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On open light mappings

W ladys law Makuchowski

Abstract. Whyburn has proved that each open mapping defined on arc (a simple closed
curve) is light. Charatonik and Omiljanowski have proved that each open mapping
defined on a local dendrite is light. Theorem 3.8 is an extension of these results.
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Classification: 54C10, 54F50

1. Introduction

In [2], J.J. Charatonik and K. Omiljanowski proved the following results.

Theorem 1.1 ([2, Theorem 5, p. 214]). Let a metric spaceX be locally dendritic,
and let a space Y have no isolated points. Then each continuous open surjection
f : X → Y is light.

Thus each nonconstant open mapping defined on a local dendrite is light ([2,
Corollary 6, p. 216]).

Theorem 1.2 ([2, Theorem 8, p. 216]). Let a space X satisfy the condition: each
nondegenerate closed connected subset of X has the nonempty interior. If a space
Y has no isolated points, then each open mapping from X onto Y is light.

Hence if each nondegenerate subcontinuum of a metric continuum X has the
nonempty interior, then each nonconstant open mapping on X is light ([2, Corol-
lary 9, p. 217]).
J.J. Charatonik and K. Omiljanowski in [2] also asked:

Problem 1.3 ([2, Problem 3, p. 214]). What topological spaces X and Y have
the property that each open mapping from X onto Y is light?

Problem 1.4 ([2, Problem 11, p. 217]). Characterize all metric continua X such
that each open mapping on X is light.

The above problems were the inspiration to the present paper. However, being
not completely solved, they remain still open.
All mappings considered in this paper are continuous and all spaces are assumed

to be metric. A continuummeans a compact connected space. A locally connected
continuum containing no simple closed curve is called a dendrite. If each point of
a space has a neighborhood being a dendrite, then the space is said to be locally
dendritic. If, moreover, the space is a continuum, then it is called a local dendrite.
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Let N stand for the set of all positive integers. Given two point u and w in
a Euclidean space, we denote by uw the straight line segment with the end points
u and w.
If the Euclidean plane R

2 is equipped with the Cartesian coordinate system,
then put v = (0, 0), e0 = (0, 1) and en = ((1/n), 1) for n ∈ N. The set FH =⋃
{ven : n ∈ N ∪ {0}} is called the harmonic fan. Let {ρn : n ∈ N} be the set of
all rationals in the open unit interval [0, 1] \ {0, 1}. For each n ∈ N take xn ∈ ven

such that d(v, xn) = ρn · d(v, en), where d denotes the Euclidean metric in the
plane; put x0 = e0 and define FHS =

⋃
{vxn : n ∈ {0} ∪ N} ⊆ FH . We call

FHS the harmonic shredded fan (see [1, p. 31]). Finally, we define the locally
connected fan Fω putting Fω =

⋃
{vyn : n ∈ N} ⊆ FH , where yn ∈ ven and

d(v, yn) = (1/n) · d(v, en), for n ∈ N.
Recall that a surjective mapping f : X → Y is:

– open if f maps every set open in X onto a set open in Y ;
– confluent if for every subcontinuum Q of Y each component of the inverse
image f−1(Q) is mapped by f onto Q;
– light if for every point y ∈ Y each component of the inverse image f−1(y)
is a singleton (equivalently: f−1(y) is zero-dimensional, if X is compact).

It is known that each open mapping of a compact space is confluent.

2. The class L. Definition and properties

Let L denote the class of all such continua X that each nonconstant open
mapping on X is light. It is known that an arc and a simple closed curve belongs
to L ([6, 1.2, 1.3, p. 184]). Every local dendrite is in the class L ([2, Corollary 6,
p. 216]). Also some nonlocally connected continua are in the class L, e.g. the
harmonic shredded fan ([1, Proposition 7.6, p. 32]). Continua X such that each
nondegenerate subcontinuum of X has the nonempty interior belong to L ([2,
Corollary 9, Remark 10, p. 217]).

Example 2.1. The continuum X which is the union of the locally connected fan
Fω and the harmonic fan FH as in Figure 1 is in the class L.

Proof: Suppose on the contrary that X does not belong to L, i.e. there are
a space Y , a point y ∈ Y , and an open mapping f : X → Y such that the inverse
image f−1(y) contains a nondegenerate component C. Since each subcontinuum
of X with the empty interior is contained in the segment rp, then C ⊆ rp. We
prove that f−1(y)∩rpi 6= ∅ for infinitely many indices i. Suppose on the contrary
that there is a natural number M such that for i ≥ M the set f−1(y)∩ (rpi \ {r})
is empty. Take an open set U in X such that U ∩ rp ⊆ C and that U = (ab \
{a, b}) ∪

⋃
{Ai : i ≥ M}, where ab ⊆ rp, Ai = aibi \ {ai, bi}, aibi ⊆ rpi \ {r}.

Then f(U) =
⋃
{f(Ai) : i ≥ M} ∪ {y}. The sets f(Ai) are open and the family

{f(Ai) : i ≥ M} forms a null sequence converging to {y}. Hence f(U) is not
open.
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Take xi ∈ f−1(y) ∩ (rpi \ {r}). The continuum X is locally connected at the
point xi, and y = f(xi), thus Y is locally connected at y ([1, Proposition 3.11,
p. 14]) and ordy Y ≤ 2 ([6, 7.31, p. 147]). Consider the family S of all such
segments rpi that contain the points xi with f(xi) = y. Since rpi is a free
arc in X , then f(rpi) is a free arc in Y . Let rpi and rpj belong to S. The
common part f(rpi)∩f(rpj) contains the points y and f(r). It is easy to see that
f(rpi) = f(rpj). This equality holds for every two elements of the family S. By
continuity of f , we have

(1) f(rpi) = f(rp) with f(pi) = f(p) for sufficiently large indices i.

Since pi is an end point, f(pi) is an end point too; hence

(2) f(p) is an end point.

Observe that ordq X = ω. The components of X \ {q} are open and form a null
sequence, and the images of these components under f form a null sequence too,
whence it follows that ordf(q) Y = ω. Each point of the set X \ (rp ∪ {q}) is of

order 1 or 2 in X . The points of f(rp) are of a finite order, by (1) and ([6, 7.31,
p. 147]). Therefore we have

(3) f−1(f(q)) = {q}.

Take such a point z ∈ rp ∪
⋃
{rpi : i ∈ N} that f(z) 6= f(p), and take in Y the

arc L from f(q) to f(z). Thus L does not contain the point f(p), by (2); hence

(4) p /∈ f−1(L).

Let K be the component of f−1(L) that contains the point z. By confluence of
f , we have f(K) = L, which contradicts (3) and (4). The proof is complete. �

Now we prove that the class L is not closed under any of the following oper-
ations: the union of two elements (even if their intersection is a singleton), the
product, the inverse limit, and taking a closed subspace.

Example 2.2. There exists a continuum Y which does not belong to L, and
which is the one-point union of two continua belonging to L.

Proof: The continuum Y is the one-point union of the locally connected fan Fω

and the continuum X defined in Example 2.1 (see Figure 2). Define the mapping
f : Y → f(Y ) by f | (Y \ FH ) = id and f | FH is as in Example 7.1 of [1,
p. 29]. Let s : f(Y ) → f(Y ) be the symmetry with respect to the line ℓ (see
Figure 2). Let Q = pq∪

⋃
{qqi : i ∈ N}. Define g : f(Y )→ f(Y ) by g | Q = s and

g | (f(Y ) \ Q) = id. The space g(f(Y )) is homeomorphic to Fω . The mapping
h = gf , being the composition of f and g, is open and nonlight. �
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Observation 2.3. If nondegenerate continua X and Y belong to L, then their
product X × Y does not belong to L.

In fact, the projection from X × Y onto X (or Y ) is open and nonlight.

Recall that an n-od is the union of n arcs, any two of which intersect at their
common end point only.

Example 2.4. There exists an inverse sequence (Xn, fn) such that each Xn is
an n-od (and thus belongs to L), each fn is open and light and lim inv (Xn, fn) is
not in L.

Proof: For n ≥ 3, letXn be contained in FH andXn =
⋃
{vei : i ∈ {1, 2, . . . , n}}.

Thus Xn ⊆ Xn+1. Define a retraction fn : Xn+1 → Xn as fn | Xn = id and
fn | ven+1 as a linear homeomorphism from ven+1 onto ven. Then lim inv (Xn, fn)
= FH is not in L because there exists a nonlight open mapping from FH onto an
arc ([1, Example 7.1, p. 29]). �

Example 2.5. There exists a hereditarily locally connected continuum X such
that X belongs to L and X contains a subcontinuum Z which does not belong
to L.

Proof: In the rectangular coordinates in the plane put for each n ∈ {0} ∪ N

and for k ∈ {0, 1, 2, . . . , 2n} pn
k =

(
(2k + 1)/2n+1, 1/2n+1

)
, where k < 2n and

qn
k = (k/2n, 0).

Define

Z = q00q
0
1 ∪

⋃{⋃{
pn
kqn

k ∪ pn
kqn

k+1 : k ∈ {0, 1, . . . , 2n − 1}
}
: n ∈ {0} ∪ N

}

.

The projection (x, y) 7→ y of Z onto the closed interval [0, 1/2] is an open
nonlight mapping ([2, Example 7, p. 216]). Let rn

k = (k/2n,−1/2n), where
k ∈ {1, 2, . . . , 2n − 1}, and define

X = Z ∪
⋃{⋃

{qn
k rn

k : k ∈ {1, 2, . . . , 2n − 1}} : n ∈ N

}

(see Figure 3).

The continuum X belongs to L because it satisfies the assumptions of Theorem 3.8
below. �

Question 2.6. Does there exist a non-arcwise connected continuum which is in
the class L?

Let M be an arbitrary class of mappings that contains the class of homeomor-
phisms. The following inclusions among the classes of mappings on continua are
known (see e.g. [4, Table II, p. 28]).
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homeomorphisms −→ local homeomorphisms −→ open mappings

↓ ↓

hereditarily
atomic mappings −→ monotone −→ monotone −→ MO-mappings

mappings mappings

We study the classes M for which the implication holds:

(∗) if f ∈ M and X ∈ L, then f(X) ∈ L.

Proposition 2.7. The implication (∗) holds if M is the class of open mappings.

Proof: Suppose on the contrary that f(X) /∈ L. Then there are a continuum
K, a nonlight open mapping g : f(X)→ K and a point x ∈ K such that g−1(x)
contains a nondegenerate component C. Thus C is a subcontinuum of f(X). By
confluence of f , each component of the set f−1(C) is mapped under f onto C.
Hence the components of f−1(C) are not one-point sets.
On the other hand, the mapping h = gf , being the composition of f and g, is

open. Since X belongs to L, we infer that h is light. But h−1(x) = f−1(g−1(x))
contains a nondegenerate component, a contradiction. �

Proposition 2.8. If M is the class of hereditarily monotone mappings, then

implication (∗) is not true.

Given continua X and Z as in Example 2.5. Define mapping f : X → Z
by f | Z = id and f(rn

k qn
k ) = {qn

k }. We see that the mapping f is hereditarily
monotone and f(X) = Z does not belong to L.

Proposition 2.9. The implication (∗) holds if M is the class of atomic mappings
and the continuum X is arcwise connected ([4, 6.3, p. 51]).

If Question 2.6 has a positive answer, we have the next one.

Question 2.10. Is the implication (∗) true if the continuum X is not arcwise
connected and M is the class of atomic maps?

3. Local connectedness and the class L

We are going to use the following theorem.

Theorem 3.1 (Whyburn, [6, 7.1, p. 148]). Let X and Y be compact and let
f : X → Y be open. If X is locally connected, B is any closed set in Y , and R
is any component of Y \ B, then f−1(R) has just a finite number of components
and each one of these components maps onto all of R under f .
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Lemma 3.2. Let X be a locally connected continuum and let f : X → Y
be a nonconstant open surjection. If A is a subcontinuum of X satisfying the
following conditions:
(i) f(A) = {p} (the image of A is one-point set), and
(ii) X \ A is not connected and has infinitely many components,

then Y \ {p} is not connected and has infinitely many components.

Proof: Observe that each component of X \ A is an open set in X ([6, 14.1,
p. 20]), thus no one of them maps under f onto the point p. Hence the number of
components of X \ f−1(p) is not lower than the number of components of X \A.
Suppose on the contrary that Y \ {p} is connected. Putting B = {p} in Theo-

rem 3.1 we see that the set f−1(Y \ {p}) has just a finite number of components,
but f−1(Y \{p}) = X \f−1(p) has infinitely many components. Therefore Y \{p}
is not connected.
Let R be a component of Y \ {p}. We have f−1(R) ⊆ X \ f−1(p) and each

component of f−1(R) is contained in some component of X \ f−1(p). The set
f−1(R) has only a finite number of components and the number of components of
X \ f−1(p) is infinite. Therefore the number of components of Y \ {p} is infinite.

�

Recall that the number α(p) (finite or infinite) of components of the setM \{p}
for any point p ∈ M in a connected set M is called the component number of p
in M .

Corollary 3.3. Let X be a locally connected continuum, let p ∈ X and the com-
ponent number α(p) be infinite. If f : X → Y is a nonconstant open surjection,
then α(f(p)) is infinite.
Let X be a local dendrite and p ∈ X . Then the equality ordp X = ω means

that α(p) is infinite ([3, § 51, VII, Theorem 4, p. 303]). Thus we have
Corollary 3.4. Let X be a local dendrite, p ∈ X, and ordp X = ω. If f : X → Y
is nonconstant open surjection, then ordf(p) Y = ω.

Remarks 3.5. (1) The assumption of Corollary 3.3 that the continuum X is
locally connected, is necessary. There is a (nonlight) open mapping g from the
harmonic fan FH onto a simple triod. For the vertex v of FH , we have α(v) is
infinite and α(g(v)) = 3 (see [1, Example 7.2, p. 30]).

(2) The assumption of Corollary 3.4 that X is a local dendrite is essential.
K. Menger ([5, p. 179]) gave an example of a curve that is the union of two arcs
with a common end point p being of order ω in the curve. Let K be the union of
this curve and of four edges of the square – see Figure 4. Let f be the orthogonal
projection from K onto the diagonal pq of the square. The map f is open and
ordp pq = 1.
Theorem 3.6. Let X be a locally connected continuum satisfying the condition:

for every nondegenerate subcontinuum A with the empty interior in X ,
the set X \ A has infinitely many components.
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Let Y be a space such that for each y ∈ Y the component number α(y) is finite.
If f : X → Y is nonconstant open surjection, then f is light.

Proof: Suppose on the contrary that f is nonlight. Then there is a point y ∈ Y
such that the inverse image f−1(y) contains a nondegenerate component A. Since
f is open, A has the empty interior. By the assumption, X \ A has infinitely
many components. Further f(A) = {y}, and α(y) is infinite by Lemma 3.2. This
is a contradiction. �

Example 3.7. There exists a nonlight open mapping defined on a locally con-
nected continuum W such that for every nondegenerate subcontinuum A ⊆ W
with the empty interior the set W \ A has infinitely many components.

Proof: The continuum W is contained in the product of the locally connected
fan Fω and the straight line segment I. Namely, W is the union of countably
many copies of the continuum Z defined in Example 2.5. In the first leaf of the
book Fω × I, there is the continuum Z situated in such a way, that the segment
q00q
0
1 coincides with the segment {v} × I, where v denotes the top of the fan Fω .

In the n-th leaf, there are 2n−1 copies of the continuum Z located so that the
union of the segments with the empty interior covers {v} × I. In Figure 5, we
have the first leaf of the book and the second one. If A is the subcontinuum ofW
and A has the empty interior, then A ⊆ {v} × I, and W \ A has infinitely many
components.
The projection f : W → Fω is open and nonlight, because f({v} × I) = {v}.

But the component number α(v) is infinite. �

We use the symbol bdA to denote the boundary of a set A. Recall that a set
S is said to be a boundary set if its complement is dense.

Theorem 3.8. Let X be a locally connected continuum satisfying the condition:

if A is a subcontinuum of X with the empty interior, then X \ A has in-
finitely many components, and the boundary of each of these components,

except for a finite number of them, is a boundary set in A.

Then X belong to the class L.

Proof: Suppose that there are a space Y and a nonconstant nonlight open
mapping f : X → Y . Hence there are a point p ∈ Y and a subcontinuum A ⊆ X
such that f(A) = {p}. Since f is open, A has the empty interior. By Lemma 3.2,
the set Y \ {p} has infinitely many components. Let B be such a component
of Y \ {p} that the boundary of each component of f−1(B) is a boundary set
in A. By Theorem 3.1, the number of these components is finite. Denote them by
C1, . . . , Ck. The union of the boundaries of these components, i.e.

⋃
{bdCi : i ∈

{1, . . . , k}}, is a closed, boundary set in A. Therefore there is an open set U in X
such that U ∩A 6= ∅ and U ∩

⋃
{Ci : i ∈ {1, . . . , k}} = ∅. Take a point x ∈ U ∩A.

Then U is a neighborhood of x. Next, f(x) = p, but f(U) is not a neighborhood
of p in Y because f(U) ∩ B = ∅. This contradicts the openness of f . �
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Let us observe that for the continua, Theorems 1.1 and 1.2 are consequences
of Theorem 3.8. Indeed, if a continuum X is locally dendritic or satisfies the
condition of Theorem 1.2, then the assumptions of Theorem 3.8 are satisfied.

The author cannot give any necessary condition (and if a continuum X is not
locally connected – neither necessary nor a sufficient one) that a continuum X
belongs to the class L.
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