∧ φis′ ∧ ψis′+1 ∧ · · · ∧ ψis′+s′′ ;

(Symς
sq)⋆(χ

Gi1
,... ,Gi

s′
,Hi

s′+1
,... ,His

r )

= ς(q+1)s
′s′′ (Symς

sq)⋆(χ
Hi

s′+1
,... ,His ,Gi1

,... ,Gi
s′

r )

from (3) proves the second equation. �

With these new operators we can evaluate at least the (anti)symmetrized forms
(Symς

sq)⋆[χ
s
r • (φq

p + ψ
q
p)] (recall that this means no restriction for q = 0). To

this purpose, we also introduce generalizations
(s
k

)
±
of the ordinary binomial

coefficients:

(9)

(
s

k

)

+
:=

(
s

k

)
,

(
s

k

)

−

:=

{
0, if s even and k odd,
([s/2]
[k/2]

)
, else (for r ∈ R, [r] := max

z∈Z

{z ≤ r}).

Note that
(s
k

)
±
=

( s
s−k

)
±
as before.
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Proposition 5.5. For p, q, r, s ∈ N0, let φ
q
p, ψ

q
p ∈ Ap(M) ⊗ Hom(

⊗q V,W ) and
χs

r ∈ Ar(M, Symς
s(W,Z)). Define ℓ as in (2). Then

(Symς
sq)⋆[χ

s
r • (φ

q
p + ψ

q
p)]

=

s∑

k=0

(s
k

)
ℓ(Sym

ς
sq)⋆[(χ

k;s−k
r ◭φ

q
p)◮ψ

q
p]

=

s∑

k=0

(−1)pk(s−1)(s
k

)
ℓ(Sym

ς
sq)⋆[(χ

k;s−k
r ◮ψ

q
p)◭φ

q
p]

=

s∑

k=0

(s
k

)
ℓ(Sym

ς
sq)⋆[(χ

k;s−k
r ◭ψ

q
p)◮φ

q
p]

=

s∑

k=0

(−1)pk(s−1)(s
k

)
ℓ(Sym

ς
sq)⋆[(χ

k;s−k
r ◮φ

q
p)◭ψ

q
p].

Whenever (Symς
sq)⋆[χ

s
r •(φ

q
p+ψ

q
p)] is nonzero according to Lemma 2.6,

(s
k

)
ℓ =

(s
k

)
.

Proof: The equations are trivial for s = 0 and s = 1, so assume s > 1. Let φ
q
p =∑m

i=1 φ
i⊗Fi and ψ

q
p =

∑m
i=1 ψ

i⊗Fi. Then with χ̃
i1,... ,is
r := (Symς

sq)⋆(χ
Fi1

,... ,Fis
r ),

(Symς
sq)⋆(χ

s
r • (φ

q
p + ψ

q
p)) =

m∑

i1,... ,is=1

χ̃i1,... ,is
r ∧ (φi1 + ψi1) ∧ · · · ∧ (φis + ψis),

and (Symς
sq)⋆[(χ

k;s−k
r ◭φq

p)◮ψ
q
p]

=
m∑

i1,... ,is=1

χ̃i1,... ,is
r ∧ φi1 ∧ · · · ∧ φik ∧ ψik+1 ∧ · · · ∧ ψis .

We proceed by induction on s. Thus

(Symς
sq)⋆(χ

s
r • (φ

q
p + ψ

q
p))

=

m∑

is=1

(Symς
sq)⋆(Sym

ς
(s−1)q

)⋆(χ
s−1;Fis
r • (φq

p + ψ
q
p)) ∧ (φ

is + ψis)

=

s−1∑

k=0

(s−1
k

)
ℓ

m∑

i1,... ,is=1

χ̃i1,... ,is
r ∧ φi1 ∧ · · · ∧ φik ∧ ψik+1 ∧ · · · ∧ ψis−1 ∧ (φis + ψis)

=
s∑

k=0

[
(s−1

k

)
ℓ
+ ℓs−k

(s−1
k−1

)
ℓ
]

m∑

i1,... ,is=1

χ̃i1,... ,is
r ∧ φi1 ∧ · · · ∧ φik ∧ ψik+1 ∧ · · · ∧ ψis ,

where we have used (4). Recursion
(s
k

)
ℓ =

(s−1
k

)
ℓ+ℓ

s−k
(s−1
k−1

)
ℓ
proves the formulae

for
(s
k

)
ℓ. Lemma 5.4 and interchanging φ

q
p and ψ

q
p finally yield the rest. �
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6. Exterior derivative, interior product and Lie derivative

Finally we will also derive formulae for the exterior derivative of χs
r • φq

p, as
well as for its interior product and its Lie derivative with respect to a vector
field X ∈ D1(M). Let us start with the (anti)symmetrized forms.

Proposition 6.1. Let φ
q
p ∈ Ap(M) ⊗ Hom(

⊗q V,W ) and χs
r ∈ Ar(M) ⊗

Symς
s(W,Z) for p, q, r, s ∈ N0. Define

(s
1

)
ℓ as in (9). Then

d[(Symς
sq)⋆(χ

s
r • φ

q
p)] = (Sym

ς
sq)⋆[(dχ)

s
r+1 • φ

q
p]

+ (−1)r
(s
1

)
ℓ (Sym

ς
sq)⋆[(χ

1;s−1
r ◭ (dφ)qp+1)◮ φ

q
p]

= (Symς
sq)⋆[(dχ)

s
r+1 • φ

q
p]

+ (−1)r+p(s−1) (s
1

)
ℓ (Sym

ς
sq)⋆[(χ

s−1;1
r ◭ φ

q
p)◮ (dφ)

q
p+1].

Proof: With the notation of the previous proof, Lemmas 2.1 and 2.6 yield

d[(Symς
sq)⋆(χ

s
r • φ

q
p)] =

m∑

i1,... ,is=1

dχ̃i1,... ,is
r ∧ φi1 ∧ · · · ∧ φis

+

s∑

j=1

m∑

i1,... ,is=1

(−1)r+p(j−1)χ̃i1,... ,is
r ∧ φi1 ∧ · · · ∧ φij−1 ∧ dφij ∧ φij+1 ∧ · · · ∧ φis

= (Symς
sq)⋆[(dχ)

s
r+1 • φ

q
p]

+ (−1)r
s∑

j=1

m∑

i1,... ,is=1

ℓj−1 χ̃i1,... ,is
r ∧ dφi1 ∧ φi2 ∧ · · · ∧ φis

= (Symς
sq)⋆[(dχ)

s
r+1 • φ

q
p] + (−1)

r (s
1

)
ℓ

m∑

i1,... ,is=1

χ̃i1,... ,is
r ∧ dφi1 ∧ φi2 ∧ · · · ∧ φis ,

where we used (2) and (3) in the second step. Lemma 5.4 proves the rest. �

Since we only used the fact that d is a skew-derivation ofA(M), Proposition 6.1
also holds for ıX instead of d, and for LX , if one drops (−1)

r. Tracing the previous
proof we get for the general case:

Corollary 6.2. If χs
r ∈ Ar(M)⊗Hom(

⊗sW,Z), φq
p ∈ Ap(M)⊗Hom(

⊗q V,W )

and X ∈ D1(M), then

d(χs
r • φ

q
p)

= (dχ)sr+1• φ
q
p+(−1)

r
s−1∑

j=0

(−1)jp[(χj;s−j
r ◭ φq

p)
1;s−j−1

◭ (dφ)
q
p+1]◮ φq

p,
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ıX (χ
s
r • φ

q
p)

= (ıXχ)
s
r−1• φ

q
p + (−1)

r
s−1∑

j=0

(−1)jp[(χj;s−j
r ◭ φq

p)
1;s−j−1

◭ (ıXφ)
q
p−1]◮ φq

p,

LX (χ
s
r • φ

q
p)

= (LXχ)
s
r • φ

q
p +

s−1∑

j=0

(−1)jp[(χj;s−j
r ◭ φq

p)
1;s−j−1

◭ (LXφ)
q
p]◮ φq

p.

7. Lie groups and Lie group actions

Suppose G is a Lie group with Lie algebra g and adjoint action Ad:G→ Gl(g).
If λg and ρg denote multiplication with g ∈ G form the left, resp., from the

right, then the canonical left, resp., right invariant 1-forms ΘL ∈ AL
1 (G, g), resp.,

ΘR ∈ AR
1 (G, g) are given by

ΘL
g (Xg) := dλg−1(Xg), ΘR

g (Xg) := dρg−1(Xg) for all g ∈ G, X ∈ D1(G).

Both are connected via ΘR
g = Ad(g)◦Θ

L
g . Using • we can get rid of the argument g

and may write this identity as ΘR = Ad •ΘL.
For S = L,R, let ψS : Altp(g, V ) → AS

p (G, V ) denote the isomorphisms be-
tween the vector spaces of alternating p-linear maps on g

p and of left, resp., right
invariant p-forms on G (where the inverse morphisms are the evaluation at the

identity e ∈ G). Then ΘS = ψS(idg) and if 1 ∈ C∞(M) denotes the constant

map onto 1 ∈ R (here M = G), then ψS is given by

(10) ψS(K) = (1⊗K) •ΘS ∈ AS(G, V ) for all K ∈ Alt(g, V ).

Note that for any linear Λ:V →W , Lemma 4.1.3 combined with (10) yields

Λ⋆ψ
S(K) = Λ⋆[(1 ⊗K) •ΘS ] = [1⊗ (Λ◦K)] •Θ

S = ψS(Λ◦K) ∈ AS(G,W ).

For any manifold M , C∞(M,G) is a group with respect to pointwise multi-
plication and inversion. For any differentiable f, g:M → G, the expressions f · g
and f−1 are understood within this group. From Lemma 4.1.1 we obtain for the
so-called left and right differential of f ∈ C∞(M,G):

f⋆ΘR = (Ad ◦f) • f⋆ΘL, f⋆ΘL = (Ad ◦f−1) • f⋆ΘR.

Moreover, the generalized product rule d(f ·g)x=(dρg(x))f(x)dfx+(dλf(x))g(x)dgx
for all x ∈M yields the following relations:

(f · g)⋆ΘL = (Ad ◦g−1) • f⋆ΘL + g⋆ΘL,

(f · g)⋆ΘR = f⋆ΘR + (Ad ◦f) • g⋆ΘR,

(f−1)⋆ΘL = −(Ad ◦f) • f⋆ΘL = −f⋆ΘR,

(f−1)⋆ΘR = −(Ad ◦f−1) • f⋆ΘR = −f⋆ΘL.
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Now (10) and Lemma 4.1.1 yield for K ∈ Alt(g, V ):

(f · g)⋆ψL(K) = (1⊗K) • [(Ad ◦g−1) • f⋆ΘL + g⋆ΘL],

(f · g)⋆ψR(K) = (1⊗K) • [f⋆ΘR + (Ad ◦f) • g⋆ΘR].

(In addition, (f−1)⋆ψL(K) = (−1)pf⋆ψR(K) if K ∈ Altp(g, V ).)
Again for S = L,R and any manifold P let S:G × P → P denote a left,

resp., right Lie group action. (For notational convenience, we write G on the
left, even for a right action.) Thus if Sg(p) := S(g, p), then all Sg:P → P are
diffeomorphisms and we will identify S with S:G→ Diff(P ). We put sgn(S) = −1
for S = L and sgn(S) = +1 for S = R. Then the following lemma holds.

Lemma 7.1. Let S:G×P → P be a Lie group action and L′:G→ Gl(W ) be a
left representation. If ϕr ∈ Ar(P ) ⊗W and χ ∈ A(P,Hom(T (W ), V )) are equi-

variant in the sense that S⋆
gϕr = L′(g− sgn(S))⋆ϕr and S

⋆
gχ = (L

′(gsgn(S))⋆)⋆χ
for all g ∈ G, then χ • ϕr is invariant.

Proof: S⋆
g (χ •ϕr) = (S

⋆
gχ) • (S

⋆
gϕr) = χ • [(L′(gsgn(S))⋆)⋆S

⋆
gϕr] = χ •ϕr, where

the first equality follows from Lemma 4.1.1 and the second from 4.1.2. �

Every representation S:G → Gl(V ) induces a representation s = dSe: g →

gl(V ) of the Lie algebra such that S ◦ expX = es(X) for all X ∈ g. As for S, we
will identify s = l, r with the induced bilinear mappings s: g × V → V . We have
the following relations for all g ∈ G, X ∈ g and v ∈ V :

s(X,S(g, v)) = S(g, s(Ad(gsgn(S))X, v)),

S(g, s(X, v)) = s(Ad(g− sgn(S))X,S(g, v))

and thus obtain:

Proposition 7.2. Let S:G → Gl(V ) be a representation and s: g × V → V

be the induced bilinear map. Then for any differentiable f :M → G and forms

ω ∈ A(M, g) and φ ∈ A(M)⊗ V ,

(S ◦ f) • (ω ∧s φ) = [(Ad ◦f
− sgn(S)) • ω] ∧s [(S ◦ f) • φ],(11)

d[(S ◦ f) • φ] = (S ◦ f) • (f⋆ΘS ∧s φ+ dφ).(12)

Proof: Only (12) still needs to be proved. For S = L, observe that for all g ∈ G,
L ◦λg = λ

′
L(g) ◦L with λ

′
L(g): Gl(V )→ Gl(V ):A 7→ L(g) ◦A. For any vector field

X ∈ D1(M) and x ∈M , this yields [d(L◦f)]X (x) = dLf(x) ◦dλf(x)(f
⋆ΘL)xXx =

λ′L(f(x)) ◦ l ◦ (f
⋆ΘL)xXx, and thus [d(L ◦ f)]•φ = (L ◦ f)• (f⋆ΘL ∧l φ). Now (12)

follows from Proposition 6.1. Analogous arguments hold for S = R. �
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As a corollary, we get for any f ∈ C∞(M,G) and all ω, φ ∈ A(M, g),

(Ad ◦f) • (ω ∧g φ) = [(Ad ◦f) • ω] ∧g [(Ad ◦f) • φ],(13)

d[(Ad ◦f) • φ] = (Ad ◦f) • (f⋆ΘL ∧g φ+ dφ).(14)

In all cases, the operator • leads to a quite compact notation, since we need
not refer to the points g ∈ G nor the vector fields that the forms act on.

8. Fiber bundles and connections

Let P (M,G) denote a principal bundle with base manifold M =
⋃

α∈A Uα, pro-
jection π:P → M , fiber G, right action R:P × G → P and local trivializations
ψα:π

−1(Uα) → Uα × G with local projections πα = prG ◦ψα. Recall that any
connection Γ on P defines horizontal and vertical projections of vector fields, not
only on P , but also on every associated fiber bundle B(M,F,G) = P ×G F with
fiber F , such that the vertical fields are tangential to the fiber. We thus obtain
projections h, v of differential forms via

ωh(. . . ,X i, . . . ) := ω(. . . , hX i, . . . ), ωv(. . . ,X i, . . . ) := ω(. . . , vX i, . . . )

for all ω ∈ A(B, V ). Obviously h and v commute with •, ◭ and ◮: e. g. for
χ ∈ A(B,Hom(T (W ), Z)) and φq

r ∈ Ar(B)⊗Hom(
⊗q V,W ),

(χ • φq
r)h = χh • φq

rh, (χ • φq
r)v = χv • φ

q
rv.

Let dΓ:A(P ) ⊗ V → A(P )h ⊗ V denote the exterior covariant differentiation

on P , which is defined by dΓω := (dω)h. Then we immediately obtain from
Corollary 6.2:

Proposition 8.1. For differential forms χs
r ∈ Ar(P )⊗Hom(

⊗sW,Z) and φq
p ∈

Ap(P )⊗Hom(
⊗q V,W ),

dΓ(χs
r • φ

q
p)

= (dΓχ)sr+1•φ
q
ph+

s−1∑

j=0

(−1)r+jp[(χj;s−j
r h◭φq

ph)
1;s−j−1

◭ (dΓφ)
q
p+1]◮φq

ph.

Let ωΓ ∈ A1(P, g) and Ω
Γ = dΓωΓ ∈ A2(P, g) denote the connection 1-form,

resp., the curvature 2-form of Γ. Both are equivariant with respect to R and Ad.
If σα,e:Uα → π−1(Uα) are the local sections given by σα,e(x) := ψ−1

α (x, e), then
the gauge potentials Aα and the gauge fields Fα are given by

(15)
Aα := σ⋆

α,e(ω
Γ|π−1(Uα)) ∈ A1(Uα, g),

Fα := σ⋆
α,e(Ω

Γ|π−1(Uα)) ∈ A2(Uα, g).
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On the other hand, the collection of Aα and Fα determines ωΓ and ΩΓ:

(16)
ωΓ|π−1(Uα) = (Ad ◦π

−1
α ) • (π

⋆Aα) + π⋆
αΘ

L,

ΩΓ|π−1(Uα) = (Ad ◦π
−1
α ) • (π

⋆ Fα)

(recall that π−1α :Uα → G means the pointwise inverse). On all Uαβ := Uα∩Uβ 6=
∅, the transition functions gαβ :Uαβ → G are given by gαβ = (πα|Uαβ

)◦(σβ,e|Uαβ
)

such that gαβ = g−1βα . Using (15) and (16) we may compute the behavior of the

Aα and Fα under a change of the local trivialization. In our compact notation
we obtain:

Aα |Uαβ
= (Ad ◦gαβ) •A

β |Uαβ
+ g⋆

βαΘ
L(17)

= (Ad ◦gαβ) • (A
β |Uαβ

− g⋆
αβΘ

L),

Fα |Uαβ
= (Ad ◦gαβ) • F

β |Uαβ
.(18)

Since the gauge potentials and the gauge fields play an important role in all
field theories in theoretical physics, these formulae prove to be very useful for all
computations in those field theories like electromagnetism, Yang-Mills theories,
etc. Of course these formulae are not new, only the notation is new. Also note
that equations (13) to (16) prove that the so-called field equations

Fα = dAα+
1

2
Aα ∧gA

α and dFα = −Aα ∧gF
α

are equivalent to the structure equation and Bianchi’s identity,

ΩΓ = dωΓ +
1

2
ωΓ ∧g ω

Γ and dΓΩΓ = dΩΓ + ωΓ ∧gΩ
Γ = 0.

Finally, we may also use • for the definition of characteristic classes of a princi-
pal bundle, cf. Greub, Halperin, Vanstone [1]. Let C ∈ Symk(g,F) with F = R,C

be invariant under Ad⋆. Then (1 ⊗ C) ∈ C∞(P, Symk(g,F)) is equivariant and

thus (1 ⊗ C) • ΩΓ ∈ A2k(P,F) is invariant under R according to Lemma 7.1.
Since it is also horizontal, it is a pullback of a form “C • F”∈ A2k(M,F). (The
notation C • F reminds to the fact that on Uα, this form is given by (1⊗C) • Fα

with 1 ∈ C∞(Uα).) C • F defines a characteristic cohomology class of P . In fact,
because π⋆ ◦ d = dΓ ◦ π⋆, we obtain from Proposition 8.1 and Bianchi’s identity
that d(C • F) = 0. (Recall that [C • F] ∈ H2k(M,F) is invariant of the special
choice of connection, cf. [1, p. 264].)
In all these applications, we have r = 0 in Definition 2.3. Further applications

for Lie transformation groups and fiber bundles that involve r 6= 0, are given in [2]
and [3], whereas [4] contains applications to field theories in theoretical physics.
E.g., the operator • is essential for the local description of vertical forms on a
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fiber bundle. Using Lemma 7.1, one can prove ([3]) that for any G-equivariant
form χ ∈ A(F,Hom(T (g), V )), the combination of its local vertical projections
(π⋆

αχ)v
α and the gauge fields defines a global form on the bundle B(M,F,G),

since on the overlaps,

[(π⋆
βχ)v

β ] • (π⋆ Fβ) = [(π⋆
αχ)v

α] • (π⋆ Fα).

Finally, Corollary 6.2 is needed to compute the exterior derivative of this global
form, cf. [2].
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