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Pseudomonotonicity and nonlinear hyperbolic equations

Dimitrios A. Kandilakis

Abstract. In this paper we consider a nonlinear hyperbolic boundary value problem. We
show that this problem admits weak solutions by using a lifting result for pseudomono-
tone operators and a surjectivity result concerning coercive and monotone operators.

Keywords: pseudomonotone operator, demicontinuous operator, maximal monotone op-
erator, weak solution

Classification: 35A05, 35L20

1. Introduction

Let T = [0, b] and Z ⊆ RN be a bounded domain with Lipschitz boundary Γ.

Also let Dk =
∂

∂zk
, k ∈ {1, 2, . . . , N}, and D = grad. We consider the following

hyperbolic problem:

(1)






∂2x

∂t2
+

N∑

k=1

Dkak(t, z, x, Dx) = g(t, z, x) a.e. on T × Z

x(0, z) =
∂x

∂t
(b, z) = 0 a.e. on Z, x |T×Γ= 0.






This problem can be equivalently rewritten in abstract form as

(1∗)

{
x′′(t) +A(t, x(t)) = g(t, x(t))

x(0) = x′(b) = 0

}

where A(t, .) is a pseudomonotone operator (see Section 3). Existence results
for second order evolutions in the form of (1∗) were obtained by Barbu [2, The-
orem 1.1, p. 268], Papageorgiou [5, Theorem 3.1] and Zeidler [7, Theorem 33A,
p. 924]. All three authors examine the equation (inclusion) x′′(t) + B(t, x′(t)) +
A(x(t)) ∋ f(t, x(t)) but they assume conditions on A(.) stronger than pseu-
domonotonicity, namely monotonicity, linearity and boundedness. To the best
of the knowledge of the author this is the first time that the notion of pseu-
domonotonicity is being used in the theory of hyperbolic problems.
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2. Preliminaries

In this section we fix our notation, introduce our assumptions on the data of
the problem and recall some basic facts from nonlinear analysis that we will need
in the sequel.
Our hypotheses on the functions ak(t, z, x, y), k ∈ {1, 2, . . . , N}, are the follow-

ing:

H(a): ak : T × Z × R × RN → R, k ∈ {1, 2, . . . , N}, are functions such that
(i) (t, z)→ ak(t, z, x, y) is measurable;
(ii) (x, y)→ ak(t, z, x, y) is continuous;
(iii) | ak(t, z, x, y) |≤ β1(t, z) + c1(| x | +‖y‖) a.e. on T × Z for all x ∈ R,

y ∈ RN , with β1 ∈ L2(T × Z) and c1 > 0;

(iv)
N∑

k=1
(ak(t, z, x, y)− ak(t, z, x, y′))(yk − y′k) > 0 a.e. on T ×Z, for all x ∈ R

and all y, y′ ∈ RN , y 6= y′; and

(v)
N∑

k=1
ak(t, z, x, y)yk ≥ c2‖y‖

2 − β2(t, z) a.e. on T × Z, for all x ∈ R, all

y ∈ RN , with β2 ∈ L1(T × Z) and c2 > 0.

Because of hypothesis H(a), we can introduce the semilinear form
a : L2(T, H10 (Z))× L2(T, H10 (Z))→ R defined by

a(x, y) =

b∫

0

∫

Z

N∑

k=1

ak(t, z, x, Dx)Dky(t, z) dz dt.

In what follows by ((., .)) we will denote the duality brackets between L2(T, H10 (Z))

and L2(T, H−1(Z)).

Definition 2.1. A function x ∈ L2(T, H10 (Z)) is said to be a (weak) solution of
problem (1) if

((∂2x

∂t2
, u

))
− a(x, u) =

b∫

0

∫

Z

g(t, z, x)u(t, z) dz dt

for all u ∈ L2(T, H−1(Z)).

Finally our hypotheses on the function g(t, z, x) are the following:

H(g): g : T × Z × R → R is a function such that
(i) (t, z)→ g(t, z, x) is measurable;
(ii) x → g(t, z, x) is continuous; and
(iii) | g(t, z, x) |≤ β3(t, z) for almost all (t, z) ∈ T × Z and x ∈ R, with

β3 ∈ L2(T × Z).

Suppose now that X is a separable Hilbert space with inner product (., .). We
recall the following generalization of the notion of a maximal monotone operator
(see Zeidler [7, p. 585]).
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Definition 2.2. An operator A : X → X is said to be “pseudomonotone”

if xn
w
→ x in X as n → ∞ and lim sup

n→∞
(A(xn), xn − x) ≤ 0, imply that (A(x), x −

y) ≤ lim inf
n→∞

(A(xn), xn − y) for all y ∈ X .

Remark 2.1. A monotone hemicontinuous operator or a completely continuous
operator A : X → X is pseudomonotone. Pseudomonotonicity is preserved by

addition and it is easy to see that it implies property (M) (i.e. if xn
w
→ x in X ,

A(xn)
w
→ u in X as n → ∞ and lim sup

n→∞
(A(xn), xn − x) ≤ 0, then A(x) = u). For

details we refer to Zeidler [7, pp. 583–588].

We will also need the following notion:

Definition 2.3. Suppose that L : D(L) ⊆ X → X is a linear maximal monotone
operator and V : X → X is a bounded nonlinear operator. We say that V (.) is

“pseudomonotone with respect to D(L)” if for {xn}n≥1 ⊆ D(L) such that xn
w
→ x

in X and L(xn)
w
→ L(x) in X as n → ∞ and also lim sup

n→∞
(V (xn), xn − x) ≤ 0,

then we have V (xn)
w
→ V (x) in X and (V (xn), xn)→ (V (x), x) as n → ∞.

The following proposition will be used in order to prove the maximal mono-
tonicity of the differential operator (see Zeidler [7, Theorem 32L, p. 897]).

Proposition 2.1. A linear operator L : D(L) ⊆ X → X is maximal monotone
if and only if L is densely defined, closed and both L and L∗ are monotone.

Now let L : D(L) ⊆ L2(T, X) → L2(T, X) be defined by Lx = −x′′ for all
x ∈ D(L) = {y ∈ L2(T, X) : y′′ ∈ L2(T, X), y(0) = y′(T ) = 0} (here the
time derivatives of x(.) and y(.) are understood in the sense of vector-valued
distributions). With the use of the above proposition we easily see that L(.) is
maximal monotone.
Consider now an operator A : T ×X → X satisfying the following hypotheses:

H(A): A : T × X → X is an operator such that
(i) t → A(t, x) is measurable;
(ii) x → A(t, x) is demicontinuous and pseudomonotone (recall that demicon-

tinuity means that if xn → x in X as n → ∞, then A(t, xn)
w
→ A(t, x) in X as

n → ∞);
(iii) ‖A(t, x)‖ ≤ β4(t) + c3‖x‖ a.e. on T with c3 > 0, β4 ∈ L2(T )+ =

{f ∈ L2(T ) : f(t) ≥ 0 a.e.}; and
(iv) (A(t, x), x) ≥ c4‖x‖

2 − β5(t)‖x‖ − β6(t) for almost all t ∈ T , all

x ∈ X , with c4 > 0, β6 ∈ L1(T ), β5 ∈ L2(T )+.

Let Â : L2(T, X) → L2(T, X) be the Nemitsky (superposition) operator cor-

responding to A(t, x) i.e. Â(x)(.) = A(., x(.)). We will show that, in some sense,

the pseudomonotonicity of A(t, .) can be lifted to Â(.).
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Proposition 2.2. Let A : T ×X → X be an operator satisfying hypothesis H(A)
and L : D(L) ⊆ L2(T, X)→ L2(T, X) be the linear maximal monotone operator
defined by L(x) = −x′′ for all x ∈ D(L) = {y ∈ L2(T, X) : y′′ ∈ L2(T, X),

y(0) = y′(T ) = 0}. Then the Nemitsky operator Â : L2(T, X) → L2(T, X) is
demicontinuous and pseudomonotone with respect to D(L).

Proof: We will first prove the demicontinuity of Â(.). So let xn → x in L2(T, X)
as n → ∞. By passing to a subsequence if necessary, we may assume that
xn(t) → x(t) in X a.e. on T as n → ∞. Then hypothesis H(A)(ii) implies that
for every y ∈ L2(T, X) we have that (A(t, xn(t)), y(t)) → (A(t, x(t)), y(t)) a.e.
on T . Because of hypothesis H(A)(iii) we can apply the extended dominated
convergence theorem (see Ash [1, Theorem 7.52, p. 295]) and get that

((Â(xn), y)) =

b∫

0

(A(t, xn(t)), y(t)) dt

→

b∫

0

(A(t, x(t)), y(t)) dt = ((Â(x), y))

(here ((., .)) denotes the inner product of L2(T, X)). Since y ∈ L2(T, X) was

arbitrary, we conclude that Â(xn)
w
→ Â(x) in L2(T, X) as n → ∞, which shows

that Â(.) is demicontinuous.

Next we will show that Â(.) is pseudomonotone with respect to D(L). So

assume that x, xn ∈ D(L), n ≥ 1, xn
w
→ x in L2(T, X), x′′n

w
→ x′′ in L2(T, X) as

n → ∞ and

lim sup
n→∞

((Â(xn), xn − x)) = lim sup
n→∞

b∫

0

(A(t, xn(t)), xn(t)− x(t)) dt ≤ 0.

Since x′′n
w
→ x′′ in L2(T, X) as n → ∞ we have

x′n(t) = −

T∫

t

x′′n(s) ds
w
→ −

T∫

t

x′′(s) ds = x′(t)

for every t ∈ T , i.e. x′n(t)
w
→ x′(t) in X for every t ∈ T . Similarly we can show

that xn(t)
w
→ x(t) in X for every t ∈ T .

Now let ξn(t) = (A(t, xn(t)), xn(t)−x(t)). Also let B ⊆ T be the Lebesgue-null
set outside of which hypotheses H(A)(iii) and (iv) hold. Then we have:

(2)
ξn(t) ≥ ϑn(t) = c4‖xn(t)‖

p − β5(t)‖xn(t)‖ − β6(t)

−(β4(t) + c3‖xn(t)‖)‖x(t)‖ for all t ∈ T \B.
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Let also ϑn(t) = 0 for t ∈ B. Set C = {t ∈ T : lim inf
n→∞

ξn(t) < 0}. This is a

Lebesgue measurable subset of T . We will show that C ⊆ B and therefore λ(C) =
0 (here λ(.) is the Lebesgue measure on T ). Indeed, if t ∈ C∩(T \B), then consider
a subsequence {nm}m≥1 of N such that lim inf

n→∞
ξn(t) = lim

n→∞
ξnm(t) < 0. Exploit-

ing the fact that A(t, .) is pseudomonotone we obtain that (A(t, xnm(t)), xnm(t)−
x(t)) → 0, contradicting the fact that t ∈ C. So λ(C) = 0, which means that
0 ≤ lim inf

n→∞
ξn(t) a.e. on T . Then from the extended Fatou’s lemma (see Ash [1,

Theorem 7.5.2, p. 295]), we obtain

0 ≤

b∫

0

lim inf
n→∞

ξn(t) dt ≤ lim inf
n→∞

b∫

0

ξn(t) dt ≤ lim sup
n→∞

b∫

0

ξn(t) dt ≤ 0.

Hence
b∫

0
ξn(t) dt → 0 as n → ∞. Since 0 ≤ lim inf

n→∞
ξn(t) a.e. on T , we deduce

that ξ−n (t) → 0 a.e. on T as n → ∞. Moreover from (2) we see that {ϑn}n≥1

is uniformly integrable in L1(T ). Then 0 ≤ ξ−n (t) ≤ ϑ−
n (t) a.e. on T and of

course {ϑ−
n }n≥1 is also uniformly integrable. By applying the extended dominated

convergence theorem we see that
b∫

0
ξ−n (t) dt → 0 as n → ∞. Therefore we have

lim
n→∞

b∫

0

| ξn(t) | dt = lim
n→∞

b∫

0

(ξn(t) + 2ξ
−
n (t)) dt = 0,

so by passing to a subsequence if necessary, we may assume that ξn(t)→ 0 a.e. on
T as n → ∞. Since A(t, .) is pseudomonotone, we obtain that (A(t, xn(t)), xn(t))

→ (A(t, x(t)), x(t)) a.e. on T and A(t, xn(t))
w
→ A(t, x(t)) a.e. on T as n → ∞.

A final application of the extended dominated convergence theorem gives that

Â(xn)
w
→ Â(x) in L2(T, X) and ((Â(xn), xn))→ ((Â(x), x)) as n → ∞. Therefore

Â(.) is pseudomonotone with respect to D(L). �

In the proof of our main theorem in the next section we will need the following
well known surjectivity result (see B.-A. Ton [6] or Lions [4, Theorem 1.2, p. 319]):

Proposition 2.3. If Y is a reflexive Banach space, L : D(L) ⊆ Y → Y ∗ is
a linear maximal monotone operator and G : Y → Y ∗ is a bounded, demicon-
tinuous operator which is pseudomonotone with respect to D(L) and satisfies
(G(y),y)Y ∗,Y

‖y‖Y
→ +∞ as ‖y‖Y → ∞ (i.e. G(.) is coercive) then L+G is surjective;

i.e. R(L+G) = Y ∗.
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3. Main theorem

Theorem 3.1. If hypotheses H(a) and H(g) hold, then problem (1) has a solu-
tion.

Proof: In what follows, for notational simplicity, we write X = H10 (Z) and

X∗ = H−1(Z). Note that X is a separable Hilbert space. Let â : T ×X×X → R

be the following time dependent semilinear form:

â(t, x, y) =

∫

Z

N∑

k=1

ak(t, z, x(t, z), Dx(t, z))Dky(t, z) dz.

Because of hypothesis H(a)(iii), y → â(t, x, y) is a continuous linear functional
defined on X . Therefore the equation

(A1(t, x), y) = â(t, x, y)

defines uniquely a function A1 : T×X → X∗. Using hypothesis H(a) we can verify
that t → A1(t, x) is measurable, x → A1(t, x) is demicontinuous, ‖A1(t, x)‖∗ ≤
β′
1(t)+ c′1‖x‖ a.e. on T for all x ∈ X , with β′

1 ∈ L2(T ), c′1 > 0 and (A1(t, x), x) ≥

c′2‖x‖
2 − β′

2(t) a.e. on T for all x ∈ X , with β′
2 ∈ L1(T ) and c′2 > 0. Now let

f : T ×X → L2(T ×Z) be defined by f(t, x)(z) = −g(t, z, x(z)). From hypotheses
H(g)(i) and (ii) we see that the function t → f(t, x) is measurable, the function
x → f(t, x) is continuous and

|(f(t, x), x)| ≤

∫

Z

|g(t, z, x(z))x(z)| dz

≤ c(t)‖x‖2 a.e. on T with c(.) ∈ L2(T ).

Also from hypothesis H(g)(iii) we have

‖f(t, x)‖2 ≤ ‖β3(t, .)‖2 a.e. on T.

Now let A : T × X → X∗ be defined by A(t, x) = A1(t, x) + f(t, x). It is easy to
see that t → A(t, x) is measurable, x → A(t, x) is demicontinuous, ‖A(t, x)‖∗ ≤
β(t) + c‖x‖ a.e. on T with β ∈ L2(T ), c > 0, and | (A(t, x), x) |≥ c′2‖x‖

2 −

β′
2(t)‖x‖ − β′

3(t) a.e. on T with c′2 > 0, β′
2 ∈ L2(T ) and β′

3 ∈ L1(T ). Moreover
from Theorem 3.1 of Gossez-Mustonen [3] we know thatA(t, .) is pseudomonotone.

Thus if Â : L2(T, X) → L2(T, X∗) is the Nemitsky operator corresponding to

A(t, x), then by virtue of Proposition 2.2 we see that Â is pseudomonotone with
respect to D(L).

Let f̂ : L2(T, X) → L2(T × Z) be the Nemitsky operator corresponding to

f(t, x). We claim that the operator x → Â1(x)+ f̂(x) = Â(x) is coercive. Indeed,
from hypothesis H(a)(iv) we know that

(3) ((Â1(x), x)) ≥ c2‖x‖
2
L2(T,X) − ‖β2‖L1(T×Z).
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Also using Young’s inequality with ε > 0 we have

((f̂(x), x)) = (f̂(x), x)L2(T ;L2(Z)) ≤ ‖f̂(x)‖L2(T×Z)‖x‖L2(T×Z)

≤
ε2

2
‖f̂(x)‖2L2(T×Z) +

1

2ε2
‖x‖2L2(T×Z).

But by virtue of hypothesis H(g)(iii) and Minkowski’s inequality we have

‖f̂(x)‖2L2(T×Z) ≤ γ1 + γ2‖x‖
2
L2(T,X) for some γ1, γ2 > 0.

Hence it follows that

(4) ((f̂ (x), x)) ≤
ε2

2
γ1 +

ε2

2
γ2‖x‖

2
L2(T,X) +

1

2ε2
‖x‖2L2(T×Z).

From (3) and (4) we get

(5)

((Â1(x) + f̂(x), x)) ≥ (c −
1

2ε2
γ2)‖x‖

2
L2(T,X),

−
1

2ε2
‖x‖2L2(T×Z) −

ε2

2
γ1.

Choose ε > 0 so that c2 > 1
2ε2

γ2. Then from (5) we deduce that x → Â1(x)+ f̂(x)
is coercive.
Proposition 2.3 implies that the operator L+ Â is surjective. Therefore there

exists x ∈ D(L) such that

(6) Lx+ Â(x) = 0.

But (6) is equivalent to (1), therefore x solves (1). �
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