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The criteria of strongly exposed points in Orlicz spaces

Tingfu Wang, Donghai Ji, Zhongrui Shi

Abstract. In Orlicz spaces, the necessary and sufficient conditions of strongly exposed
points are given.

Keywords: Orlicz spaces, strongly exposed points

Classification: 46E30

Let X be a Banach space, S(X), B(X) denote the unit sphere and unit ball
of X , respectively. X∗ denotes the dual of X . x ∈ S(X) is called an exposed
point of B(X) provided there exists f ∈ S(X∗), such that for all y ∈ B(X) \ {x}
f(y) < f(x) = 1. x ∈ S(X) is called a strongly exposed point of B(X) provided
there exists f ∈ S(X∗) such that for xn ∈ B(X), f(xn) → f(x) = 1 implies
‖xn − x‖ → 0. Obviously, a strongly exposed point is an exposed point.
The exposed points in Orlicz spaces have been discussed (see [1]). In this paper,

we will give the criteria of strongly exposed points in Orlicz spaces.
For the sake of convenience, we still present the full proofs. The symbols

used in this paper have the same meanings as [2]. M(u), N(v), denote a pair
of complemented N -functions. p(u), q(v), denote their right-hand derivatives
respectively. “M ∈ ∆2” (“M ∈ ∇2”) means that M(u) satisfies the ∆2-condition
(∇2-condition) for large u. For the set of

∑

-measurable functions over a finite
nonatom measure space (G,

∑

, µ).
{

x(t) : ∃ c > 0 such that RM

(x

c

)

=

∫

G
M

(

x(t)

c

)

dt <∞

}

endowed with Luxemburg norm ‖x‖(M) = inf{c > 0 : RM (
x
c ) ≤ 1} and Orlicz

norm ‖x‖M = sup{
∫

G x(t)y(t) dt : RN (y(t)) ≤ 1} = inf{
1
k (1 +RM (kx)) : k > 0},

we denote them as L(M), LM , respectively, and call them Orlicz spaces. In

addition, for an element x ∈ LM (or L(M)), we denote

KM (x) =

{

k > 0 : ‖x‖M =
1

k
(1 +RM (kx))

}

,

ξM (x) = lim
n→∞

‖x− xn‖M = inf
{

c > 0 : RM

(x

c

)

<∞
}

= lim
n→∞

‖x− xn‖(M) ,

where xn(t) = x(t) if |x(t)| ≤ n and xn(t) = 0 if |x(t)| > n.
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Theorem 1. x ∈ S(L(M)) is a strongly exposed point of B(L(M)) if and only if

(i) M ∈ ∆2;
(ii) µ{t ∈ G : x(t) ∈ R \ SM} = 0;
(iii) denote {ai}, {bj} as the sets of all those left extreme points and right ex-

treme points of affine segments of M(u), respectively, satisfying p−(ai) =
p(ai), p−(bj) = p(bj), then
µ{t ∈ G : |x(t)| ∈ {bj}} = 0, or
µ{t ∈ G : |x(t)| ∈ {ai}} = 0, and there exists τ > 0 such that
∫

G N((1 + τ)p−(x(t)) dt <∞.

Proof: Necessity. Since a strongly exposed point is a strongly extreme point,
by Theorem in [2], (i) and (ii) are trivial. If (iii) were not true, we only need to
discuss the following two cases:

(I) there exist affine segments ofM(u), [a, c] and [d, b], such that p−(a) = p(a),
p−(b) = p(b) and µGa = µ{t ∈ G : |x(t)| = a} > 0, µGb = µ{t ∈ G : |x(t)| = b} >
0, without loss of generality, we assume x(t) ≥ 0 for all t ∈ G. Take E ⊂ Ga,
F ⊂ Gb such that

M(a)µE +M(b)µF =M

(

1

2
(a+ c)

)

µE +M

(

1

2
(d+ b)

)

µF.

Put
x′(t) = x(t)χG\E\F +

1

2
(a+ c)χE +

1

2
(d+ b)χF ,

then x 6= x′, RM (x
′) = RM (x) = 1, so ‖x

′(t)‖(M) = 1. Take a support functional

y(t) of x(t), and k ∈ KN (y), then p−(x(t)) ≤ ky(t) ≤ p(x(t)). Noticing

p−(x(t)) = p−(x
′(t)) ≤ ky(t) ≤ p(x(t)) = p(x′(t)) whenever t ∈ G \ E \ F ;

ky(t) = p(a) = p(
1

2
(a+ c)) = p(x′(t)) whenever t ∈ E;

ky(t) = p(b) = p(
1

2
(d+ b)) = p(x′(t)) whenever t ∈ F ;

we have
∫

G x′(t)y(t) dt =
∫

G x(t)y(t) dt = 1, hence x(t) is not a strongly exposed
point of B(L(M)).

(II) there exists an affine segment [a, b] satisfying p−(b) = p(b), µGb = µ{t ∈
G : x(t) = b} > 0, and for any ε > 0,

∫

G N((1 + ε)p−(x(t))) dt =∞.
Take y ∈ S(LN ) satisfying

∫

G x(t)y(t) dt = 1 and take k ∈ KN (y), then

p−(x(t)) ≤ ky(t) ≤ p(x(t)). Clearly, for any ε > 0,
∫

G N((1 + ε)ky(t)) dt = ∞,
so ξN (ky) = 1, hence ‖(ky(t))χG\Gn

‖N → 1 (n → ∞), where Gn = {t ∈ G :

ky(t) ≤ n}. By Hahn-Banach theorem, there exist {um}∞n=1 ⊂ S(L(M)) such

that un(t) = un(t)χG\Gn
, and

∫

G\Gn
un(t)ky(t) dt → 1 (n→∞). Obviously, for

n large enough, Gb ⊂ Gn, c = (M(b)−M(a))µGb < 1. Put

xn(t) = x(t)χGn\Gb
+ aχGb

+ cun(t),
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then RM (xn) ≤ RM (xχGn\Gb
)+M(a)µGb+cRM (un) = RM (xχGn

) ≤ RM (x) =

1, hence we have ‖xn‖(M) ≤ 1, and ‖xn− x‖(M) ≥ (b− a)‖χGb
‖(M) > 0. On the

other hand,
∫

G
xn(t)ky(t) dt =

∫

Gn\Gb

x(t)ky(t) dt+ ap(b)µGb + c

∫

G\Gn

un(t)ky(t) dt

=

∫

Gn\Gb

(M(x(t)) +N(ky(t))) dt

+ (M(a) +N(p(b)))µGb + (M(b)−M(a))µGb(1 + o(
1

n
))

=

∫

Gn

M(x(t)) dt+

∫

Gn

(ky(t)) dt+ o(
1

n
) −→ RM (x) +RN (ky)

= 1 +RN (ky) = k

i.e.
∫

G xn(t)y(t) dt → 1. So x(t) is not a strongly exposed point of B(L(M)).

Combining (I), (II), we obtain that (iii) is also necessary.

Sufficiency. Still assume x(t) ≥ 0 for all t ∈ G, only discuss the following two
cases.

(I) µ{t ∈ G : x(t) ∈ {bj}} = 0.

Denote Ei = {t ∈ G : x(t) = ai}, denote the set of all discontinuous points
of p(u) as {rn} (either rn is an extreme point of affine segments or not), denote
en = {t ∈ G : x(t) = rn}. For every n, take εn > 0 such that p−(rn) + εn < p(rn),
and put G0 = G \ (

S
iEi) \

S
nen),

W (t) = p−(x(t))χG\
S

nen
+

∑

n

(p−(rn) + εn)χen , y(t) =
W (t)

‖W (t)‖N
.

From

1 ≥

∫

G
x(t)y(t) dt =

1

‖W (t)‖N

(

∫

G\
S

nen

x(t)p−(x(t)) dt +
∑

n

rn(p−(rn) + εn)µen

)

=
1

‖W (t)‖N

(

∫

G\
S

nen

(M(x(t)) +N(p−(x(t)))) dt

+
∑

n

(M(rn) +N(p−(rn) + εn))µen

)

=
1

‖W (t)‖N

(

∫

G
M(x(t)) dt +

∫

G
N(W (t)) dt

)

≥
1 +RN (W (t))

‖W (t)‖N
≥ ‖y(t)‖N = 1

we get
∫

G x(t)y(t) dt = 1, k = ‖W (t)‖N ∈ KN (y(t)). For {xn(t)}∞n=1 ⊂ S(L(M)),
∫

G xn(t)y(t) dt→ 1, in order to prove ‖xn − x‖(M) → 0, by M ∈ ∆2 (see [2]), we

only need to prove xn − x
µ
−→ 0. Noticing

0←− 1+RN (ky)−

∫

G
xn(t)ky(t) dt =

∫

G
(M(xn(t)) +N(ky(t))− xn(t)ky(t)) dt,
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for any F ⊂ G, we have
∫

F
(M(xn(t)) +N(ky(t))− xn(t)ky(t)) dt −→ 0 (n→∞).

Now we prove xn − x
µ
−→ 0 in three steps:

(1) xn(t)− x(t)
µ
−→ 0 on G0.

Otherwise, there exist ε > 0, σ > 0, such that µ{t ∈ G0 : |xn(t)− x(t)| > ε} > σ.
Since

1 ≥ RM (xn) ≥

∫

G(|xn|≥D)
M(xn(t)) dt ≥M(D)µG(|xn(t)| ≥ D),

we can take D large enough such that µ{t ∈ G : |xn(t) ≥ D} < σ
4 , µ{t ∈ G :

|x(t)| ≥ D
4 } < σ

4 . Since for t ∈ G0, x(t) 6= rn, x(t) 6= ai, there exist open segments

δn, δ
′
i such that rn ∈ δn, ai ∈ δ′i, µ{t ∈ G0 : x(t) ∈ (

S
nδn) ∪ (

S
iδ
′
i)} < σ

4 . Denote

Gn =
{

t ∈ G0 : |xn(t)− x(t)| ≥ ε, 0 ≤ x(t), xn(t) ≤ D, x(t) /∈
(S

nδn

)

∪
(S

iδ
′
i

)}

then µGn ≥
σ
4 . Notice that the function M(u) + N(v) − uv is continuous and

positive on the closed bounded set {(u, v) : |u − v| ≥ ε, 0 ≤ u, v ≤ D, v ∈
SM \

S
nδn \

S
iδ
′
i}, hence, there exists δ > 0 such that for all (u, v) belonging to

this set, we have
M(u) +N(v)− uv ≥ δ.

So, for all t ∈ Gn we have

M(xn(t)) +N(ky(t))− xn(t)ky(t) =M(xn(t)) +N(p(x(t))) − xn(t)p(x(t)) ≥ δ;

we arrive at a contradiction

0←−

∫

Gn

(M(xn(t)) +N(ky(t))− xn(t)ky(t)) dt ≥ δµGn ≥
δσ

4
.

(2) xk − x(t)
µ
−→ 0 on en.

If there exist ε > 0, σ > 0, such that enk = µ{t ∈ en : xk(t) ≥ rn + ε} ≥ σ,
since p(xk(t)) ≥ p(rn) = p−(rn) + εn + τn whenever t ∈ enk, we have

M(xk(t)) +N(p−(rn) + εn)− xk(t)(p−(rn) + εn) > τnε whenever t ∈ enk.

So we get a contradiction

0←−

∫

en

(M(xk(t)) +N(ky(t))− xk(t)ky(t)) dt

≥

∫

enk

(M(xk(t)) +N(p−(rn) + εn)− xk(t)(p−(rn) + εn)) dt ≥ τnεσ (k →∞)
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hence µ{t ∈ en : xk(t) ≥ rn + ε} → 0 (k → ∞). By the same argument, we can
prove µ{t ∈ en : xk(t) ≤ rn − ε} → 0 (k →∞). So

xk(t)− x(t)
µ
−→ 0 (on en).

(3) xn(t)− x(t)
µ
−→ 0 (on Ei).

From the result of (1) and (2), it is easy to know xn(t) − x(t)
µ
−→ 0 on G \

S
iEi.

So by Fatou theorem, it follows

lim
n→∞

RM (xn(t)χG\
S

iEi
) ≥ RM (x(t)χG\

S
iEi
);

in view of RM (xn(t)) ≤ 1, we deduce

(∗) lim
n→∞

RM (xn(t)χS
iEi
) ≤ RM (x(t)χ

S
iEi
).

Notice that for all t ∈ Ei, x(t) = ai, and ai is a left extreme point of affine
segments of M(u), analogously to the proof of (2), we can get that for any ε > 0
µ{t ∈ Ei : xn(t) ≤ x(t)− ε} → 0 (n→ 0). So

lim
n→∞

RM (xn(t)χEi
) ≥ RM (x(t)χEi

) =M(ai)µEi.

If there exist i0, ε0 > 0, σ0 > 0, such that µ{t ∈ Ei0 : xn(t) ≥ x(t) + ε0} ≥ σ0,
noticing M(u) is increasing monotonously, we deduce

lim
n→∞

RM (xn(t)χEi0
) > RM (x(t)χEi0

),

hence
lim

n→∞
RM (xn(t)χS

iEi
) > RM (x(t)χ

S
iEi
)

which contradicts (∗), i.e. xn(t)− x(t)
µ
−→ 0 on Ei.

(II) µ{t ∈ G : x(t) ∈ {an}} = 0, there exists τ > 0 such that
∫

G N((1 +
τ)p−(x(t))) dt < ∞. Denote the set of all discontinuous points of p(u) as {rn},
denote en = {t ∈ G : x(t) = rn}, Ej = {t ∈ G : x(t) = bj}. Take εn > 0 such
that p−(rn) + εn < p(rn),

∫

G\
S

nen

N((1 + τ)p−(x(t))) dt +
∑

n

N((1 + τ)(p−(rn) + εn))µen <∞.

Put G0 = G \
S

jEj \
S

nen, W (t) = p−(x(t))χG\
S

nen
+

∑

n(p−(rn) + εn)χen ,

y(t) =
W (t)

‖W (t)‖N
. Then k = ‖W (t)‖N ∈ KN (y(t)) and

∫

G x(t)y(t) dt = 1. For xn ∈

B(L(M)),
∫

G xn(t)y(t) dt → 1 (n → ∞), it is enough to show xn(t) − x(t)
µ
−→ 0

on G.
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First we prove

(1) lim
µδ→0

{sup
n

RN (xn(t)χδ)} = 0.

Otherwise, there exist ε > 0, δn ⊂ G, µδn → 0, such that RM (xnχδn
) ≥ ε > 0,

we get a contradiction

0←−

∫

δn

(M(xn(t)) +N(ky(t))− xn(t)ky(t)) dt

≥

∫

δn

(M(xn(t))−
1

1 + τ
xn(t)(1 + τ)ky(t)) dt

≥

∫

δn

(M(xn(t))−
1

1 + τ
(M(xn(t)) +N((1 + τ)ky(t)))) dt

=

∫

δn

1

1 + τ
M(xn(t)) dt−

∫

δn

1

1 + τ
N((1 + τ)ky(t)) dt

≥
τε

1 + τ
−

1

1 + τ
RN ((1 + τ)ky(t)χδn

) −→
τε

1 + τ
.

Similarly to the proof of (I), we can get xn(t) − x(t)
µ
−→ 0 on G \

S
jEj = G0 ∪

(
S

nen). Using (1) we deduce

lim
n→∞

RM (xn(t)χG\
S

jEj
) = RM (x(t)χG\

S
jEj
);

moreover, by
∫

G xn(t)y(t) dt → 1, we know ‖xn‖(M) → 1, so RM (xn) → 1 =

RM (x), thus

(2) lim
n→∞

RM (xnχS
jEj
) = RM (xχS

jEj
).

Noticing bj is a right extreme point of affine segments of M(u), using the same
method as above, we can get that for any ε > 0, µ{t ∈ Ej : xn(t)−x(t) ≥ ε} → 0
so

lim
n→∞

RM (xn(t)χEj
) ≤ RM (x(t)χEj

).

If there exist j0, ε > 0, σ > 0, such that µ{t ∈ Ej0 : xn(t) ≤ x(t)− ε} > σ, then

lim
n→∞

RM (xn(t)χEj0
) < RM (x(t)χEj0

),

combining with (1), we get a contradiction

lim
n→∞

RM (xn(t)χS
jEj
) < RM (x(t)χ

S
jEj
).

�
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Corollary 1. L(M) has strongly exposed property, i.e. all points in S(L(M)) are

strongly exposed points of B(L(M)) if and only if

(i) M(u) ∈ ∆2;
(ii) M(u) is strictly convex.

Theorem 2. x ∈ S(LM ) is a strongly exposed point of B(LM ) if and only if

(i) M(u) ∈ ∆2 and KM (x) = {k} is a singleton set;
(ii) µ{t ∈ G : kx(t) ∈ (R \ SM ) ∪ {a

′
i} ∪ {b

′
j} = 0}, where {a

′
i}, {b

′
j} denote

the sets of all continuous left extreme points and right extreme points of

affine segments of M(u) respectively;
(iii) there exists y(t) ∈ S(L(N)) and τ > 0, such that

∫

G x(t)y(t) dt = 1,

RN ((1 + τ)y(t)) <∞;

(iv) RN (p−(kx(t))) = 1 implies µ{t ∈ G : kx(t) ∈ {bj}} = 0,
RN (p(kx(t))) = 1 implies µ{t ∈ G : kx(t) ∈ {ai}} = 0,
where {ai}, {bj}, denote the sets of all discontinuous left extreme points
and right extreme points of affine segments of M(u) respectively.

Proof: Necessity. Without loss of generality, we assume x(t) ≥ 0, since a strongly
exposed point is a strongly extreme point, we get (i) and µ{t ∈ G : kx(t) ∈
R \ SM} = 0. If there exists b′j satisfying µGb′j

= µ{t ∈ G : kx(t) = b′j} > 0, take

a < b′j , E ⊂ Gb′j
, such that p(a) = p(b′j), 0 < µ(Gb′j

\ E) < µGb′j
. Put

x′(t) = x(t)χG\E +
a

k
χE ,

noticing RN (p(kx′(t))) = RN (p(kx(t))) ≥ 1 and for any ε > 0,
RN (p(1 − ε)kx′(t)) ≤ RN (p((1 − ε)kx(t))) ≤ 1, we have k ∈ KM (x

′). Take
y(t) ∈ S(L(N)) with

∫

G x(t)y(t) dt = 1, obviously

p−(kx′(t)) = p−(kx(t)) ≤ y(t) ≤ p(kx(t)) = p(kx′(t)) whenever t ∈ G \ E

y(t) = p(kx(t)) = p(b′j) = p(a) = p(kx′(t)) whenever t ∈ E.

So y(t) is a supporting functional of x′(t), in view of x′

‖x′‖M
6= x, which contradicts

that x(t) is an exposed point of B(LM ). So we have

µ{t ∈ G : kx(t) ∈ {b′j}} = 0.

If there exists a′i such that µGa′
i
= µ{t ∈ G : kx(t) = a′i} > 0, take b > a′i,

E ⊂ Ga′
i
satisfying p−(a

′
i) = p(a′i) = p(b), 0 < µ(Ga′

i
\ E) < µGa′

i
. Put

x′(t) = x(t)χG\E +
b

k
χE ,
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for any τ > 0, we have

RN (p((1− τ)kx′)) ≤

∫

G\E
N(p((1− τ)kx)) dt +N(p(a′i))µE

≤ lim
m→∞

(

∫

G\E

N(p((1 − τ/m)kx)) dt
)

+ lim
m→∞

N(p((1− τ/m)a′i))µE

= lim
m→∞

∫

G
N(p((1− τ/m)kx)) dt ≤ 1.

Notice that RN (p(kx′)) = RN (p(kx)) ≥ 1, we get k ∈ KM (x
′). For any y ∈

S(L(N)) with
∫

G x(t)y(t) dt = 1, similarly to the above we can get
∫

G(
x′(t)

‖x′(t)‖M
)y(t) dt = 1. Noticing x′

‖x′‖M
6= x, and the arbitrariness of y(t), we get

a contradiction that x(t) is not an exposed point of B(LM ), so µ{t ∈ G : kx(t) ∈
{a′i}} = 0. Thus we have showed that the condition (ii) is necessary.

If (iii) is not necessary, then for any y(t) ∈ S(L(N)) with
∫

G x(t)y(t) dt = 1 and

ε > 0, RN ((1 + ε)y(t)) = ∞. Hence ξN (y) = 1 and limn→∞ ‖yχG\Gn
‖(N) = 1,

where Gn = {t ∈ G : |y(t)| ≤ n}. By Hahn-Banach theorem, there exist un(t) =
un(t)χG\Gn

satisfying ‖un‖M = 1,
∫

G\Gn
un(t)y(t) dt→ 1. Put

xn(t) =
1

2
(x(t)χGn

+ un(t)),

then

1 ≥
1

2
(‖xχGn

‖M + ‖un‖M ) ≥ ‖xn‖M ≥

∫

G
xn(t)y(t) dt

=
1

2

(

∫

Gn

x(t)y(t) dt +

∫

G\Gn

uny dt
)

−→ 1.

So ‖xn‖M → 1,
∫

G xn(t)y(t) dt → 1, noticing ‖x − xn‖M ≥ ‖12xχGn
‖M →

1
2‖x‖M =

1
2 , we obtain that y(t) is not a strongly exposed functional of x(t).

Now we prove that (iv) is necessary. Otherwise, we only need to consider the
following two cases.

(1) RN (p−(kx)) = 1 and there exist bj satisfying p−(bj) < p(bj), and µGbj
=

µ{t ∈ G : kx(t) = bj} > 0. Take a < bj , E ⊂ Gbj
such that p−(a) = p(a) =

p−(bj), 0 < µ(Gbj
\ E) < µGbj

, put

x′(t) = x(t)χG\E +
a

k
χE .

From RN (p−(kx′)) = RN (p−(kx)) = 1, we derive that k ∈ KM (x
′), and y =

p−(kx) = p−(kx′) is the unique support functional of x(t). Obviously
∫

G
x′(t)
‖x′‖M

y(t) dt = 1 and x′

‖x′‖M
6= x, so x(t) is not a strongly exposed point.
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(2) RN (p(kx)) = 1 and there exist ai satisfying p−(ai) < p(ai), µGai = µ{t ∈
G : kx(t) = ai} > 0. Take b > ai, E ⊂ Gai such that p(b) = p−(b) = p(ai), 0 <

µE < µGai . Put x′(t) = x(t)χG\E +
b
kχE . From RN (p(kx′)) = RN (p(kx)) = 1,

we derive that k ∈ KM (x
′), and y = p(kx′) = p(kx) is the unique support

functional of x(t). Obviously we have x′

‖x′‖M
6= x, and

∫

G
x′(t)
‖x′‖M

y(t) dt = 1, so

x(t) is not a strongly exposed point of B(LM ).

Sufficiency. First we prove that if y ∈ S(LM ) with
∫

G x(t)y(t) dt = 1 and
for some τ > 0, RN ((1 + τ)y) < ∞, there exist {xn}∞n=1 ⊂ S(LM ) such that
∫

G xn(t)y(t) dt→ 1, then

lim
µe→0

sup
n

RM (knxnχe) = 0,(3)

lim
µe→0

sup
n

RN (p(knxnχe)) = 0,(4)

where kn ∈ KM (xn).
Otherwise, there exist ei, satisfying µei → 0 and ε > 0, such that for some

{xni}
∞
i=1 ⊂ {xn}∞n=1, RM (knixniχei) ≥ ε, so it follows a contradiction:

0←− 1 +RM (knixni)− kni

∫

G
xni(t)y(t) dt

=

∫

G
(M(knixni(t)) +N(y(t))− knixniy(t)) dt

≥

∫

ei

(M(knixni(t)) +N(y(t))− knixni(t)y(t)) dt

≥

∫

ei

(M(knixni(t)) −
1

1 + τ
knixni(1 + τ)y(t)) dt

≥

∫

ei

(M(knixni(t)) −
1

1 + τ
(M(knixni(t)) +N((1 + τ)y(t)))) dt

=
τ

1 + τ
RM (knixniχei)−

1

1 + τ
RN ((1 + τ)yχei)

≥
τε

1 + τ
−

RN ((1 + τ)yχei)

1 + τ
−→

τε

1 + τ
,

the contradiction shows that (3) is true. Noticing that M ∈ ∆2, and
limµe→0 supn

∫

e knxn(t)p(knxn(t)) dt = 0, we get (4).

In the following, we prove the sufficiency in three cases.
(I) RN (p−(kx)) = 1, µ{t ∈ G : |kx(t)| ∈ {bj}} = 0.

In these cases we have that y(t) = p−(kx(t)) is the unique support functional of
x(t). For any {xn(t)}∞n=1 ⊂ S(LM ) with

∫

G xn(t)y(t) dt→ 1, take kn ∈ KM (xn),
and denote Ei = {t ∈ G : kx(t) = ai}. Analogously to the proof of the sufficiency

of Theorem 1, we can get knxn(t) − kx(t)
µ
−→ 0 on G \

S
iE. Since p−(t) is not
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decreasing and continuous on the left hand, we have

lim
n→∞

RN (p−(knxn)χG\
S

iEi
) ≥ RN (p−(kx(t))χG\

S
iEi
),

moreover, by RN (p−(knxn)) ≤ RN (p−(kx)), we have

(5) lim
n→∞

RN (p−(knxn)χS
iEi
) ≤ RN (p−(kx)χS

iEi
).

For every i and any ε > 0, in view of that ai is a left extreme point of affine
segment of M(u), we have

µ{t ∈ Ei : knxn(t) ≤ kx(t)− ε} −→ 0 (n→∞),

hence
lim

n→∞
RN (p−(knxn)χEi

) ≥ RN (p−(kx)χEi
).

If there exist i0, ε > 0, σ > 0, such that

µ{t ∈ Ei0 : knxn(t) ≥ kx(t) + ε} ≥ σ,

then
lim

n→∞
RN (p−(knxn)χEi0

) > RN (p−(kx)χEi0
),

and hence
lim

n→∞
RN (p−(knxn)χS

iEi
) > RN (p−(kx)χS

iEi
).

This is in contradiction with (5). So knxn(t) − kx(t)
µ
−→ 0 on

S
iEi. Combining

(3) we get

kn = 1 +RM (knxn) −→ 1 +RM (kx) = k (n→∞),

hence xn(t)− x(t)
µ
−→ 0. By M(u) ∈ ∆2, we deduce ‖xn − x‖M → 0 (n→∞).

(II) RN (p(kx)) = 1, µ{t ∈ G : kx(t) ∈ {ai}} = 0.
In this case, y(t) = p(kx) is the unique support functional of x(t). For any
{xn(t)}∞n=1 ⊂ S(LM ) with

∫

G xn(t)y(t) dt → 1, take kn ∈ KM (xn), and denote

Fj = {t ∈ G : kx(t) = bj}. Similarly, we can get knxn
µ
−→ kx on G \

S
jFj . Since

p(u) is not decreasing and continuous on the right hand, by (4) it follows

lim
n→∞

RN (p(knxn)χG\
S

jFj
) ≤ RN (p(kx)χG\

S
jFj
).

Noticing RN (p(knxn)) ≥ 1 = RN (p(kx)), we have

(6) lim
n→∞

RN (p(knxn)χS
jFj
) ≥ RN (p(kx)χS

jFj
).
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Since bj is a right extreme point of affine segment of M(u), for any ε > 0 and
every j, we have

µ{t ∈ Fj : knxn(t) ≥ kx(t) + ε} = 0,

hence
lim

n→∞
RN (p(knxn(t))χFj

) ≤ RN (p(kx(t))χFj
).

If there exist j0, ε > 0, σ > 0, such that

µ{t ∈ Fj0 : knxn(t) ≤ kx(t)− ε} ≥ σ,

then
lim

n→∞
RN (p(knxn(t))χFj0

) < RN (p(kx(t))χFj0
),

and hence
lim

n→∞
RN (p(knxn(t))χS

jFj
) < RN (p(kx(t))χS

jFj
),

which contradicts (6). So knxn−kx
µ
−→ 0. From (4), it follows kn → k, and hence

xn − x
µ
−→ 0. Noticing M ∈ ∆2,we get ‖xn − x‖M → 0.

(III) RN (p−(kx)) < 1 < RN (p(kx)).
By the condition (iii) of this theorem, there exist y(t) ∈ S(L(N)), and τ > 0,

such that
∫

G x(t)y(t) dt = 1, RN ((1 + τ)y) <∞. Denote all discontinuous points
of p(u) as {rn} (including {ai}, {bj}), denote en = {t ∈ G : kx(t) = rn}. By
RN (y) = 1, for all t ∈ G, p−(kx(t)) ≤ y(t) ≤ p(kx(t)), and

y(t) = p−(kx(t)) = p(kx(t)) whenever t ∈ G \
S

nen,

we have

µ(
S

n{t ∈ en : y(t) > p−(rn)}) > 0; µ(
S

n{t ∈ en : y(t) < p(rn)}) > 0.

Denote e′n = {t ∈ en : y(t) = p−(rn)}. For rn take εn > 0, such that p−(rn)+εn <
p(rn) and

∫

G\
S

ne′n

N((1 + τ)y) dt+
∑

n

N(p−(rn) + εn)µe′n = 1.

Constructing a function z(t) satisfying the following conditions

z(t) = y(t) whenever t ∈ G \
S

nen,

z(t) = p−(rn) + εn whenever t ∈ e′n,

p−(rn) < z(t) ≤ y(t) whenever t ∈ en \ e′n,
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and such that RN (z) = RN (y) = 1, we can get RN ((1 + τ)z) <∞ and

µ{t ∈ en : z(t) = p−(rn)} = 0.

Similarly to the above, we can construct a function u(t) satisfying RN (u(t)) =
RN (z) = RN (y) = 1, RN ((1 + τ)u(t)) <∞, and

p−(rn) < u(t) < p(rn) whenever t ∈ en.

Obviously, u(t) is a support functional of x(t). For {xn(t)}∞n=1 ⊂ S(LM ) with
∫

G xn(t)u(t) dt → 1, take kn ∈ KM (xn), then knxn(t) satisfies (3), (4). Analo-
gously to the proof of the sufficiency of Theorem 1, we can get

knxn(t)− kx(t)
µ
−→ 0.

By (4), we have kn → k, hence we have xn(t)−x(t)
µ
−→ 0. In view of M(u) ∈ ∆2,

we deduce ‖xn − x‖M → 0. �

Corollary 2. LM has the strongly exposed property if and only if

(i) M ∈ ∆2;
(ii) M(u) is strictly convex;
(iii) there exist u0 > 0, τ > 0, D > 0, when u ≥ u0,

N((1 + τ)p(u)) ≤ DN(p(u)).

Proof: Sufficiency. For x(t) ∈ S(LM ), by (i) and (ii) of the corollary, it imme-
diately follows that (i), (ii) and (iv) of the Theorem 2 hold. Notice that when
u > u0, N((1+τ)p(u)) ≤ DN(p(u)), it follows N((1+τ)p−(u)) ≤ DN(p−(u)). If
RN (p−(kx)) = 1, then x(t) has the unique support functional y(t) = p−(kx(t)),
so

∫

G
N((1 + τ)y(t)) dt =

∫

G
N((1 + τ)p−(kx(t))) dt

≤ N((1 + τ)p−(u0))µG+D

∫

G
N(p−(kx(t))) dt

= N((1 + τ)p−(u0))µG+D <∞.

If RN (p(kx)) = 1, for the same reason, we have

∫

G
N((1 + τ)y(t)) dt =

∫

G
N((1 + τ)p(kx(t))) dt <∞.

If RN (p−(kx)) < 1 < RN (p(kx)), take G0 < G such that

∫

G\G0

N(p−(kx(t))) dt +

∫

G0

N(p(kx(t))) dt = 1,
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put
y(t) = p−(kx(t))χG\G0 + p(kx(t))χG0 ,

then y(t) is a support functional of x(t), and

RN ((1 + τ)y) =

∫

G\G0

N((1 + τ)p−(kx(t))) dt +

∫

G0

N((1 + τ)p(kx(t))) dt

≤ N((1 + τ)p(u0))µG +D <∞.

Combining the above, we get that the (iii) of Theorem 2 is true, so x(t) is
a strongly exposed point of B(LM ).

Necessity. By (i) and (ii) of Theorem 2, it immediately follows that (i) and
(ii) of the corollary hold. If (iii) is not true, then there exist un ր ∞, such that
N((1 + 1n)p(un)) > 2nN(p(un)). Take a sequence {Gn}∞n=1 of subsets of G with

Gi ∩Gj = ∅ whenever i 6= j, such that N(p(un))µGn =
1
2n . Put

y(t) =

∞
∑

n=1

p(un)χGn
.

For any ε > 0, take n0 so that
1
n0

< ε, then

RN ((1 + ε)y) =

∞
∑

n=1

N((1 + ε)p(un))µGn ≥
∞
∑

n≥n0

N((1 +
1

n
)p(un))µGn

≥
∞
∑

n=n0

2nN(p(un))µGn =∞.

But

RN (y) =

∞
∑

n=1

N(p(un))µGn = 1,

put

x(t) =

∑∞
n=1 unχGn

‖
∑∞

n=1 unχGn
‖M

, then x(t) ∈ S(LM ).

By RN (p(‖
∑∞

n=1 unχGn
‖Mx)) = RN (

∑∞
n=1 p(un)χGn

) = RN (y) = 1, we know
kx = ‖

∑∞
n=1 unχGn

‖M , since RN (p(kxx)) = 1, x(t) has the unique support func-
tional y(t), but y(t) does not satisfy (iii) of Theorem 2, so x(t) is not
a strongly exposed point of B(LM ). �

Remark. Under M ∈ ∆2, the condition (iii) is equivalent to M ∈ ∇2.
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