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Borel matrix

Michel Weber

Abstract. We study the Borel summation method. We obtain a general sufficient con-
dition for a given matrix A to have the Borel property. We deduce as corollaries, earlier
results obtained by G. Müller and J.D. Hill. Our result is expressed in terms belonging
to the theory of Gaussian processes. We show that this result cannot be extended to
the study of the Borel summation method on arbitrary dynamical systems. However, in
the Lp-setting, we establish necessary conditions of the same kind by using Bourgain’s
entropy criterion.

Keywords: Borel matrix, almost sure convergence, GB and GC sets, Gaussian processes

Classification: Primary 49A35, 60G15

I. Introduction

The aim of this paper will be first to discuss some classical results concern-
ing the so-called Borel matrix summation method, next to give useful criterias
concerning the regularity of this particular summation method.
First we recall some well-known facts about (A, µ) uniformly distributed se-

quences, a topic that has motivated many researches in the last 40 years. We
mainly refer to [KN] for proofs of the results we are recalling, as well as for
related type of distribution. Interesting papers on this kind of uniformly dis-
tributed sequences are among many others, those of J.D. Hill [Hi], G. Müller [M],
and W. Philipp [Ph].
Let A = {an,k : n, k ≥ 1} be an infinite matrix of real numbers satisfying the

following regularity assumptions, in which we define an to be the n-th row of A,

(1)

(i) ‖A‖ = sup
n≥1

‖an‖1 < ∞,

(ii) lim
n→∞

∞
∑

k=1

an,k = 1.

These conditions are to be compared with conditions for a matrix to be regular
([KN, Theorem of Silverman-Toeplitz, p. 62]) or to be a positive Toeplitz matrix
([KN, p. 60]). Let X be a compact metrizable space, and µ be a Borel probability
on X . We recall that a sequence {xk : k ≥ 1} ⊂ X is (A, µ) uniformly distributed
((A, µ) u.d.), if for any continuous function f on X , (f ∈ C(X)),

lim
n→∞

∞
∑

k=1

an,kf(xk) =

∫

f dµ.
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When that property is satisfied for µN-almost every sequence {xk : k ≥ 1} ⊂ X ,
then we say that A is a Borel matrix (with respect to µ if necessary). When
only studying the (A, µ) u.d. property of the sequence {xk : k ≥ 1}, we are led
to a classical problem on the relative compactness of the sequence of measures
νk =

∑∞
j=1 ak,jδxj , k = 1, 2, · · · , where δx stands for the Dirac measure at the

point x. When considering that property for µN-almost all sequences {xk : k ≥ 1},
the problem takes another aspect and more on the set A = {an : n ≥ 1} is
involved. When for instance, A satisfies the Hill condition ([Hi]):

(2) ∀ δ > 0,

∞
∑

k=1

e
− δ

‖ak‖2
2 < ∞,

then A is a Borel matrix, whatsoever µ. Condition (2) is equivalent to

(2′) lim
ε→0

ε2 log ♯{n ≥ 1 : ‖an‖2 ≥ ε} = 0.

To show this equivalence, we can assume ‖ak‖2 ≤ 1 for all k. Assume (2′) holds.
Given any fixed 0 < δ ≤ 1, we can determine a positive integer kδ such that

0 < ε ≤ 2−kδ ⇒ ♯{n ≥ 1 : ‖an‖2 ≥ ε} ≤ e
δ

8ε2 .

Therefore

∑

n:‖an‖2≤2
−kδ

e
− δ

‖an‖2
2 =

∞
∑

k=kδ

∑

{e
− δ

‖an‖2
2 : 2−k−1 < ‖an‖2 ≤ 2−k}

≤
∞
∑

k=kδ

e−2
2kδ♯{n ≥ 1 : ‖an‖2 > 2−k−1}

≤
∞
∑

k=1

e−2
2kδe2

2k−1δ

< ∞.

Besides,

∑

{e
− δ

‖an‖2
2 : ‖an‖2 > 2−kδ} ≤ e−δ22kδ

♯{n ≥ 1 : ‖an‖2 > 2−kδ} < ∞.

Hence,
∞
∑

k=1

e
− δ

‖ak‖2
2 < ∞,

for arbitrary δ, which proves (2).
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Now assume that (2) is satisfied and let

M(δ) =

∞
∑

k=1

e
− δ

‖ak‖2
2 < ∞.

We get

M(δ) ≥ e
− δ

ε2 ♯{n : ‖an‖2 ≥ ε}
or else,

log M(δ) +
δ

ε2
≥ log ♯{n : ‖an‖2 ≥ ε}.

Multiplying both sides by ε2, letting then ε tend to 0, gives

δ ≥ lim sup
ε→0

ε2 log ♯{n ≥ 1 : ‖an‖2 ≥ ε}.

Since δ is arbitrary, we get (2’).
Another, apparently different sufficient condition, is the following one due to

G. Müller, ([M]), (see the Note 1 following Theorem 3)

(3) lim
n→∞

∞
∑

k=1

|an,k − an,k+1| log k = 0.

On the other hand, if µ is not a Dirac measure, then A is a Borel matrix relatively
to µ only if

(4) lim
n→∞

‖an‖2 = 0,

([KN, Theorem 7.3, p. 211]). In the same book, p. 208, the authors notice “Unfor-
tunately, no conditions on the matrix A are known that are both necessary and
sufficient. . .”. This has motivated us in this work. A closer look into the proof of
Theorem 1.2 ([KN, p. 208]) concerning the Hill condition reveals that (2) alone is
strong enough to imply

(5) µN{x = {xk : k ≥ 1} : lim
n→∞

∞
∑

k=1

an,kf(xk) =

∫

f dµ} = 1,

for any bounded measurable function f on X . Further, (1) (ii) is just needed to
show (5) for the constant functions. Next, the conclusion is obtained by passing to
the uniform closure of the subspace generated by some countable set of functions.
It is precisely at this stage that the assumption (1) (i) is needed. It is in fact no
more necessary to work longer with a compact Hausdorff space; so we will assume
that (X,F , µ) is a probability space with a countably generated σ-field F . We
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replace the space of “test functions” C(X), by some Lp(µ), 2 ≤ p < ∞, or the
algebra GT defined in (8). Introduce some notations,

(6) ∀n ≥ 1, Sn(f)(x) =

∞
∑

k=1

an,kf(xk)

and define on the Bernoulli scheme (XZ,F⊗Z, µZ, T ) the extension of the above
summation method:

(7) ∀n ≥ 1, S̃n(f) =

∞
∑

k=1

an,kf ◦ T k.

When f is only depending on the first coordinate f(x) = f1(x1), then S̃n(f) =

Sn(f1). Let h ∈ L∞(µZ), or S ⊂ L∞(µZ); then AlgT (h) or AlgT (S) will denote

the closed subalgebra of L∞(µZ) generated by the sets {h ◦ T n : n ∈ Z} or
{h ◦ T n : n ∈ Z, h ∈ S}. We view L∞(µ) as a closed subspace of L∞(µZ). Put

(8) GT = AlgT (L
∞(µ)).

We will prove the convergence of the above extended summation method (6)
on the algebra GT under weaker conditions than (2) or (3) in the Theorem 3
below. Lemma 1 below will be used (see Theorem 3 (ii) and the Note 2) to give
informations concerning the algebra GT . Clearly GT is the closure of ST , where

(9)
ST = span {h(x) = f1(xi1)× · · · × fp(xip) : f1, · · · , fp ∈ L∞(µ),

i1 < · · · < ip, p ≥ 1}.
We use the majorizing measure method introduced by A.M. Garsia, G. Rodemich
and H. Rumsey ([GRR]). Lemma 1 will identify some elements of the algebra
GT when the space (X,F , µ) is sufficiently regular, or said equivalently, has good
projectors. Let (T, d) be a separable pseudo-metric space, let us denote by T

its Borel σ-field, and consider a probability measure m on (T, T). We make the
following assumption:

There exists a family Π = {πn : n ≥ 1} of finite measurable partitions of (T, T),
ordered by inclusion, generating T, and some Young function φ such that

(10) lim
N→∞

∞
∑

n=N

∑

π∈Πn

ε(π)φ−1(
1

m2(π)
) = 0,

where ε(π) = sup{d(u, v) : u ∈ π, v ∈ π1}, if π1 ∈ Πn−1 is such that π ⊂ π1.

Let Pn be the conditional expectation projector with respect to the Boolean
algebra generated by Πn, n ≥ 1. We put

∀N ≥ 1, RN =

∞
∑

n=N

∑

π∈Πn

ε(π)φ−1(
1

m2(π)
).
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We also define for any f ∈ L1(m),

(11) ∀ (u, v) ∈ T × T, f̃d(u, v) =
f(u)− f(v)

d(u, v)
1d(u,v)6=0 .

Let Pn be the conditional expectation operator with respect to the Boolean alge-
bra generated by Πn, n ≥ 1. The following lemma is very classical and is easy to
deduce from the work in [GRR]. For the sake of completeness, a very short proof
of that lemma is sketched after the proof of Theorem 3 in Section III.

Lemma 1. Assume that (10) is satisfied, and let f ∈ L1(m). Then,

(12) ∀N ≥ 1, ‖f − PN (f)‖∞,m ≤ K RN ‖f̃d‖φ,m×m ,

where K is some numerical constant, and ‖.‖φ,m×m denotes the Orlicz norm on

(T × T, m × m) relatively to φ.

It will also be necessary for us to recall for the sequel of the paper a useful
Gaussian concept. Any Hilbert space H defines a Gaussian process, often called
isonormal process, {Za : a ∈ H} which is specified by these conditions:

(13) ∀ a, b ∈ H, E Za = 0, E Za.Zb = 〈a, b〉.

Referring to ([D]), we say that a non-empty subset A of a Hilbert space H is
a GB (resp. GC) set, if the restriction to A of the isonormal process Z on H has
a version (that we denote by Z) which is sample bounded (resp. sample norm-
continuous) on A. By the 0-1 laws of the Gaussian processes, A is a GB set if
and only if

E [sup
a∈A

|Za|] < ∞.

We will use this property later. We refer to [T] for characterizations of GB and
GC sets. Introduce now the notion of G(1)-set.

Definition 2. A sequence {an : n ≥ 1} of elements an ∈ l1 is a G(1)-set if for
all ε > 0, there exists {bn : n ≥ 1} bounded in l1 such that limn→∞ ‖bn‖2 = 0,
{bn : n ≥ 1} is a GC subset of l2 and lim supn→∞ ‖an − bn‖1 ≤ ε.

II. A sufficient condition

We can state the main result of this section.

Theorem 3. (i) Let A be a matrix satisfying (1) (i), (4), and

(14) ∀n ≥ 1,
∞
∑

k=1

an,k = 1.
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If the sequence A of rows of A is a G(1)-set, then

(15) ∀ f ∈ GT , lim
n→∞

S̃n(f) =

∫

XZ

f dµZ µZ- a.e.

(ii) Let d be a pseudo-metric on XZ, such that its Borel σ-field coincides with

the product σ-algebra and (10) is satisfied. Then, with the notations (11)

(16) GT ⊃ {f ∈ L1(µ) : f̃d ∈ Lφ(µZ × µZ)}.
(iii) Assume that A is a matrix summation method on a compact metric space,

satisfying (1) and (4). Then a sufficient condition for A to have the Borel

property, is that A be a G(1)-sequence.

Note 1. If A is a GC subset of l2, and if (1) and (4) hold, then clearly A is
a G(1)-sequence. But this is a too strong requirement for checking the Borel
property. Our result shows that it is enough for A, to be arbitrarily close in the
l1-sense to some GC-set, also satisfying (1) and (4). Such an observation is not
new. In [M], G. Müller already observed that a matrix method with a matrix
A satisfying the regularity assumption (1) has the Borel property whenever (3)
holds. A closer look into his proof shows that (3) allows to build an auxiliary
matrix B satisfying (1) and (2), so that B = {bn : n ≥ 1} is a GC set. Moreover,
limn→∞ ‖an − bn‖1 = 0. We refer to [M, p. 438-440] for details. But this is now
just a particular case of Theorem 3.

Note 2. We shall apply the above result to symbolic flows. Let Λ be a finite
alphabet with Card (Λ) = p, and X = ΛZ. Let µ be the uniform measure on Λ.
We provide the symbolic flow (X, T ) with the lexicographic distance

dα(x, x′) = inf{αk+1 : xi = x′i for |i| < k}, 0 < α < 1.

Then (X, dα) is a compact ultrametric space. Let Πn be the collection of all closed
dα-balls of radius αn, n ≥ 0. We notice that it is independent of the value of α.
So, we define an ordered sequence of finite measurable partitions of X . Further
the µZ-measure of any ball of radius αn is precisely p−n. For a Young function
φ, the condition in (10) simply reduces to

(17)
∞
∑

n=1

αnφ−1(p2n) < ∞.

Besides, for f ∈ Lip (dα), ‖f̃d‖φ,µZ×µZ < ∞ always. Since it is always possible to
find φ such that (17) is satisfied, we deduce that the corresponding algebra GT

on the symbolic flow satisfies
⋃

0<α<1

Lip (dα) ⊂ GT .
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III. Proof of Theorem 3

The proof of Theorem 3 relies on an adaptation of a useful lemma ([KN,

Lemma 7.2, p. 209]), that we recall for the convenience of the reader. We write 1⊥µ
for the one-dimensional subspace of L1(µ) consisting of the functions f ∈ L1(µ)
such that

∫

f dµ = 0.

Lemma 4. (a) Let f ∈ L∞(µ) ∩ 1⊥µ . Then, for all real numbers u,

∫

X
exp(uf) dµ ≤ exp[1

2
u2‖f‖2∞,µ] .

(b) Further, for n, m > 0,

∫

XZ

exp[u(Sn − Sm)(f)] dµZ ≤ exp[1
2
u2‖an − am‖22 ‖f‖2∞,µ] .

(c) For any t > 0,

µ{|(Sn − Sm)(f)| > t} ≤ 2 exp[− t2

2‖an − am‖22 ‖f‖2∞,µ

] ,

and therefore,

‖(Sn − Sm)(f)‖Ψ2,µZ ≤ K‖an − am‖2‖f‖∞,µ ,

where Ψ2(x) = ex2 − 1, and K is some universal constant.

We will need the following

Lemma 5. Under assumption (14), for any f ∈ ST , there is a positive finite

constant Kf , depending on f only, such that

(18) ∀n, m ≥ 1, ‖(S̃n − S̃m)(f)‖Ψ2,µZ ≤ Kf‖an − am‖2 .

Proof: The subset ST of measurable functions f satisfying (18) is clearly a vector
space. Condition (14) readily implies that ST contains the constants, and by part

(c) of Lemma 4, it also contains any function f̃ such that

f̃(x) = f(xk), x = {xk : k ∈ Z, }, for some fixed k ∈ Z, and f ∈ L∞(µ) ∩ 1⊥µ .

Now let us consider F (x) = f(x1)g(x2), f, g ∈ L∞(µ). For proving that F ∈ ST ,

we can assume f, g ∈ L∞(µ) ∩ 1⊥µ . Writing for simplicity b = an − am,

∫

XZ

exp [u(S̃n − S̃m)(F )] dµZ =

∫

X[2,∞(
exp[u(S̃n − S̃m)(F )] dµ(x2) dµ(x3) · · · ,
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and by part (a) of Lemma 4
∫

exp [u(S̃n − S̃m)(F )] dµ(x2)

= exp [

∞
∑

k=2

ubkF (T kx)]

∫

exp [ub1f(x2)g(x3)] dµ(x2),

≤ exp [
∞
∑

k=2

ubkF (T kx)] exp [
1

2
u2b21‖f‖2∞,µg(x3)

2]

≤ exp [
∞
∑

k=2

ubkF (T kx)] exp [
1

2
u2b21‖f‖2∞,µ‖g‖2∞,µ] .

By iterating that argument and applying Fatou’s lemma, we get

(19)

∫

XZ

exp[u(S̃n − S̃m)(F )] dµZ ≤ exp [1
2

∞
∑

k=1

u2b2k‖f‖2∞,µ‖g‖2∞,µ] ,

for any real u. By a standard argumentation this in turn implies

‖(S̃n − S̃m)(F )‖Ψ2,µZ ≤ C‖f‖2∞,µ‖g‖2∞,µ‖b‖2 ,

where 0 < C < ∞ is some numerical constant. Hence we have proved F ∈ ST .
What is done for a product of two elements of L∞(µ), can be extended to any
finite product:

F (x) = f1(xi1)× · · · × fp(xip), x = {xk : k ∈ Z, },
where i1 < · · · < ip, p ≥ 1, and f1, · · · , fp ∈ L∞(µ), by the same method. Hence,
ST ⊂ ST . �

Proof of Theorem 3:

Step 1. Assume that A is a GC set. Let µ be any probability on (X,F). By the
above lemma, for F ∈ ST ⊖ 1µZ , S(F ) = {S̃n(F ) : n ≥ 1} defines a subgaussian
process with basic probability space (XZ,FZ, µZ). By assumption (1.4) and by

letting S̃∞(F ) = 0, this process is mean quadratic continuous at infinity. Ac-
cording to a classical result (see [T], for instance), in order that S(F ) be sample
continuous with respect to the Hilbert norm, it is enough that A be a GC set.
Thus, for any F ∈ ST ⊖ 1µZ ,

µZ{ lim
n→∞

S̃n(F ) = 0} = 1,

or, for any F ∈ ST ,

µZ{ lim
n→∞

S̃n(F ) =

∫

F dµZ} = 1.
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Since ST is countably dense in GT , we get

µZ{∀F ∈ ST : lim
n→∞

S̃n(F ) =

∫

F dµZ} = 1.

Now, we shall make use of the assumption (1) (i). Let F ∈ GT , and G ∈ ST be
such that ‖F − G‖∞,µZ < ε. Then,

(20)

‖S̃n(F )−
∫

F dµZ‖ ≤

|
∞
∑

k=1

an,k(F ◦ T k−G ◦ T k)−
∫

(F−G) dµZ|+ |
∞
∑

k=1

an,kG ◦ T k−
∫

GdµZ|

≤ ‖A‖‖F−G‖1,µZ + ‖F−G‖∞,µZ + |
∞
∑

k=1

an,kG ◦ T k−
∫

GdµZ|

≤ [‖A‖+ 1]ε+ ε,

for all sufficiently large integers n. The conclusion follows.

Step 2. Let ε > 0 be fixed. By extracting from the sequence {an : n ≥ 1}
a subsequence if necessary, we can assume,

∀n ≥ 1, ‖an − bn‖1 ≤ ε,

where B = {bn : n ≥ 1} is a GC subset of l2 contained in c0(l2)∩ l1. For F ∈ GT ,
we have

(21)

|
∞
∑

k=1

an,kF ◦ T k −
∫

F dµZ|

≤ |
∞
∑

k=1

(an,k − bn,k)F ◦ T k| + |
∞
∑

k=1

bn,kF ◦ T k −
∫

F dµZ|

≤ ‖an − bn‖1‖F‖∞,µZ + |
∞
∑

k=1

bn,kF ◦ T k −
∫

F dµZ| .

From the first step we deduce

lim sup
n→∞

|
∞
∑

k=1

an,kF ◦ T k −
∫

F dµZ| ≤ ε‖F‖∞,µZ .

Since ε can be in fact chosen as small as we wish, we get

lim
n→∞

∞
∑

k=1

an,kF ◦ T k =

∫

F dµZ .
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The conclusion therefore follows by arguing as along the last lines of part (a).
�

Proof of Lemma 1: It is classical. Let h ∈ L1(µ).

|Pn(h)− Pn−1(h)| =
∑

π∈Πn

| 1
m(π)

∫

π
h dm − 1

m(π∗)

∫

π∗
h dm|,

where π∗ is defined by the relations: π∗ ∈ Πn−1 and π ⊂ π∗. By letting c =

‖h̃d‖φ,m⊗m, then applying Jensen’s inequality, we get

(22)

|
∫

π×π∗
[h(u)− h(v)]

dm(u)dm(v)

m(π)m(π∗)
|

= |c
∫

π×π∗
d(u, v)φ−1 ◦ φ

( h̃d(u, v)

c

)dm(u)dm(v)

m(π)m(π∗)
|

≤ ε(π)cφ−1
(

∫ ∫

X×X φ
( h̃d(u,v)

c

)

dm(u)dm(v)

m(π)m(π∗)

)

≤ ε(π)cφ−1( 1

m2(π)

)

.

Hence,

|Pn(h)− Pn−1(h)| ≤
∑

π∈Πn

ε(π)cφ−1( 1

m2(π)

)

.

But by the martingale convergence theorem, m{limn→∞ Pn(h) = h} = 1.
Thus,

(23) |h−PN (h)| = |
∞
∑

n=N+1

Pn(h)−Pn−1(h)| ≤
∞
∑

n=N+1

∑

π∈Πn

ε(π)cφ−1( 1

m2(π)

)

.

We get (12) by passing to the sup-norm in the above inequality. �

One may wonder whether the GC property of A remains sufficient to imply
for arbitrary ergodic dynamical systems, the convergence of the associated matrix
method for smooth functions like the algebra GT . The theorem below provides
a negative answer to that question, and therefore singles out, the role of Bernoulli’s
schemes for this study .

Theorem 6. Let (X,A, µ, τ) be an ergodic dynamical system, where X is a com-

pact metrizable space, and µ a diffuse probability measure. Let us assume that

(24) d(τ(u), τ(v)) ≤ d(u, v)
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for all u, v ∈ X , and some continuous pseudo-metric d on X . Let f ∈ Lip (d)
with

∫

f dµ 6= 0 be such that, for any infinite matrix of real numbers A = {an,k :
n, k ≥ 1} satisfying the regularity assumptions (1) and such that

(24′) ∀n ≥ 1, an,k = 0, for k large, and ‖{an,k : k ≥ 1}‖2 = O(n− 1
2 ),

we have

(25) lim
n→∞

∞
∑

k=1

an,kf ◦ τk =

∫

f dµ .

Then f must be a constant.

In particular, if (25) holds for all matrix summation method A satisfying (1)
and such that A is a GC set of l2, then f must be a constant.

Proof: Since f ∈ Lip (d), the averages

SJ (x, y) =
1

J

∑

j≤J

f(τ jx)f(τ jy) ,

form a d × d-equicontinuous sequence of functions on X × X , we thus know (see
[K, p. 12, Theorem 2.6]) that these averages do converge for all (x, y) ∈ X ×X to
a limit L(x, y) satisfying

µ × µ{(x, y) : L(x, y) = E {f × f
∣

∣ Fτ×τ}} = 1,

where Fτ×τ is the σ-subalgebra of F ⊗ F generated by the τ × τ -invariant sets
of F ⊗F . That limit is further continuous. Besides, for any fixed x the averages
SJ (x, y) can be obviously considered as a matrix summation method with matrix
Ax of which the coefficients are given by

ax
j,J =

1

J
∫

f dµ
1[1,J ](j)f(τ

jx) ,

where j, J ≥ 1. Observe that

‖ax
J‖2 = O(J− 1

2 )

for µ-almost all x’s. This easily follows from Birkhoff’s theorem. Thus (24′) is
fulfilled. According to our assumption on f , we deduce

µ{y : lim
J→∞

1

J

∑

j≤J

f(τ jx)f(τ jy) = [

∫

f dµ]2} = 1
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for µ-almost all x’s. By applying Fubini’s theorem

(26) µ × µ{(x, y) : lim
J→∞

1

J

∑

j≤J

f(τ jx)f(τ jy) = [

∫

f dµ]2} = 1.

Hence,

µ × µ{(x, y) : L(x, y) = [

∫

f dµ]2} = 1.

But L is continuous on T × T and µ is assumed to be diffuse; this implies

(27) L(x, y) = [

∫

f dµ]2 everywhere.

In particular,

(28) L(x, x) = [

∫

f dµ]2 for all x.

But,

(29) µ{x : lim
J→∞

1

J

∑

j≤J

f(τ jx)2 =

∫

f2 dµ} = 1.

Hence,

L(x, x) =

∫

f2 dµ for all x,

and thus

(30) [

∫

f dµ]2 =

∫

f2 dµ.

And this implies by “Schwarz’s equality” that f is a constant on a measurable set
of measure one. �

IV. Necessary conditions

We are concerned in this section with the case where the space of “test” func-
tions is an Lp-space, 2 ≤ p < ∞. We get necessary conditions for the convergence
of matrix summability methods defined on general dynamical systems. These
conditions are of the same type as the sufficient condition stated in Theorem 3.
Let (X,F , µ) be a Lebesgue space and denote by T the group of automorphisms
on (X,F , µ). Let A = {an,k : n, k ≥ 1} be as before an infinite matrix of real
numbers. Set formally

(31) ∀T ∈ T, ∀ f ∈ Lp(µ), ∀n ≥ 1, ST
n (f) =

∞
∑

k=1

an,kf ◦ T k .
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Given any sequence of real numbers b = {bn : n ≥ 1}, the formal writing

(32) ∀ f ∈ Lp(µ), σT
b (f) =

∞
∑

k=1

bkf ◦ T k ,

determines, by means of the uniform bound principle, a linear continuous oper-
ator, as the Lp-limit of the partial summation (continuous) operators σT

b,N (f) =
∑N

k=1 bkf ◦ T k, if and only if,

(33) sup
N≥1

‖σb,N‖ < ∞ .

In the sequel, we simply assume (1) (i), so that the operators ST
n are always Lp-

continuous for the range of values 0 < p ≤ ∞. We get necessary conditions
concerning the property

(BT
p ) ∀ f in Lp(µ), sup

n≥1
|ST

n (f)| < ∞, µ-almost surely.

The results below are extensions of the Bourgain’s entropy theorem ([B]). We will
need in the proofs a more straightforward proof of that remarkable result (see
[SW]).

Theorem 7 (2 ≤ p < ∞). If, for some ergodic automorphism T , (BT
p ) is satisfied,

then necessarily,

(34) sup
S∈T

sup
f∈Lp(µ)
‖f‖2,µ≤1

E {sup
n≥1

|Z(SS
n (f))|} < ∞ ,

where Z is the isonormal process on L2(µ).

In case where (X,F , µ) is a product probability space: (Y,B, ν)Z, then the set A
is a GB set of l2.

Before proving this result, we will specialize it in case of matrix summations
methods satisfying

(35) ∀n ≥ 1, Sn(f) =

Nn
∑

k=1

an,kf ◦ T k ,

whereNn are positive integers. In that case, property (BT
p ) has a direct translation

on the coefficients an,k. One can indeed prove
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Theorem 8 (2 ≤ p < ∞). Let us consider a matrix summation method on
(X,F , µ) satisfying (1) (i) and (35). If, for some ergodic automorphism T , (BT

p )
is satisfied, then necessarily,

(36) A is a GB set of l2.
Proof of Theorem 7: By means of the Banach’s principle, we may find a K <

∞, such that
(37) sup

f∈Lp(µ)
‖f‖p,µ≤1

µ{sup
n≥1

|ST
n (f)| > K} ≤ 1

8
.

Let now T ∗ be the conjugate class of T . By means of the conjugacy lemma ([Ha,
p. 77]), T ∗ is weakly dense in T. Moreover,

(38) SR−1TR
n (f) = R−1(ST

n (f))R.

This shows, as in [C, p. 9], with the same constant K as in (37),

(39) sup
S∈T

sup
f∈Lp(µ)
‖f‖p,µ≤1

µ{sup
n≥1

|SS
n (f)| > K} ≤ 1

8
.

By means of the evaluation (2.8) in [SW], we can now easily conclude to (34), by
mimicking the proof of Theorem 3.1 in [SW].
In case of infinite products, we choose

f ∈ 1⊥ν , ‖f‖2,ν = 1, f ∈ Lp(ν) ,

and we observe that ‖(ST
n − ST

m)(f)‖2,µ = ‖an − am‖2, which easily leads to the
property for A by (34). �

Proof of Theorem 8: By means of the Halmos-Kakutani-Rokhlin’s lemma for
any ε > 0, any N ≥ 0, there exists a measurable set A such that
A, TA, · · · , T N−1A, are pairwise disjoint and 1−ε

N ≤ µ(A) ≤ 1
N . We set f = 1A.

Let n, m be such that Nn ≤ Nm ≤ N . Then,

‖Sn(f)− Sm(f)‖2,µ = ‖
Nn
∑

k=1

(an,k − am,k)f ◦ T k +

Nm
∑

k=Nn+1

am,kf ◦ T k‖2,µ

=
[

Nn
∑

k=1

(an,k − am,k)
2 +

Nm
∑

k=Nn+1

a2m,k

]
1
2
√

µ(A)

= ‖an − am‖2
√

µ(A).

By means of Proposition 1 in [B] and Slepian lemma,

(40) E { sup
n:Nn<N

Z(an)} ≤ C,

where C is not depending on N . The conclusion is obtained by letting N tend to
infinity. �
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[W2] , Méthodes de sommation matricielles, Comptes Rendus Acad. Sci. Paris, Sér. I

315 (1992), 759–764.
[W3] ,GC sets, Stein’s elements and matrix summation methods, Prépublication IRMA
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