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Set valued measures and integral representation

Xue Xiaoping, Cheng Lixin, Li Goucheng, Yao Xiaobo

Abstract. The extension theorem of bounded, weakly compact, convex set valued and

weakly countably additive measures is established through a discussion of convexity,
compactness and existence of selection of the set valued measures; meanwhile, a charac-
terization is obtained for continuous, weakly compact and convex set valued measures
which can be represented by Pettis-Aumann-type integral.

Keywords: set valued functions, set valued measures, Pettis-Aumann integral

Classification: 28A45, 46G10

Z. Artstein ([2], 1972) introduced the concept of set valued measure in Rn and
studied its convexity, the existence of selection and the Radon-Nikodym Property
(RNP, for simplicity) corresponding to the Aumann integral (defined by Aumann
[1], see also [6], [9] for further properties). Hiai [7] generalized Artstein’s results to
bounded variation set valued measures on Banach spaces. In 1985, Papageorgiou
[10] studied the representation of set valued operators and later on ([11], 1987)
he paid attention to distribution theory of set valued functions and measures.
In the present paper, as a generalization and development of Artstein’s, Hiai’s

and Papageorgiou’s work, the extension theorem (§3) of bounded, weakly com-
pact, convex set valued and weakly countably additive measures and a charac-
terization (§4) of continuous, weakly compact and convex set valued measures
which, defined on a complete and finite measure space, can be represented by
Pettis-Aumann type integral are given.

Notation. The letter X will always denote a real Banach space, X ′ its dual, 〈·, ·〉
the bilinear conjugate operation. Pa(X) is for the set consisting of all nonempty
subsets of X and Pwee(X) (⊂ Pa(X)) for all of weakly compact convex subset

of X . The symbol “→” (“
w
−→” and “

w∗

−−→”) means to be “norm convergent to”
(“weakly convergent to” and “weakly ∗ convergent to”, respectively). For A ⊂ X ,
co(A) (co(A)) denotes the (norm closed) convex hull of A and cl(A) (clw(A))
stands for the norm (weak) closure of A; σA, defined by σA(x

′) = sup{〈x′, x〉 :
x ∈ A} for x′ ∈ X ′, is called the support function of A. The symbolH denotes the
Hausdorff metric, that is, H(A, B) = max{supa∈A d(a, B), supb∈B d(A, b), where
the metric d is deduced by the norm}, in particular, H(A, 0) is denoted by |A|
for simplicity. Ω is always a nonempty set, F and Σ an algebra and σ-algebra,
respectively, both F and Σ consist of subsets of Ω.

This work has been supported by the N.S.F. of Hei Longjiang, China
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1. Properties of set valued measure

Let M : F → Pa(X) be a mapping.

Definition 1.1. (a) M is called finitely additive (set valued) measure on F , if it
satisfies (i) M(∅) = 0 and (ii) M(E1 ∪E2) =M(E1) +M(E2) for all E1, E2 ∈ F
with E1 ∩ E2 = ∅;

(b) M is said to be countably additive measure provided it is finitely additive
and for any mutually disjoint sequence {En} ⊂ F , M(

⋃∞
n=1En) =

∑∞
n=1M(En)

= {x ∈ X ; for each positive integer n, there is xn ∈ M(En) such that
∑∞

n=1 xn

unconditionally converges to x}.

(c) We sayM is weakly countably additive provided for any x′ ∈ X ′, σM(·)(x
′)

is a real valued measure on F .

(d) We call M bounded provided there exists C ∈ R+ such that |M(E)| ≡
{‖x‖;x ∈ M(E)} ≤ C for all E ∈ F .

(e) Let {An} ⊂ Pa(X).
∑∞

n=1An is said to be unconditionally convergent if
∀xn ∈ An, for n = 1, 2, . . . ,

∑∞
n=1 xn is an unconditionally convergent series.

Definition 1.2. M is called strongly additive provided it is finitely additive
and

∑∞
n=1M(En) unconditionally converges for any mutually disjoint sequence

{En} ⊂ F .

Lemma 1.3. Let {An} (⊂ Pa(X)) be a uniformly bounded set sequence. If
for any subsequence {Ank

} ⊂ {An} there exists a weakly relatively compact
set A ⊂ X such that

∑∞
n=1 σAnk

(x′) ≤ σA(x
′) for all x′ ∈ X ′, then

∑∞
n=1An

unconditionally converges.

Proof: Clearly,
∑∞

n=1 |σAn
(x′)| < ∞ for all x′ ∈ X ′. For any xn ∈ An, n =

1, 2, . . . and positive integer m, we have

m
∑

n=1

|〈x′, xn〉| ≤
∞
∑

n=1

|σAn
(x′)|+

∞
∑

n=1

|σAn
(−x′)|.

Therefore
∑∞

n=1 |〈x
′, xn〉| < ∞. By the Orlicz-Pettis theorem (see, for instance,

[5]), it suffices to show that for any sequence {xnk
} with xnk

∈ Ank
,

∑

k xnk

weakly converges. Set ym =
∑m

n=1 xnk
, we know that SUPm |〈x′, ym〉| < ∞ for

any x′ ∈ X ′. This and the Resonance Theorem imply that there exists y ∈ X ′′

such that ym
w∗

−−→ y in X ′′, we claim that y ∈ X . Since 〈y, x′〉 = 〈
∑∞

k=1 xnk
, x′〉 =

∑∞
k=1〈x

′, xnk
〉 ≤

∑∞
k=1 σAnk

(x′) ≤ σA(x
′) for some weakly relatively compact

A ∈ Pa(X) and for all x
′ ∈ X ′, that is, y is continuous according to the Makey’s

topology by σA(x
′), we obtain y ∈ X , and this says that ym

w
−→ y in X . Thus

the proof is complete. �
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Corollary 1.4. Let M(Σ → Pwee(X)) be a bounded countably additive set
valued measure, then M is strongly additive.

Proof: Let {En} ⊂ Σ be any disjoint sequence. Set E =
⋃∞

n=1En (∈ Σ), then
M(E) is weakly compact and convex set satisfying σP∞

n=1M(En)(x
′) = σM(E)(x

′)

by the countable additivity of M . It is easy to observe that σP
n M(En)(x

′) =
∑∞

n=1 σM(En)(x
′) for all x′ ∈ X ′. And Lemma 1.3 implies that

∑∞
n=1M(En) is

unconditionally convergent. �

Corollary 1.5. Let M(Σ → Pwee(X)) be a bounded mapping. Then M is

countably additive if and only if M is weakly countably additive.

Definition 1.6. Let M(F → Pa(X)) be bounded and finitely additive, we say
M is of σ-bounded variation (set valued) mapping, if there exists an F -partition
{En} of Ω such that

|M |(En) ≡ SUPΠn

∑

A∈Πn

|M(A)| < ∞ for n = 1, 2, . . .

where Πn denotes any finite F -partition of En.

For A ⊂ F with M(A) 6= {0}, A is called an atom of M , if either M(B) = {0}
or M(A \ B) = {0} whenever B ∈ F with B ⊂ A. We say M is non-atomic if M
has no atom.

Proposition 1.7. Let X posses the Radon-Nikodym Property (RNP) and let
M(Σ → Pa(X)) be a countably additive, non-atomic and σ-bounded variation
mapping, then clM(E) is convex in X for all E ∈ Σ.

Proof: Suppose that {En} is a Σ-partition of Ω with |M |(En) < ∞ for n =
1, 2, . . . , then, for any E ∈ Σ, clM(E ∩En) is a convex set (see, for instance, Hiai
[7, Theorem 1.2]). The convexity of the set clM(E) will be proved if we show
that for any ε > 0, xj ∈ M(E) for j = 1, 2, and α ∈ (0, 1), there exists x ∈ M(E)
such that ‖αx1 + (1− α)x2 − x‖ < ε.

Since xj ∈ M(E) =
∑∞

n=1M(E ∩ En) for j = 1, 2, there must be {x
(j)
n } ⊂ X

with x
(j)
n ∈ M(E ∩En) for n = 1, 2, . . . such that xj =

∑∞
n=1 x

(j)
n is uncondition-

ally convergent for j = 1, 2. For any fixed ε > 0 and for each positive integer n,

there is x(n,ε) ∈ M(E ∩En) satisfying ‖αx
(1)
n + (1− α)x

(2)
n − x(n,ε)‖ < ε

2n . Next

we prove that
∑∞

n=1 x(n,ε) is unconditionally convergent series. For all δ > 0,

choose a positive integer N such that ‖
∑∞

n=m εnx
(j)
n ‖ < δ for j = 1, 2, whenever

m ≥ N , where εi = ±1 for i = 1, 2, . . . . Further,

‖
m+k
∑

n=m

εnx(n,ε)‖ ≤ α‖
m+k
∑

n=m

εnx
(1)
n ‖+ (1− α)‖

m+k
∑

n=m

εnx
(2)
n ‖+

+ ‖
m+k
∑

n=m

εn[x(n,ε) − (αx
(1)
n + (1− α)x

(2)
n )]‖ ≤ δ + 2−m+1ε
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for any integer k ≥ 0 and m ≥ N . This explains that
∑

n x(n,ε) (∈ M(E)) is

unconditionally convergent. It is easy to see that ‖αx1+(1−α)x2−
∑

n x(n,ε)‖ < ε,

which completes our proof. �

Proposition 1.8. Let M(Σ → Pa(X)) be bounded, countably additive and
weakly relatively compact valued. Then coM is also countably additive.

Proof: Let {En} (⊂ Σ) be any mutually disjoint set sequence, then from
σM(

S
∞

n=1 En)(x
′) =

∑

σM(En)(x
′) it follows that σcoM(

S
∞

n=1 En)(x
′) =

∑∞
n=1 σcoM(En)(x

′). So coM(·) is weakly countably additive. This and Corol-

lary 2.5 imply that coM(·) is countably additive.
�

2. Compactness of set valued measure

LetM(Σ→ Pa(X)) be a countably additive measure,m is said to be a selection
of M provided m is a single X-valued measure satisfying m(E) ∈ M(E) for any
E ∈ Σ. For A ⊂ X , we say that x (∈ A) is exposed point of A if there exists
x′ ∈ X ′ such that 〈x′, x〉 > 〈x′, y〉 whenever y ∈ A \ {x}.

Lemma 2.1. Suppose that (Σ → Pwee(X)) is countably additive and suppose
that x is an exposed point of M(Ω). Then there exists a selection m of M such

that m(Ω) = x.

Proof: Suppose that x′ ∈ X ′ satisfies 〈x′, x〉 > 〈x′, y〉 for all y ∈ M(Ω) \ {x}.
Since M(Ω) = M(E) + M(Ω \ E) for any E ∈ Σ, there exist u and v with
u ∈ M(E) and v ∈ M(Ω \ E) such that x = u+ v. Since

〈x′, y〉+ 〈x′, v〉 = 〈x′, x〉 > 〈x′, w〉 + 〈x′, v〉

for all w ∈ M(E) \ {u}, we have

(2.1) 〈x′, u〉 > 〈x′, w〉 for w ∈ M(E) \ {u},

that is, u is an exposed point ofM(E). We denote by u(E, x′) the unique exposed
point ofM(E) satisfying inequality (2.1) and definem(Σ→ X) by lettingm(E) =
u(E, x′), then σm(E)(x

′) =
∑

m(E)(x
′) for all E ∈ Σ. It remains to show that m

is a single valued measure.
Let {En} ⊂ Σ be any mutually disjoint sequence, since M(

⋃

En)
(=

∑∞
n=1M(En)) is convex and weakly compact, by Corollary 1.4,

∑∞
n=1M(En)

unconditionally converges. This further implies that
∑∞

n=1m(En) is uncondition-
ally convergent to a point of M(

⋃

En). Note

σΣm(En)(x
′) =

∞
∑

n=1

〈x′, m(En)〉 =
∞
∑

n=1

σM(En)(x
′) = σP∞

n=1M(En)(x
′) =

= σM(
S

En)(x
′) = 〈x′, m(

⋃

En)〉
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and note that both
∑∞

n=1m(En) and m(
⋃∞

n=1En) are in M(
⋃∞

n=1En), by the
uniqueness of y ∈ M(

⋃∞
n=1En) satisfying 〈x′, y〉 = σM(

S
En)(x

′) we obtain that
∑∞

n=1m(En) = m(
⋃∞

n=1En), which completes our proof. �

Theorem 2.2. Suppose that M(Σ→ Pwee(X)) is bounded and countably addi-
tive. Then for any E ∈ Σ and x ∈ M(E) there exists a selection m of M such

that m(E) = x.

Proof: Without loss of generality we can assume that E = Ω. Since M(Ω) is
convex and weakly compact, it must be the norm closed convex hull of its exposed
points (see, for instance, Amir and Lindenstrauss [3]). Let Q denote the set of all
exposed points of M(Ω). Then for any x ∈ M(Ω) and ε > 0 there exist xj ∈ Q
and αj > 0 for j = 1, 2, . . . , n with

∑n
j=1 αj = 1 such that ‖x−

∑n
j=1 αjxj‖ < ε.

Lemma 2.1 implies that there exist selections mj of M , satisfying mj(Ω) = xj

for j = 1, 2, . . . , n. Define m(Σ → X) by m(E) =
∑n

j=1 αjmj(E), it is easy to

observe that m is also a selection of M with ‖m(Ω) − x‖ < ε. In particular, we

obtain a selection sequence {m(k)} such that ‖m(k)(Ω)−x‖ → 0 by letting ε = 1k
for k = 1, 2, . . . . Now we consider the product space

∏

≡
∏

E∈ΣM(E) which
is equipped with the product topology and M(E) with the weak topology for all

E ∈ Σ. The sequence {
∏

E∈Σm(k)(E)} in
∏

has a subnet, which is still denoted

by {
∏

E∈Σm(k)(E)} for simplicity, converging to some point
∏

E∈Σm(∞)(E) in
∏

, since
∏

is compact according to the product topology. This explains that

m(k)(E) → m(∞)(E) ∈ M(E) for any E ∈ Σ and m(∞)(Ω) = x. It remains to

show that m(∞) is an X-valued measure.
Assume that {En} is a mutually disjoint sequence in Σ. By a simple argument

we know
∑∞

n=1 |σM(En)(x
′)| < ∞ for all x′ ∈ X ′. For any ε > 0 and for any fixed

x ∈ X ′, choose a positive integer n0 such that
∑

j>n0
|σM(Ej)(x

′)| < ε
2 , then we

have (n ≥ n0)

|〈x′, m(k)(
∞
⋃

n=1

En)−
n

∑

j=1

m(k)(Ej)〉| = |〈x′,
∑

j>n

m(k)(Ej)〉| ≤

≤
∑

j>n

[|σM(Ej)(x
′)|+ |σM(Ej)(−x′)|] < ε,

by taking the net limit we get |〈x′, m(∞)(
⋃∞

n=1En)〉−〈x′,
∑n

j=1m(∞)(Ej)〉| ≤ ε.

The arbitrariness of ε says that
∑n

j=1m(∞)(Ej)
w
−→ m(∞)(

⋃∞
n=1En), this and

the Orlicz-Pettis theorem imply that
∑∞

n=1m(∞)(En) unconditionally converges

to m(∞)(
⋃∞

n=1En). So we have shown that m(∞) is an X-valued measure with

m(∞)(Ω) = x. �

Corollary 2.3. Suppose that M(Σ → Pwee(X)) is bounded and countably ad-
ditive. Then the range of M , namely M(Σ) ≡

⋃

E∈ΣM(E), is relatively weakly
compact.
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Proof: Using an argument similar to Hiai [7, Corollary 2.4], it is immediately
obtained by Theorem 2.2. �

Lemma 2.4. Suppose that {En} is a mutually disjoint sequence in Σ, sup-
pose that {An} is any sequence in Σ and suppose, further, that m(Σ → X)
is strongly additive. Then for all ε > 0 there exists a positive integer k0 such

that ‖
∑k2

k=k1
m(An ∩ Ek)‖ < ε for n = 1, 2, . . . , and for any integers k1, k2 with

k0 ≤ k1 ≤ k2.

Proof: Suppose, to the contrary, that there is ε0 > 0 such that the integer k0
does not exist.
Inductively, by letting k0 = 1, 2, . . . , we obtain three positive integer sequences

{nj}, {k
(1)
nj

} and {k
(2)
nj

} with k
(1)
nj

< k
(2)
nj

< k
(1)
nj+1 satisfying

(2.2) ‖

k
(2)
nj

∑

k
(1)
nj

m(Anj ∩ Ek)‖ ≥ ε0.

The strong additive implies that the series
∑∞

j=1(
∑k

(2)
nj

k=k
(1)
nj

m(Anj ∩Ek)) uncondi-

tionally converges by noting that {
⋃k

(2)
nj

k=k
(1)
nj

(Anj ∩Ek)} is also a mutually disjoint

sequence in Σ. This contradicts (2.2). �

Remark 2.5. Under the condition of Lemma 2.4, one can show that for any
ε > 0 there is an integer k0 ≥ 0 such that

‖
∞
∑

k=k0+1

m(An ∩ Ek)‖ < ε for n = 1, 2, . . . .

Lemma 2.6. Suppose that X has RNP and suppose that m(Σ → X) is σ-
bounded variation X-valued measure. Then the range m(Σ) of m is relatively
compact.

Proof: Suppose that {En} is a Σ-partition of Ω satisfying |m|(En) < ∞ for
n = 1, 2, . . . , then m restricted to Σ |En

≡ {E ∩ En;E ∈ Σ} is of bounded
variation and m(Σ |En

) is relatively compact (see, for instance, Uhl [12]). We
will show that m(Σ) is relatively compact. It suffices to prove that {m(Fn)}
has convergent subsequences for any {Fn} ⊂ Σ. For every fixed integer k ≥
1, there is a subsequence {Fn,k} of {Fn} such that m(Fn,k ∩ Ek) converges.
Since m(Fn ∩ Ek) ∈ m(Σ |Ek

) and m(Σ |Ek
) is relatively compact, by a stan-

dard diagonal process one can claim a subsequence {Fn,n} ⊂ {Fn} such that
{m(Fn,n ∩ Ek)} converges for k = 1, 2, . . . . Suppose m(Fn,n ∩ Ek) → xk for
k = 1, 2, . . . , due to Lemma 2.4, for any ε > 0 there is an integer k0 ≥ 1 such
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that ‖
∑k2

k=k1
m(Fn,n ∩ Ek)‖ < ε for n = 1, 2, . . . whenever k0 ≤ k1 ≤ k2. Hence

‖
∑k2

k1
xk‖ = limn→∞ ‖

∑k2
k1

m(Fn,n ∩Ek)‖ ≤ ε, that is,
∑∞

k=1 xk converges. Set-

ting x =
∑∞

k=1 xk, as follows, we show m(Fn,n) → x. Let integer k0 ≥ 1 satisfy
(by Remark 2.5)

(2.3) ‖
∑

k>k0

m(Fn,n ∩ Ek)‖ < ε/3 and ‖
∑

k>k0

xk‖ < ε/3 for n = 1, 2, . . .

and let integer no ≥ 1 be such that

(2.4) ‖m(Fn,n ∩ Ek)− xk‖ <
ε

3k0
for k = 1, 2, . . . , k0

whenever n ≥ n0. Combining (2.3) and (2.4) together we obtain

‖m(Fn,n)−x‖ ≤
k0
∑

k=1

‖m(Fn,n∩Ek)−xk‖+‖
∑

k>k0

m(Fn,n∩Ek)‖+‖
∞
∑

k>k0

xk‖ < ε.

Therefore m(Fn,n)→ x. �

Theorem 2.7. Suppose that X has RNP and suppose that M(Σ → Pa(X)) is
compact-valued, countably additive and of σ-bounded variation. Then the range
M(Σ) of M is relatively compact.

Proof: Since M is compact-valued, the Mazur Theorem says that coM(E) is
compact and convex for all E ∈ Σ. By Proposition 1.8, coM is countably additive
and it is easy to observe it is of σ-bounded variation. It follows from Theorem 2.2
and the fact we just mentioned that there exists a σ-bounded variation selection
m of coM . therefore m(Σ) is relatively compact by Lemma 2.6. Note that
coM(E) + coM(Ω \ E) = coM(Ω). This implies that M(E) ⊂ coM(Ω)− m(Ω \
E) ⊂ coM(Ω)− m(Σ), and that M(Σ) is relatively compact. �

3. Extension of set-valued measures

Suppose that mτ (F → X, τ ∈ T ) are finitely additive, we say {mτ}τ∈T are
uniformly strongly additive provided

∑∞
n=1mτ (En) converges unconditionally

and uniformly for τ ∈ T , for any mutually disjoint sequence {En} in F . Using an
argument similar to the one for vector-valued measure ([5]), we have

Lemma 3.1. Suppose that M(F → Pwee(X)) is finitely additive. Then the
following versions are equivalent:

(i) M is strongly additive;

(ii) {σM(·)(x
′); ‖x′‖ ≤ 1, x′ ∈ X ′} are uniformly strong additive;

(iii) for any mutually disjoint {En} in F , limn→∞ |M(En)| = 0.
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Lemma 3.2. Suppose thatM(F → Pwee(X)) is bounded and finitely (strongly)
additive. Then for any x ∈ M(A) and A ∈ F there is a bounded and finitely
(strongly, respectively) additive measure m(F → X) satisfying m(A) = x and
m(E) ∈ M(E) for all E ∈ F .

Proof: The proof is very much like of Theorem 2.2. �

Lemma 3.3. Suppose that M(F → Pwee(X)) is bounded and finitely additive.
Then M is strongly additive if and only if for any monotone non-decreasing se-

quence {En} in F there is a relatively weakly compact set A in X such that

limn→∞ σM(En)(x
′) = σA(x

′).

Proof: Sufficiency. Suppose that {Ak} in F is any mutually disjoint set se-
quence. Let En =

⋃n
k=1Ak, clearly, {En} is monotone non-decreasing, by the

hypotheses we obtain that there is a relatively weakly compact set A in X such
that limn→∞ σM(En)(x

′) = σA(x
′) for all x′ ∈ X ′. So one direction is shown

by noting that limσM(En)(x
′) = limn→∞

∑n
k=1 σM(Ak)(x

′) =
∑∞

n=1 σM(An)(x
′)

and by Lemma 1.3.

Necessity. Suppose that {En} in F is monotone non-decreasing. The strong

additive of M implies that σM(En)(x
′) =

∑n−1
k=0 σM(Ek+1\Ek)(x

′) where E0 = ∅

and that the series
∑∞

n=1 σM(Ek+1\Ek)(x
′) converges for all x′ ∈ X ′. Therefore,

limn→∞ σM(En)(x
′) =

∑∞
k=0 σM(Ek+1\Ek)

(x′). Since |
∑n

k=0 σM(Ek+1\Ek)
(x′) −

σP∞

k=0M(Ek+1\Ek)
(x′)| ≤ |

∑∞
k>n σM(Ek+1\Ek)(x

′)|+ |
∑∞

k>n σM(Ek+1\Ek)(−x′)|

for all positive integers n, we have
∑∞

k=0 σM(Ek+1\Ek)(x
′) = σΣM(Ek+1\Ek)(x

′),

taking A =
∑∞

k=0M(Ek+1 \ Ek), then limn→∞ σM(En)(x
′) = σA(x

′). Since

M(Ek+1 \Ek) is weakly compact and
∑∞

k=0M(Ek+1 \Ek) unconditionally con-
vergent to A, A must be relatively weakly compact.

�

Lemma 3.4. Pw(X) = {A ⊂ Pwee(X); A is contained in a fixed weakly com-
pact and convex set W} is complete corresponding to H (where H denotes the
Hausdorff metric).

Proof: Suppose that {An} in Pw(X) is a Cauchy sequence, then there is a

bounded set A in X such that An
H
−→ A by noting that {B ⊂ X ; B is bounded,

closed and convex} corresponding to H . Since H(A, B) = SUP‖x′‖≤1 |σA(x
′) −

σB(x
′)| (see, for instance, [4, Theorem II–18]), limn→∞ σAn

(x′) = σA(x
′) for all

x′ ∈ X ′. The fact that An ⊂ W implies σA(x
′) ≤ σW (x

′) for all x′ ∈ X ′ which
implies that A ⊂ coW =W . �

Theorem 3.5. Suppose that Σ is a σ-algebra generated by F and suppose that
M(F → Pwee(X)) is bounded and weakly countably additive. Then the following
versions are equivalent:

(i) there is a unique extension M(Σ → Pwee(X)) of M which is countably

additive;
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(ii) there exists some non-negative real valued measure µ on Σ such that M
is continuous to µ, that is, limµ(E)→0 |M(E)| = 0;

(iii) M is strongly additive;

(iv) M(F) is relatively weakly compact.

Proof: (ii) ⇒ (iii). By Lemma 3.1, it is easy to observe that this direction is
true.

(iii) ⇒ (iv). Lemma 3.2 implies that there is a strongly additive m(F → X)
such that m(E) ∈ M(E) for all E ∈ F , and m(F) is relatively weakly compact
by [5]. We obtain M(F) ⊂ M(Ω)− m(F) by noting M(E) +M(Ω \ E) =M(Ω)
for any E ∈ F , hence M(F) is also relatively weakly compact.

(iv) ⇒ (iii). Let {En} be a monotone non-decreasing sequence in F . By the
boundedness and finite additivity, limn→∞ σM(En)(x

′) =
∑∞

n=0 σM(En+1\En)(x
′)

for all x′ ∈ X ′ where E0 = ∅. Now we show that limn σM(En)(x
′) = σlsM(En)(x

′)

for all x′ ∈ X ′ as follows, where lsM(En) = {x ∈ X ; x = w − limk xnk
, for

some xnk
∈ M(Enk

) and for all integers k ≥ 1}. Relatively weak compactness of
M(F) says there is a weakly compact set W such that M(F) ⊂ W , in particular,
M(En) ⊂ W for n = 1, 2, . . . . For any x′ ∈ X ′, choose xn ∈ M(En) such that
σM(En)(x

′) = 〈x′, xn〉 for n = 1, 2, . . . . Without loss of generality we can assume

that xn
w
−→ x (otherwise we can choose a weakly convergent subsequence sinceW

is weakly compact and {xn} in W ), that is, x ∈ lsM(En). Thus

lim
n

σM(En)(x
′) = 〈x′, x〉 ≤ σlsM(En)(x

′).

On the other hand, for any y ∈ lsM(En), there is {ynk
∈ M(Enk

)} such that

ynk

w
−→ y, so we have

〈x′, y〉 = lim
n
〈x′, ynk

〉 ≤ lim
n

σM(En)(x
′).

That is, σlsM(En)(x
′) ≤ limn σM(En)(x

′), and further we have limn σM(En)(x
′) =

σlsM(En)(x
′). Since M(En) ⊂ W , it implies that lsM(En) ⊂ W , and M is

strongly additive by Lemma 3.3.

(iii) ⇒ (ii). {σM(·)(x
′) : x′ ∈ X ′, ‖x′‖ ≤ 1} is uniformly strongly additive

by Lemma 3.1. The Carathéodory-Hahn extension theorem implies that there
is a unique countably additive extension σM(·)(x

′) of σM(·) on Σ. According to

[5, Lemma 1, p. 26 and Theorem 4, p. 11] there exists a non-negative real valued
measure µ on Σ such that limµ(E)→0 σM(E)(x

′) = 0 uniformly on B = {x′ ∈

X ′; ‖x′‖ ≤ 1}, that is, limµ(E)→0 |M(E)| = 0.

(ii) & (iv) ⇒ (i). Let µ be a non-negative real valued measure satisfying (ii),
and let W be a weakly compact and convex set in X such that M(F) ⊂ W . We
define the pseudo-metric ρ on Σ by ρ(E1, E2) = µ(E1 △ E2) for E1, E2 ∈ Σ where



278 Xue Xiaoping, Cheng Lixin, Li Goucheng, Yao Xiaobo

△ denotes the symmetric difference operation. We denote by Σ(µ) the pseudo-
metric space equipped with ρ on Σ. Since Σ is generated by F , the pseudo-metric
space F(µ), the restriction of ρ to F , is a dense subspace of Σ(µ). Next, we define
the mappingM : F(µ)→ Pw (the family of nonempty weakly compact sets which
are contained in a weakly compact and convex setW equipped with the Hausdorff
metric H) by E → M(E), we will show that M is uniformly continuous on F(µ).
First, we prove the following inequality

(3.1)

H(M(E1), M(E2)) ≤ H(M(E2 \ (E1 ∩ E2)), {0})

+H(M(E1 \ (E1 ∩ E2)), {0})

≡ |M(E2 \ (E1 ∩ E2))|+ |M(E1 \ (E1 ∩ E2))|.

For xj ∈ M(Ej) (j = 1, 2), by Lemma 3.2 there exists a finitely additive set
function m such that m(E2) = x2 and such that m(E) ∈ M(E) for all E ∈ F .
Due to the equation m(E1) +m(E2 \ (E1 ∩ E2)) = m(E2) +m(E1 \ (E1 ∩ E2)),
we have

d(x2, M(E1)) = inf
x∈M(E1)

‖x2 − x‖ ≤ ‖x2 − m(E1)‖

≤ ‖m(E2 \ (E1 ∩ E2))‖+ ‖m(E1 \ (E1 ∩ E2))‖

≤ |M(E2 \ (E1 ∩ E2))|+ |M(E1 \ (E1 ∩ E2))|

and similarly we have

d(x1, M(E2)) ≤ |M(E2 \ (E1 ∩ E2))| + |M(E1 \ (E1 ∩ E2))|.

Combining the two inequalities together we proved that (3.1) holds. Both (ii) and
inequality (3.1) imply that M is uniformly continuous.
Note that (Pw(X), H) is a complete metric space (Lemma 3.4), hence there

is a uniformly continuous extension M [Σ(µ) → (Pw(X), H)] of M from F(µ) to
Σ(µ). Let {En} be any mutually disjoint sequence in Σ, then
H(M(

⋃∞
k=1Ek),

∑n
k=1M(Ek)) → 0. Since H(A, B) = SUP‖x′‖≤1 |σA(x

′) −

σB(x
′)|, we have σ

M (
S

∞

n=1 En)
(x′) =

∑∞
n=1 σ

M (En)
(x′). That is, M is weakly

countably additive, it follows from Corollary 1.5 that M is countably additive.
�

4. Integral representation and set valued measures

In this section, X will always be a separable Banach space, (Ω,Σ, µ) denotes a
complete and finite measure space and F (Ω→ Pf (X), the family of all nonempty
and closed sets in X) denotes a set valued function. The graph of F is denoted
by GRF = {(ω, x) ∈ Ω × X ;x ∈ F (ω)}. For A ⊂ X , we write F−1(A) = {ω ∈
Ω;F (ω) ∩ A 6= ∅}. By [6], the following versions are equivalent:

(i) F is measurable;
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(ii) for any A ∈ Pf (X), F
−1(A) ∈ Σ;

(iii) there exists a sequence {fn} of measurable functions from Ω to X such
that F (ω) = cl{fn(ω)};

(iv) GRF ∈ Σ× B(X), where B(X) is the Borel σ-algebra on X .

We call a measurable function σ(Ω→ X) a measurable selection of F provided
σ(ω) ∈ F (ω) µ a.e.; such a σ is said to be a weakly integrable selection if it is
Pettis-integrable. We set

SWF = {σ : σ is a weakly integrable selection of F}.

For A ∈ Σ, the Pettis-Aumann type integral of F is defined by (W )
∫

A F dµ =

{Pettis-
∫

A σ(ω) dµ;σ ∈ SWF }. F is said to be weakly integrable bounded pro-

vided for each x′ ∈ X ′, |x′F (ω)| ≡ supx∈F (ω) |〈x
′, x〉| ≡ f(ω) ∈ L′(µ).

All theorems and terminology about topological linear spaces of this section
are referred to [13].

Lemma 4.1. Suppose that σ(X ′ → R) is a sublinear functional (Minkowski
gauge) which is continuous relative to the Makey topology τ(X ′, X). Then there
is A ∈ Pwee(X) such that σA = σ on X ′ and A = {x ∈ X ; 〈x′, x〉 ≤ σ(x′) for all
x′ ∈ X ′}.

Proof: Since σ(x′) is continuous about τ(X ′, X), it must be continuous by
the norm topology. Therefore there is a closed and convex set A′′ such that
A′′ = {x′′ ∈ X ′′; 〈x′′, x′〉 ≤ σ(x′) for all x′ ∈ X ′}. First, we show A′′ = A.
Clearly, A ⊂ A′′. On the other hand, for any x′′ ∈ A′′, we have 〈x′′, x′〉 ≤ σ(x′).
That is, x′′ is a τ(X ′, X) continuous linear functional on X ′, hence x′′ ∈ X and
further we have x′′ ∈ A. Thus A′′ = A.
It remains to show that A is weakly compact. Clearly, A is bounded, convex

and closed, therefore it is also weakly closed. Suppose, to the contrary, that A
is not weakly compact, then, by James’ theorem, there exist x′0 ∈ X ′ such that
〈x′0, x〉 < σA(x

′
0) for all x ∈ A. Let {xα} be a net in A such that 〈x′0, xα〉 →

σA(x
′), then there is a subnet {xβ} ⊂ {xα} such that xβ

w∗

−−→ x′′ for some

x′′ ∈ X ′′, since {xα} is bounded. It is easy to observe that 〈x′′, x′0〉 = σA(x
′
0)

and for all x′ ∈ X ′, 〈x′′, x′〉 ≤ σA(x
′), that is, x′′ ∈ A′′ = A. This contradicts our

hypotheses. �

Lemma 4.2. Suppose that F (Ω→ Pf (X)) is measurable and suppose SWF 6= ∅.
Then σ(W )

R
A

F dµ(x
′) =

∫

A σF (ω)(x
′) dµ for all A ∈ Σ and x′ ∈ X ′.

Proof: Without loss of generality we assume A = Ω. The measurability of F
implies that σF (ω)(x

′) is also measurable and σ(W )
R
Ω F dµ(x

′) ≤
∫

Ω σF (ω)(x
′) dµ.

For each integer n ≥ 1, let En = {ω ∈ Ω;σF (ω)(x
′) ≤ n} and define a measurable

function fn(Ω→ R) by

fn(ω) =

{

σF (ω)(x
′)− 1

n , for ω ∈ En,

n, otherwise.
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Next, define Hn(ω) (Ω→ Pf (X)) by

Hn(ω) = {x ∈ F (ω); 〈x′, x〉 ≥ fn(ω)}.

Since θ(ω, x) = 〈x′, x〉 − fn(ω) is continuous to x and measurable to ω, θ is
a Carathéodory function, it must be Σ × B(X)-measurable, that is, GRHn =
GRF ∩ {(ω, x) ∈ Ω × X ; θ(ω, x) ≥ 0} ∈ Σ × B(X). Hence Hn(ω) is measurable
and there exists a measurable selection σn of Hn for n = 1, 2, . . . . Define again
σn,k by

σn,k(ω) =

{

σn(ω), ω ∈ Ωn,k ≡ {ω ∈ Ω; ‖σn(ω)‖ ≤ k},

σ(ω), otherwise

where σ ∈ SWF , hence σn,k ∈ SWF . Since
∫

Ω
x′σn,k(ω) dµ =

∫

Ωn,k

x′σn(ω) dµ+

∫

Ω\Ωn,k

x′σ(ω) dµ,

we have

σ(W )
R
Ω F dµ(x

′) ≥

∫

Ωn,k

x′σn(ω) dµ+

∫

Ω\Ωn,k

x′σ(ω) dµ.

Since µ(Ω \Ωn,k)→ 0 as k → ∞ and since σ(ω) is Pettis-integrable, by letting k
tend to positive infinity in the above inequality we obtain

σ(W )
R
Ω

F dµ(x
′) ≥

∫

Ω
fn(ω) dµ =

∫

En

(σF (ω)(x
′)−

1

n
) dµ+ nµ(Ω \ En)

≥

∫

En

(σF (ω)(x
′)−

1

n
) dµ.

Also, letting n go to infinity we have

σ(W )
R
Ω F dµ(x

′) ≥

∫

Ω
σF (ω)(x

′) dµ

which completes the proof. �

Definition 4.3. A bounded set valued measure M(Σ → Pwee(X)) is said to be
µ-weakly compactly separable, provided there exists a Σ-countable partition {Ωn}
of Ω such that Kn = { x

µ(A)
;x ∈ M(A), µ(A) > 0, A ⊂ Ωn} is relatively weakly

compact for n = 1, 2, . . . .

Theorem 4.4. Suppose that X ′ is separable and suppose M(Σ → Pwee(X)) is
a set valued measure of µ-continuity. Then there exists a measurable and weakly
integrable bounded set valued function F (Σ→ Pwee(X)) such that

M(A) = (W )

∫

A
F dµ
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if and only if M is µ-weakly compactly separable.

Proof: Necessity. Set Ωn = {ω ∈ Ω;n − 1 ≤ |F (ω)| < n}. The measurability
of F implies that Ωn ∈ Σ and that

⋃∞
n=1Ωn = Ω, that is, {Ωn} is a Σ-countable

partition of Ω. LetKn = { x
µ(A)
;x ∈ M(A), µ(A) > 0, A ⊂ Ωn and A ∈ Σ} and for

any fixed x′ ∈ X ′ let Rx′(ω) = {x ∈ F (ω), σF (ω)(x
′) = 〈x′, x〉}, then Rx′(ω) 6= ∅

for all ω ∈ Ω. Therefore there exists a measurable selection σ of Rx′ . Since
‖σ(ω)‖ ≤ |F (ω)| < n on Ωn, σ(ω) is Bochner-integrable on Ωn for n = 1, 2, . . . .
Choose any σ0 ∈ SWF and define σ1 by σ1(ω) = σ(ω), if ω ∈ Ωn, = σ0(ω),
otherwise, hence σ1 ∈ SWF . For any A ⊂ Ωn, according to the fact we have just
proved and Lemma 4.2, we have

(4.1) σM(A)(x
′) =

∫

A
σF (ω)(x

′) dµ =

∫

A
〈x′, σ(ω)〉 dµ = 〈x′,

∫

A
σ1(ω) dµ〉.

Without loss of generality we can assume that Sn ≡ {m(A)
µ(A)

;µ(A) > 0, A ∈ Σ, A ⊂

Ωn} is relatively weakly compact, since σ1 is Bochner-integrable on Ωn, where
m(A) =

∫

A σ1(ω) dµ. The Krein-Smulian theorem implies that co(Sn) is weakly

compact and convex. Thus, by (4.1), σKn
(x′) = σSn

(x′) = σco(Sn)(x
′), and there

exists xn ∈ co(Sn) ⊂ co(Kn) such that σKn
(x′) = 〈x′, xn〉 for n = 1, 2, . . . .

This and the James’ theorem say co(Kn) is weakly compact. Because F (ω) is
weakly integrable bounded, |σM(A)(x

′)| ≥
∫

Ω |x′F (ω)| dµ for all A ∈ Σ, and M is

bounded by the Resonance Theorem.

Sufficiency. Suppose that M is µ-weakly compactly separable. Let {Ωn} be a
Σ-countable partition on Ω such that Kn = { x

µ(A)
;x ∈ M(A), A ∈ Σ, µ(A) > 0

and A ⊂ Ωn} is relatively weakly compact, then M(Σn ≡ Σ |Ωn
→ Pwee(X))

is of bounded variation and µ continuous and which implies σM(·)(x
′) is also of

bounded variation and µ-continuous on Σn for all x
′ ∈ X ′. Since R has RNP, for

each fixed integer n ≥ 1 there exists ϕn(x
′, ω) ∈ L1(Ωn) such that

(4.2) σM(A)(x
′) =

∫

A
ϕn(x

′, ω) dµ.

Note that |σM(A)(x
′)| ≤ Cnµ(A), where Cn = supx∈Kn

‖x‖, we know that the

variation |σM(A)|(x
′) of σM(·)(x

′) on A satisfies |σM(A)|(x
′) ≤ Cnµ(A)‖x′‖ for

A ⊂ Ωn and A ⊂ Σ. By (4.2), we have |σM(A)|(x
′) =

∫

A |ϕn(x
′, ω)| dµ, so

|ϕn(x
′, ω)| ≤ Cn‖x′‖ µ a.e. on Ωn, that is, ϕn(x

′, ω) ∈ L∞(Ωn). By [8], there
is a positive and linear lifting L on L∞(Ωn) such that for each f ∈ L∞(Ωn),
f(ω) ≡ L(f(ω)) is bounded and measurable function satisfying

(4.3)

∫

A
f(ω) dµ =

∫

A
f(ω) dµ and sup

ω∈Ωn

‖f(ω)‖ ≤ ‖f‖∞.
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Write ϕn(x
′, ω) = L(ϕn(x

′, ω)), then (4.3) and
∫

A
ϕn(x

′
1 + x′2, ω) dµ ≤

∫

A
ϕn(x

′
1, ω) dµ+

∫

A
ϕn(x

′
2, ω) dµ

together with
∫

A
ϕn(αx′, ω) dµ = α

∫

A
ϕn(x

′, ω) dµ (for α ≥ 0)

imply that ϕn(x
′, ω) is a sublinear functional on X ′. Let Wn = (Kn ∪ (−Kn)),

then Wn is absolutely convex and weakly compact. We obtain |σM(A)|(x
′) ≤

σWn
(x′)µ(A) for all A ⊂ Σ, M(A) ⊂ µ(A)Wn by noting |σM(A)(x

′)| ≤

σWn
(x′)µ(A). It follows from the Makey-Arens theorem that for fixed ω, ϕn(x

′, ω)
is continuous on X ′ corresponding to the Makey topology, by Lemma 4.1, for ev-
ery ω ∈ Ωn there exists Fn(ω) ∈ Pwee(X) such that Fn(ω) = {x ∈ X ; 〈x′, x〉 ≤
ϕn(x

′, ω) for x′ ∈ X ′} and

(4.4) σFn(ω)(x
′) = ϕn(x

′, ω).

Now define F on Ω by F (ω) = Fn(ω) for ω ∈ Ωn, equation (4.4) implies that
σFn(ω)(x

′) is measurable, this and [4] imply that Fn(ω) is measurable. This

implies that F (ω) is measurable. Hence there is a measurable selection σ(Ω→ X)
of F which is Bochner-integrable by noting ‖σ(ω)‖ = sup‖x′‖≤1 |〈x

′, σ(ω)〉| ≤ Cn

on Ωn. By (4.2) we have

〈x′,

∫

A
σ(ω) dµ〉 ≤ σM(A)(x

′).

This and the Separation Theorem say
∫

A σ(ω) dµ ∈ M(A). Since
∫

E∩Ωn
σ(ω) dµ ∈

M(E∩Ωn) for any E ∈ Σ,
∑∞

n=1M(E∩Ωn) unconditionally converges by Corol-
lary 1.3, in particular,

∑∞
n=1

∫

E∩Ωn
σ(ω) dµ is unconditionally convergent. σ(ω)

is Pettis-integrable by noting

〈x′,
∞
∑

n=1

∫

E∩Ωn

σ(ω) dµ〉 =
∞
∑

n=1

∫

E∩Ωn

x′σ(ω) dµ =

∫

E
x′σ(ω) dµ,

that is, σ ∈ SWF . Lemma 4.2 implies that

(4.5) σ(W )
R
A

F dµ(x
′) =

∫

A
σF (ω)(x

′) dµ

and on the other hand, combining (4.2)–(4.4) together we have

(4.6)

∫

A
σF (ω)(x

′) dµ = σM(A)(x
′)
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and (4.5), (4.6) and the Separation Theorem imply

(4.7) M(A) = cl
(

(W )

∫

A
F dµ

)

.

The weak integrability of F can be followed by

∫

|x′F (ω)| dµ ≤ ‖x′‖ sup
‖x′‖≤1

|σM(A)|(x
′) < ∞.

It remains to show that (W )
∫

A F dµ is closed. Suppose that {σn(ω)} ⊂ SWF

such that x0 = limn→∞
∫

A σn(ω) dµ. Let {x′n} be a countably dense set in X ′

(X ′ is separable). The inequality |x′1σ(ω)| ≤ |x′1F (ω)| and the Dunford theorem
(see, for instance, [5, Theorem 15]) imply that {x′1σn(ω)} is relatively weakly
compact set in L′(µ). So there exists a weakly convergent subsequence (we still
denote it by {x′1σn(ω)}). By the Mazur theorem, there exists a function sequence
{f1,k(ω)} satisfying f1,k(ω) ∈ co{σk(ω), σk+1(ω), . . . } such that x′(f1,k(ω)) is

norm-convergent in L′(µ), this implies that there exists E1 ∈ Σ with µ(E1) = 0
such that x′1(f1,k(ω)) is pointwise convergent on Ω \ E1. The convexity of F

implies that f1,k(ω) ∈ F (ω) and clearly, it also satisfies |x′2f1,k(ω)| ≤ |x′2F (ω)|
which implies that there exists a function sequence {f2,k(ω)} and E2 ∈ Σ with
µ(E2) = 0 such that f2,k(ω) ∈ co{f1,k(ω), f1,k+1(ω), . . . } and such that x

′
2f2,k(ω)

pointwise converges on Ω \ E2 . . . . Inductively, we obtain a function sequence
{fn,k(ω)} and set sequence {En} ⊂ Σ with µ(En) = 0 for n = 1, 2, . . . , such that

(a) fn+1,k(ω) ∈ co{fn,k(ω), fn,k+1(ω), . . . };
(b) x′nfn,k is pointwise convergent on Ω \ En.

Let gk(ω) = fk,k(ω), and let E0 =
⋃∞

n=1En, therefore for ω ∈ Ω \ E0,

limk→∞ x′ngk(ω) exists (for n = 1, 2, . . . ) by combining (a) and (b). For any
x′ ∈ X ′, |x′ngk1(ω)− x′gk2(ω)| ≤ ‖x′n − x′‖ ‖gk1(ω)‖+ |x′ngk1(ω)− x′ngk2(ω)| for
any integers k1, k2 ≥ 1, the density of {x′n} in X ′ implies that limk→∞ x′gk(ω)
exist for all x′ ∈ X ′ and ω ∈ Ω \ E0. Let K(ω) = co(F (ω) ∪ (−F (ω))),
then K(ω) is absolutely convex and weakly compact for every ω ∈ Ω \ E0.
Since | limk→∞ x′gk(ω)| ≤ σK(ω)(x

′) for fixed ω, limk→∞ x′gk(ω) is continu-

ous corresponding to the Makey topology on X ′. Thus, there exists a func-
tion g : (Ω \ E0 → X) satisfying 〈x′, g(ω)〉 = limk→∞ x′gk(ω). Again by the
Mazur theorem we know g(ω) ∈ F (ω). Choose any σ ∈ SWF and define σ1 by
σ1(ω) = g(ω), ω ∈ Ω\E0; = σ(ω), otherwise; let {Bk} be a Σ-countable partition
and let σ1 be Bochner-integrable on Bk, then, by (4.7),

∫

Bk
σ1(ω) dµ ∈ M(Bk).

So
∑∞

k=1

∫

Bk∩E σ(ω) is Pettis-integrable, that is σ1(ω) ∈ SWF . On the other

hand, 〈x′, x0〉 = limn→∞
∫

A x′σn(ω) dµ =
∫

A x′g(ω) dµ =
∫

A x′σ1(ω) dµ, there-

fore x0 =
∫

A σ1(ω) dµ ∈ (W )
∫

A F dµ, which completes our proof.
�
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