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Lacunary strong convergence with respect

to a sequence of modulus functions

Serpil Pehlivan1, Brian Fisher

Abstract. The definition of lacunary strong convergence is extended to a definition of
lacunary strong convergence with respect to a sequence of modulus functions in a Banach
space. We study some connections between lacunary statistical convergence and lacunary
strong convergence with respect to a sequence of modulus functions in a Banach space.
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1. Introduction

By a lacunary sequence θ = (kr) where k0 = 0, we mean an increasing sequence
of positive integers with hr = kr−kr−1 → ∞ as r → ∞. The intervals determined
by θ will be denoted by Ir = (kr−1, kr] and the ratio kr/kr−1 will be denoted
by qr . The sequence space of lacunary strongly convergent sequences Nθ was
defined by Freedman et al. [4], as follows:

Nθ = {x = (xi) : lim
r→∞

h−1r

∑

i∈Ir

|xi − l| = 0 for some l}.

Let ‖x‖θ = supr(h
−1
r

∑

i∈Ir
|xi|), whenever x ∈ Nθ. Then (Nθ, ‖.‖θ) is a BK-

space. N0θ denotes the subset of all sequences which are lacunary strongly con-

vergent to zero. (N0θ , ‖.‖θ) is also a BK-space.
There is a strong connection between Nθ and the sequence space |σ1|, which is

defined by

|σ1| = {x = (xi) : lim
n→∞

n−1
n

∑

i=1

|xi − l| = 0 for some l}.

In the special case θ = (2r), we have Nθ = |σ1|.
The well known space ĉ, the space of all almost convergent sequences was

defined by Lorentz [9]. Later [ĉ] the space of strong almost convergence was
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introduced by Maddox [10] and also independently by Freedman et al. [4]. This
sequence space was defined as follows:

[ĉ] = {x = (xi) : lim
n→∞

n−1
p+n
∑

i=p+1

|xi − l| = 0 uniformly in p, for some l}.

We denote the space of all sequences which are strongly almost convergent to zero
by [ĉ0]. In [15], the spaces [ĉ0] and [ĉ] were extended to [ĉ0(f)] and [ĉ(f)].
LetX be a Banach space. We define s(X) to be the vector space of allX-valued

sequences, l∞(X) the vector space of all bounded X-valued sequences and c(X)
the vector space of all convergent X-valued sequences. Thus x = (xi) ∈ l∞(X),
if sup ‖xi‖ < ∞, where xi ∈ X for i ∈ N . Consequently l∞(X) becomes a
Banach space with the natural coordinatewise operations and ‖x‖ = supi ‖xi‖ for
x ∈ l∞(X).

The notion of a modulus function was introduced by Nakano [13]. We recall
that a modulus f is a function from [0,∞) to [0,∞) such that (i) f(x) = 0 if
and only if x = 0, (ii) f(x + y) ≤ f(x) + f(y) for x, y ≥ 0, (iii) f is increasing
and (iv) f is continuous from the right at 0. It follows that f must be continuous
on [0,∞). Connor [2], Maddox [11], [12], Kolk [8], Pehlivan and Fisher[16] and
Ruckle [19] used a modulus function to construct sequence spaces.
Now let S be the space of sequences of modulus functions F = (fi) such that

limu→0+ supi fi(u) = 0. Throughout this paper the sequence of modulus functions
determined by F will be denoted by F = (fi) ∈ S for every i ∈ N .
The purpose of this paper is to introduce and study a concept of lacunary

strong convergence with respect to a sequence of modulus functions in a Banach
space.

2. Inclusion theorems

We now introduce the generalizations of the lacunary strongly convergent se-
quences and investigate some inclusion relations.

Definition 2.1. Let F = (fi) be a sequence of modulus functions in S. Let X
be a Banach space. We define the spaces

Nθ(X) = {x = (xi) ∈ s(X) : lim
r→∞

h−1r

∑

i∈Ir

‖xi − l‖ = 0 for some l ∈ X},

Nθ(X, F ) = {x = (xi) ∈ s(X) : lim
r→∞

h−1r

∑

i∈Ir

fi(‖xi − l‖) = 0 for some l ∈ X},

N0θ (X, F ) = {x = (xi) ∈ s(X) : lim
r→∞

h−1r

∑

i∈Ir

fi(‖xi‖) = 0}.

Nθ(X), Nθ(X, F ) and N0θ (X, F ) are linear spaces. We consider only Nθ(X, F ).

Suppose that xi → l in Nθ(X, F ), yi → l′ in Nθ(X, F ) and α, γ are in C. Then
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there exist integers Kα and Mγ such that |α| ≤ Kα and |γ| ≤ Mγ . We have

h−1r

∑

i∈Ir

fi(‖αxi + γyi − (αl + γl′)‖)

≤ Kαh−1r

∑

i∈Ir

fi(‖xi − l‖) +Mγh−1r

∑

i∈Ir

fi(‖xi − l′‖).

This implies that αx+ γy → αl+ γl′ in Nθ(X, F ). Note that if we put fi = f for
i ∈ N then Nθ(X, F ) = Nθ(X, f). We write Nθ(X, f) = Nθ(X) for f(x) = x.

Proposition 2.2 ([16]). Let f be a modulus and let 0 < δ < 1. Then for each
‖u‖ ≥ δ, we have f(‖u‖) ≤ 2f(1)δ−1‖u‖.
Proof:

f(‖u‖) ≤ f(1 + [‖u‖/δ]) ≤ f(1) + f([‖u‖/δ]) ≤ f(1)(1 + ‖u‖/δ) ≤ 2f(1)‖u‖/δ.

where [‖u‖/δ] denotes the integer part of ‖u‖/δ. �

Theorem 2.3. Let X be a Banach space and let F = (fi) be a sequence of
modulus functions in S. If x = (xi) is lacunary strongly convergent to l in X ,
then x = (xi) is lacunary strongly convergent to l in X with respect to F , i.e.
Nθ(X) ⊂ Nθ(X, F ).

Proof: Let F = (fi) be a sequence modulus functions in S and put supi fi(1) =
M . Let x ∈ Nθ(X). Then we have

Ar(X) = h−1r

∑

i∈Ir

‖xi − l‖ → 0 as r → ∞, for some l ∈ X.

Let ε > 0 and choose δ with 0 < δ < 1 such that fi(u) < ε (i ∈ N) for every u
with 0 ≤ u ≤ δ. We can write

h−1r

∑

i∈Ir

fi(‖xi − l‖) = h−1r

∑

i∈Ir
‖xi−l‖≤δ

fi(‖xi − l‖) + h−1r

∑

i∈Ir
‖xi−l‖>δ

fi(‖xi − l‖)

≤ h−1r (hrε) + h−1r 2Mδ−1hrAr(X),

by Proposition 2.2. Letting r → ∞, it follows that x ∈ Nθ(X, F ). �

Theorem 2.4. Let X be a Banach space and F = (fi) be a sequence of modulus
functions. If limu→∞ infi fi(u)/u > 0, then Nθ(X, F ) = Nθ(X).

Proof: If limu→∞ infi fi(u)/u > 0 then there exists a number c > 0 such that
fi(u) > cu for u > 0 and i ∈ N . We have x ∈ Nθ(X, F ). Clearly

h−1r

∑

i∈Ir

fi(‖xi − l‖) ≥ h−1r

∑

i∈Ir

c‖xi − l‖ = ch−1r

∑

i∈Ir

‖xi − l‖,
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therefore x ∈ Nθ(X). By using Theorem 2.3 the proof is complete. �

We now give an example to show that Nθ(X, F ) 6= Nθ(X) in the case when

limu→∞ infi fi(u)/u = 0. Consider the sequence fi(x) = x1/(i+1) (i ≥ 1, x > 0)
of modulus functions. Now define xi = hrv if i = kr for some r ≥ 1 and xi = θ
otherwise, where v ∈ X and ‖v‖ = 1. This yields

h−1r

∑

i∈Ir

fi(‖xi‖) = h−1r (fkr
(hr‖v‖)) = h−1r h

1/(1+kr)
r → 0 as r → ∞

and so x ∈ Nθ(X, F ). But

h−1r

∑

i∈Ir

‖xi‖ = h−1r hr‖v‖ → 1 as r → ∞

and so x /∈ Nθ(X).

Proposition 2.5. If fi = f for i ∈ N , then [ĉ(X, f)] ⊂ Nθ(X, f) for every
lacunary sequence θ, where
[ĉ(X, f)] = {x = (xi) ∈ s(X) : limn→∞ n−1∑n

i=1 f(‖xi+p − l‖) = 0, for some
l ∈ X uniformly in p}.

To show that N0θ (X, f) strictly contains

[ĉ0(X, f)] = {x = (xi) ∈ s(X) : lim
n→∞

n−1
n

∑

i=1

f(‖xi+p‖) = 0 uniformly in p},

we proceed as in [4; p. 513]. We define x = (xi) by xi = v if kr−1 < i ≤
kr−1 + [

√
hr ] for some r and xi = θ otherwise, where v ∈ X and ‖v‖ = 1. It

follows that x /∈ [ĉ0(X, f)]. However x ∈ N0θ (X, f) since

h−1r

∑

i∈Ir

f(‖xi‖) = h−1r [
√

hr ]f(1)→ 0 as r → ∞.

If fi = f for i ∈ N we can show as in [4] that |σ1(X, f)| = Nθ(X, f) if and
only if 1 < lim infr qr ≤ lim supr qr < ∞, where |σ1(X, f)| = {x = (xi) ∈ s(X) :
limn→∞ n−1∑n

i=1 f(‖xi − l‖) = 0 for some l ∈ X}.
Proposition 2.6. LetX be a Banach space. Let θ = (kr) be a lacunary sequence
with lim infr qr > 1 then for any modulus f , |σ1(X, f)| ⊂ Nθ(X, f).

Proof: It is enough to show that |σ1(X, f)|0 ⊂ N0θ (X, f). Suppose lim infr qr >
1. There exists δ > 0 such that qr = (kr/kr−1) ≥ 1+δ for sufficiently large r. We
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have, for sufficiently large r, that (kr/hr) ≤ (1 + δ)/δ and (hr/kr) ≥ δ/(1 + δ).
Now write

k−1r

kr
∑

i=1

f(‖xi‖) ≥ k−1r

∑

i∈Ir

f(‖xi‖) = (hr/kr)h
−1
r

∑

i∈Ir

f(‖xi‖)

≥ (δ/(1 + δ))h−1r

∑

i∈Ir

f(‖xi‖),

from which we deduce that |σ1(X, f)|0 ⊂ N0θ (X, f) for any modulus f . �

Proposition 2.7. LetX be a Banach space. Let θ = (kr) be a lacunary sequence
with lim supr qr < ∞ then for any modulus f , Nθ(X, f) ⊂ |σ1(X, f)|.
Proof: Let x ∈ N0θ (X, f) and ε > 0. There exists j0 such that for every j ≥ j0

Hj = h−1j

∑

i∈Ij

f(‖xi‖) < ε.

We can also find M > 0 such that Hj ≤ M for all j. If lim supr qr < ∞ then
there exists B > 0 such that qr < B for every r. Now let n be any integer with
kr−1 < n ≤ kr. Then

n−1
n

∑

i=1

f(‖xi‖) ≤ k−1r−1

kr
∑

i=1

f(‖xi‖) = k−1r−1

{

∑

i∈I1

f(‖xi‖) + . . .+
∑

i∈Ir

f(‖xi‖)
}

= k−1r−1

{

j0
∑

j=1

∑

i∈Ij

f(‖xi‖) +
r

∑

j=j0+1

∑

i∈Ij

f(‖xi‖)
}

≤ k−1r−1

j0
∑

j=1

∑

i∈Ij

f(‖xi‖) + ε(kr − kj0)k
−1
r−1

= k−1r−1{h1H1 + h2H2 + . . .+ hj0Hj0}+ ε(kr − kj0)k
−1
r−1

≤ k−1r−1( sup
1≤i≤j0

Hi)kj0 + ε(kr − kj0)k
−1
r−1 < Mk−1r−1kj0 + εB

which yields that x ∈ |σ1(X, f)|0. �

The next result follows from Proposition 2.6 and 2.7.

Theorem 2.8. Let θ = (kr) be a lacunary sequence with 1 < lim infr qr ≤
lim supr qr < ∞. Then |σ1(X, f)| = Nθ(X, f). In particular we have N2r (X, f) =
|σ1(X, f)|.
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3. Some results on X-lacunary statistical convergence

We now introduce natural relationship between lacunary strong convergence
with respect to a sequence of modulus functions in Banach space and lacunary
statistical convergence in a Banach space. In [3], Fast introduced the idea of
statistical convergence, which is closely related to the concept of natural density
or asymptotic density of subsets of the positive integers N . These ideas were later
studied in [1], [5], [17] and [18]. If K is a subset of the positive integers N , then
Kn denotes the set {k ∈ K : k ≤ n} and |Kn| denotes cardinality of Kn. The
natural density of K is given by δ(K) = limn→∞ n−1|Kn|, see [14]. A sequence
x = (xi) is statistically convergent to l if for every ε > 0,

lim
n→∞

n−1|K(ε)| = 0,

where K(ε) = {i ∈ N : |xi − l| ≥ ε} and |K(ε)| denotes cardinality of K(ε). The
set of all statistically convergent sequences is denoted by St.
Recently Fridy and Orhan [6], [7] introduced the following definition of lacunary

statistical convergence.

Definition 3.1. Let θ be a lacunary sequence. Then a sequence x = (xi) is said
to be lacunary statistically convergent to a number l if for every ε > 0,

lim
r→∞

h−1r |Kθ(ε)| = 0,

where Kθ(ε) = {i ∈ Ir : |xi − l| ≥ ε}. The set of all lacunary statistically
convergent sequences is denoted by Stθ.

Some results on Stθ-convergence and St-convergence were given in [7]. It was
shown there that St = Stθ if and only if 1 < limr inf qr ≤ limr sup qr < ∞.
Definition 3.2. Let θ be a lacunary sequence. Then a sequence x = (xi) ∈ s(X)
is said to be X-lacunary statistically convergent to an l ∈ X if for every ε > 0,

lim
r→∞

h−1r |{i ∈ Ir : ‖xi − l‖ ≥ ε}| = 0.

The set of all such sequences x = (xi) is denoted by Stθ(X).

In the next section we establish inclusion relations between Stθ(X) and
Nθ(X, F ).

Theorem 3.3. Let F = (fi) be a sequence of modulus functions in S. Let X be
a Banach space. Then Nθ(X, F ) ⊂ Stθ(X) if and only if infi fi(u) > 0, (u > 0).

Proof: If infi fi(u) > 0 then there exists a number α > 0 such that fi(u) ≥ α for
u > 0 and i ∈ N . Let x ∈ Nθ(X, F ), ε > 0 and Kθ(X, ε) = {i ∈ Ir : ‖xi− l‖ ≥ ε}
then

h−1r

∑

i∈Ir

fi(‖xi − l‖) ≥ h−1r

∑

i∈Kθ(X,ε)

fi(‖xi − l‖) ≥ αh−1r |Kθ(X, ε)|
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and it follows that x ∈ Stθ(X).
Conversely we can select subsequence krj of the lacunary sequence and choose

a number z ≥ ε > 0 such that fi(z) = 0 for i ∈ Irj . Now define a sequence
x = (xi) by putting xi = zv if i ∈ Irj for some j = 1, 2, . . . and xi = θ otherwise,
where v ∈ X and ‖v‖ = 1. Then we have x ∈ Nθ(X, F ) but x /∈ Stθ.

Theorem 3.4. Let F = (fi) be a sequence of modulus functions in S. Let X be
a Banach space. Then Stθ(X) ⊂ Nθ(X, F ) if and only if supu supi fi(u) < ∞.
Proof: We suppose T (u) = supi fi(u) and T = supu T (u). Let x ∈ Stθ(X).
Since fi(u) ≤ T for i ∈ N and u > 0, we have

h−1r

∑

i∈Ir

fi(‖xi − l‖) = h−1r

{

∑

i∈Ir
‖xi−l‖≥ε

fi(‖xi − l‖) +
∑

i∈Ir
‖xi−l‖<ε

fi(‖xi − l‖)
}

≤ h−1r

{

T |{i ∈ Ir : ‖xi − l‖ ≥ ε}|+ hrT (ε)
}

.

Taking the limit as ε → 0, it follows that x ∈ Nθ(X, F ), proving the sufficiency.
Conversely, suppose that supu supi fi(u) = ∞. Then we have 0 < u1 < u2 <

. . . < ur−1 < ur < . . . such that fkr
(ur) ≥ hr for r ≥ 1. We define the sequence

x = (xi) by xi = urv if i = kr for some r = 1, 2, . . . and xi = θ otherwise, where
v ∈ X and ‖v‖ = 1. We have x ∈ Stθ(X) but x /∈ Nθ(X, F ). �

Corollary 3.5. Let F = (fi) be a sequence of modulus functions in S and let
X be a Banach space. Then Nθ(X, F ) = Stθ(X) if and only if infi fi > 0 and
supu supi fi(u) < ∞. In particular, if fi = f is a modulus function, we have
Nθ(X, f) = Stθ(X) if and only if f is bounded.
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