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Remarks on special ideals in lattices

Ladislav Beran

Abstract. The author studies some characteristic properties of semiprime ideals. The
semiprimeness is also used to characterize distributive and modular lattices. Prime
ideals are described as the meet-irreducible semiprime ideals. In relatively complemented
lattices they are characterized as the maximal semiprime ideals. D-radicals of ideals are
introduced and investigated. In particular, the prime radicals are determined by means

of Ĉ-radicals. In addition, a necessary and sufficient condition for the equality of prime
radicals is obtained.

Keywords: semiprime ideal, prime ideal, congruence of a lattice, allele, lattice polyno-
mial, meet-irreducible element, kernel, forbidden exterior quotients, D-radical, prime
radical
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1. Introduction

The notion of a semiprime ideal was introduced by Rav in [8] in the following
way: An ideal I of a lattice L is said to be semiprime if the implication

(a ∧ b ∈ I & a ∧ c ∈ I)⇒ a ∧ (b ∨ c) ∈ I

is true for every a, b, c ∈ L.
In a recent paper, a new method was used to characterize the semiprime ideals

by means of lattice quotients. For a detailed description of the method see [3],
whereas for a comparative study of this technique against a classical background
see [1]. The semiprime ideals in lattices have been studied in [6], [2] and [4].
For completeness we include some definitions here.
Let a, b be elements of a lattice L. If a ≤ b, we say that these elements form

a quotient b/a of L. We write b/a ∼w d/c if either

b = a ∨ d & a ∧ d ≥ c

or
a = b ∧ c & b ∨ c ≤ d.

If there exist quotients yi/xi such that

b/a = y0/x0 ∼w y1/x1 ∼w · · · ∼w yn/xn = d/c,
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we write b/a ≈w d/c.
A quotient b/a is called an allele if there exists a quotient d/c satisfying b/a ≈w

≈w d/c and such that either b ≤ c or d ≤ a. The set of all the alleles of L will be
denoted by A(L).

Let Ĉ(L) denote the smallest congruence θ of L for which the quotient lattice

L/θ is distributive. It can be shown [1] that (a, b) ∈ Ĉ(L) if and only if there
exist ai ∈ L satisfying

(1) a0 = a ∧ b ≤ a1 ≤ a2 · · · ≤ am = a ∨ b

and such that ai+1/ai ∈ A(L) for every i = 0, 1, . . . ,m− 1.

Proposition 1. Let I be an ideal of a lattice L. Then the following conditions
are equivalent:

(i) the ideal I is semiprime;
(ii) for any a, ã, b of L,

(b ∧ a ∈ I & b ∧ ã ∈ I & a ∨ ã ≥ b)⇒ b ∈ I;

(iii) there is no allele b/a of L with a ∈ I and b /∈ I;
(iv) for any x, y of L,

(x ∈ I & x ≤ y & (x, y) ∈ Ĉ(L))⇒ y ∈ I;

(v) for any x, y of L,

(x ∈ I & (x, y) ∈ Ĉ(L))⇒ y ∈ I;

(vi) the ideal (I]Id(L) generated by I in the ideal lattice Id(L) is semiprime.

Proof: (i) ⇔ (ii). Clearly, any semiprime ideal satisfies (ii).
Suppose now that x∧y ∈ I and x∧z ∈ I. Put a = y, ã = z and b = x∧(y∨z).

From (ii) it follows that x ∧ (y ∨ z) ∈ I.
(i) ⇔ (iii). This is Main Theorem of [3].
(iii) ⇔ (iv) and (iv) ⇔ (v). Immediate.
(i) ⇔ (vi). This has been proved by Rav [8]. �

Corollary 2. (i) Let x ∈ L. Then the principal ideal (x] is semiprime if and only
if there is no allele y/x with y > x.
(ii) An ideal X of L is semiprime if and only if there is no ideal Y satisfying

X $ Y and Y/X ∈ A(Id(L)).

Proof: (i) Suppose that (x] satisfies the condition and let q/i be an allele with

i ∈ (x]. Since (i, q) ∈ Ĉ(L), (x, x ∨ q) ∈ Ĉ(L). By the assumption and (1),
x ∨ q ∈ (x] and so q ∈ (x]. Thus (x] is semiprime.
The remainder follows from Proposition 1 (i).
(ii) Use (i) and Proposition 1 (v). �
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2. Properties characterizing semiprime ideals

First we need some notation.
Let I be an ideal of L and let M ⊂ L. By M∗

I
we mean the set of all a ∈ L

such that a ∧m ∈ I for every m ∈ M . We write m∗

I
(or simply m∗) instead of

{m}∗
I
.

Note that the ideal I is semiprime if and only if m∗

I
is an ideal of L for every

m ∈ L.
Given an ideal I of L, let ψ and θ be relations defined on L in the following

way:
(a, b) ∈ ψ ⇔ a∗I = b

∗

I ; (a, b) ∈ θ ⇔ (a ∧ b)∗I = (a ∨ b)
∗

I .

The relation ψ was used by Rav in the proof of his Main Theorem in [8]. Note
that θ ⊂ ψ. However, the converse inclusion need not be true.

Theorem 3. The following conditions are equivalent for any ideal I of a lattice L :

(i) The ideal I is semiprime.

(ii) The relation ψ satisfies ψ ⊃ Ĉ(L).

(iii) The relation θ satisfies θ ⊃ Ĉ(L).

(iv) The relations θ and ψ satisfy θ = ψ ⊃ Ĉ(L).

Proof: (i) ⇒ (iv). Let a∗ = b∗ and let z ∈ (a ∧ b)∗. Then z ∧ a ∧ b ∈ I, which
gives z ∧ a ∈ b∗ = a∗. Hence z ∧ a ∈ I and, similarly, z ∧ b ∈ I. Since I is
semiprime, it follows that z ∧ (a ∨ b) ∈ I. Consequently, z ∈ (a ∨ b)∗ and this
implies (a∧ b)∗ = (a∨ b)∗. Thus θ = ψ. By [8, p. 109], L/θ is distributive and so

θ ⊃ Ĉ(L).
(iv) ⇒ (iii). Trivial.
(iii) ⇒ (ii). Use θ ⊂ ψ.

(ii) ⇒ (i). Let q/i ∈ A(L) be such that i ∈ I. Then (i, q) ∈ Ĉ(L) ⊂ ψ, and,
therefore, q∗ = i∗ = L. This yields q ∈ I. �

Theorem 4. An ideal I of a lattice L is semiprime if and only if

(2) [(a ∨ b) ∧ c]∗
I
⊃ [a ∨ (b ∧ c)]∗

I

for every a, b, c ∈ I.

Proof: Suppose I is semiprime and let x ∈ [a∨(b∧c)]∗. Then x∧ [a∨(b∧c)] ∈ I,
and, a fortiori,

x ∧ c ∧ a ∈ I & x ∧ c ∧ b ∈ I.

Since I is semiprime, x ∧ c ∧ (a ∨ b) ∈ I. Therefore, x ∈ [(a ∨ b) ∧ c]∗.
Suppose that (2) is valid and let a ∧ c ∈ I and b ∧ c ∈ I. Replace a in (2) by

a ∧ c. Then

(3) {[(a ∧ c) ∨ b] ∧ c}∗ ⊃ [(a ∧ c) ∨ (b ∧ c)]∗.

Since (a∧c)∨(b∧c) ∈ I, it is readily seen that {[(a∧c)∨b]∧c}∗ = L. Accordingly,
[(a∧c)∨b]∧c ∈ I, and, by (2), c ∈ [b∨(a∧c)]∗ ⊂ [(b∨a)∧c]∗. Hence (a∨b)∧c ∈ I.

�
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Theorem 5. An ideal I of a lattice L is semiprime if and only if the following
implication holds for every a, b, c ∈ L:

(4) [(c ∧ a)∗
I
⊃ (c ∧ b)∗

I
& (c ∨ a)∗

I
⊃ (c ∨ b)∗

I
]⇒ a∗

I
⊃ b∗

I
.

Proof: First we shall suppose that I is semiprime. Then we can consider the
quotient lattice L/ψ where ψ was defined above. If x/ψ, y/ψ ∈ L/ψ, then x/ψ ≤
y/ψ if and only if x∗

I
⊃ y∗

I
. Hence the antecedent of (4) can be rewritten as

c/ψ ∧ a/ψ ≤ c/ψ ∧ b/ψ & c/ψ ∨ a/ψ ≤ c/ψ ∨ b/ψ.

This, together with a result of M. Molinaro [7, p. 75], implies that a/ψ ≤ b/ψ.
Thus a∗ ⊃ b∗.
Finally, let (4) be valid and let x, y and z be arbitrary elements of L. Let

a = (x ∨ y) ∧ z, b = x ∨ (y ∧ z) and c = y. Then

c ∧ a = y ∧ z ≤ c ∧ b = y ∧ [x ∨ (y ∧ z)]

and
c ∨ a = y ∨ [(x ∨ y) ∧ z] ≤ c ∨ b = x ∨ y.

Consequently we have

(c ∧ a)∗ ⊃ (c ∧ b)∗ & (c ∨ a)∗ ⊃ (c ∨ b)∗.

By assumption, a∗ ⊃ b∗. From Theorem 4 we see that I is semiprime. �

Theorem 6. An ideal I of a lattice L is semiprime if and only if for any lattice
polynomial p(x1, x2, . . . , xn) and any choice of elements a1, a2, . . . , an ∈ L the
relations

p(a1, a2, . . . , an) ∈ I & a1Ĉ(L)a2Ĉ(L) . . . Ĉ(L)an

imply a1, a2, . . . , an ∈ I.

Proof: Let I be semiprime and let p(a1, a2, . . . , an) ∈ I. Then

I = p(a1, a2, . . . , an)/ψ = p(a1/ψ, a2/ψ, . . . , an/ψ)

= p(a1/ψ, a1/ψ, . . . , a1/ψ) = a1/ψ.

Thus a1 ∈ I and the same is true for the other ai.
Now suppose that the stated implication is true and let p(x1, x2) = x1 ∧ x2. If

a ≤ b are such that a ∈ I and (a, b) ∈ Ĉ(L), then p(a, b) = a ∈ I. We therefore
have from Proposition 1 (iv) that I is semiprime. �
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3. Semiprimeness as a descriptive tool

Theorem 7. A lattice L is distributive if and only if every principal ideal (a]
(a ∈ L) is semiprime.

Proof: Let I = ((a ∧ b) ∨ (a ∧ c)] be semiprime. Since a ∧ b and a ∧ c belong to
I, we get a∧ (b∨ c) ∈ I. Thus a∧ (b∨ c) ≤ (a∧ b)∨ (a∧ c) and we conclude that
a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c).
Evidently, every ideal of a distributive lattice is semiprime. �

Theorem 8. A lattice L is modular if and only if for any a, b, c ∈ L, the ideal
(a ∨ [b ∧ (a ∨ c)]] is a semiprime ideal of the sublattice generated by a, b, c in L.

Proof: Suppose that L is modular and let M denote the sublattice generated
by a, b, c. Then, by modularity, I = (a∨ [b∧ (a∨ c)]] = ((a∨ b)∧ (a∨ c)]. Now M
is isomorphic to a quotient lattice of the free modular lattice M28 (see [5, p. 64])
with three generators x, y, z. However, a closer inspection of the quotient lattices
of M28 shows that in any of these quotient lattices the ideal corresponding to
((x ∨ y) ∧ (x ∨ z)] is semiprime. Hence also our ideal I is semiprime.
Conversely, suppose the ideal I = (a ∨ [b ∧ (a ∨ c)]] is semiprime. Note that

a ∧ (a ∨ c) ∈ I and b ∧ (a ∨ c) ∈ I. Consequently, (a ∨ b) ∧ (a ∨ c) ∈ I. Thus
(a ∨ b) ∧ (a ∨ c) = a ∨ [b ∧ (a ∨ c)] and L is modular. �

Theorem 9. Let I be a semiprime ideal of a lattice L. Then I is prime if and
only if I is a meet-irreducible element of the ideal lattice Id(L).

Proof: One easily shows that each prime ideal is a meet-irreducible element in
Id(L).
It remains to show that every semiprime ideal I which is meet-irreducible in

Id(L) is also prime. To do this, consider b, c ∈ L satisfying b ∧ c ∈ I.
We first note that the inclusion in I ⊂ (I ∨ (b]) ∩ (I ∨ (c]) can be replaced by

the equality sign. Indeed, let x ∈ (I ∨ (b]) ∩ (I ∨ (c]). Then there exist i, j ∈ I
and b1 ≤ b, c1 ≤ c such that x ≤ (i ∨ b1) ∧ (j ∨ c1). Hence x ≤ (h ∨ b1) ∧ (h ∨ c1)
where h = i ∨ j ∈ I. But b1 ∧ c1 ≤ b ∧ c ∈ I. Therefore, h ∨ (b1 ∧ c1) ∈ I.

Now L/Ĉ(L) is distributive, and so (h ∨ (b1 ∧ c1), (h ∨ b1) ∧ (h ∨ c1)) ∈ Ĉ(L).
Since I is semiprime, we have, by Proposition 1 (iv), (h ∨ b1) ∧ (h ∨ c1) ∈ I.
Consequently, x ∈ I. Combining this with the meet-irreducibility of I we can
derive easily that either b ∈ I ∨ (b] = I or c ∈ I ∨ (c] = I. �

Corollary 10. Let (a] be a semiprime ideal of a lattice L. Then (a] is prime if
and only if a is a meet-irreducible element of the lattice L.

Proof: Use the fact that a is a meet-irreducible element of L if and only if (a]
is a meet-irreducible element of Id(L). �

By [8, p. 108], any semiprime ideal of L is the kernel of a congruence of L.
Hence the following lemma can be applied to semiprime ideals.
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Lemma 11. Let I be an ideal of a lattice L which is the kernel of a congruence
θ of L.
Then

(I ∧ J ⊃ K ∧ J & I ∨ J ⊃ K ∨ J)⇒ I ⊃ K

for any ideals J,K of L.

Proof: Let k ∈ K. Since K ⊂ I ∨ J , there exist i ∈ I and j ∈ J such that
k ≤ i ∨ j. At the same time, j ∧ k ∈ J ∧ K ⊂ I. Hence (i, j ∧ k) ∈ θ and,
consequently, (j, i ∨ j) ∈ θ. From j ≤ j ∨ k ≤ i ∨ j it follows that (j, j ∨ k) ∈ θ.
But then (j ∧ k, k) ∈ θ. Since I is the kernel of θ and j ∧ k ∈ I, we get k ∈ I. �

Lemma 12. Let I be a semiprime ideal of a lattice L and let a, b ∈ L be such
that a ∧ b ∈ I.
Then either (a] ∨ I 6= L or

(a] ∨ I = L & b ∈ I.

Proof: Suppose that (a] ∨ I = L. Put J = (a], K = (b] and use Lemma 11. It
follows that b ∈ K ⊂ I. �

The following theorem generalizes a result of Chevalier [6, p. 383] stated for
orthomodular lattices.

Theorem 13. Let L be a relatively complemented lattice. Then a proper ideal
I of L is prime if and only if it is a maximal semiprime ideal of L.

Proof: It is well-known that in a relatively complemented lattice every proper
prime ideal is maximal.
What remains to be shown is that any maximal semiprime ideal I 6= L is prime.

Let I be an ideal having these properties and let a ∧ b ∈ I for some a, b ∈ I.
Suppose first that

(5) (a] ∨ I 6= L & a /∈ I.

Then (a] ∨ I is not semiprime and, by Proposition 1 (iv), there exist p ∈ (a] ∨ I

and q /∈ (a] ∨ I such that (p, q) ∈ Ĉ(L) with p ≤ q. But p ∈ (a] ∨ I means that
p ≤ a ∨ i for a suitable i ∈ I. Now

p ≤ q ∧ (a ∨ i) ≤ q & (p, q) ∈ Ĉ(L).

Hence (q ∧ (a ∨ i), q) ∈ Ĉ(L) and, therefore,

(6) (a ∨ i, q ∨ a ∨ i) ∈ Ĉ(L).

Let r+ be a relative complement of a ∨ i in the interval [i, a ∨ i ∨ q]. From (6)

we can see that (i, r+) ∈ Ĉ(L). If r+ belonged to I, then r+ ∨ a∨ i would belong
to (a] ∨ I. But then

q ≤ a ∨ i ∨ q = r+ ∨ a ∨ i ∈ (a] ∨ I,
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a contradiction.
Thus r+ /∈ I, i ∈ I and, moreover, (i, r+) ∈ Ĉ(L). But this contradicts

Proposition 1 (iv).
We may therefore assume that (5) and a similar statement for b are not true.
However, if (a]∨ I = L or (b]∨ I = L, then we can use Lemma 12. Thus either

a ∈ I or b ∈ I and we are done. �

We now turn our attention to the prime radicals. Recall [8, p. 111] that the
prime radical rad(I) of an ideal I in a lattice L is the intersection of all the
semiprime ideals of L which contain I.
There is a simple way how to generalize this notion [4]: Given any lattice L,

let D(L) denote a congruence of L and let D be the class of all these congruences.
We shall say that an ideal I of L is an ideal with forbidden exterior quotients in
D, if the implication

(a ≤ b & (a, b) ∈ D(L) & a ∈ I)⇒ b ∈ I

is true for any choice of a and b in L.
From Proposition 1 (iv) we conclude that an ideal I is semiprime if and only if

it is an ideal with forbidden exterior quotients in Ĉ where Ĉ denotes the class of
all congruences Ĉ(L).
If I is an ideal of L, we put

ΓD(I) = {x ∈ L; (∃i)i ∈ I & (i, x) ∈ D(L)}

calling it the D-radical of I.

Proposition 14. The D-radical of an ideal I is equal to the intersection of all
the ideals with forbidden exterior quotients in D containing I.

Proof: Straightforward. �

Corollary 15. The Ĉ-radical of any ideal I in a lattice L is equal to the prime
radical of I. �

Let I and J be ideals of a lattice L. If ΓD(I) ⊂ ΓD(J), then it is clear that
for any i ∈ I there exists j ∈ J such that (i, j) ∈ D(L). From this remark we
could deduce directly a simple characterization of the case where ΓD(I) = ΓD(J).
However, there is another approach which seems to be more fruitful:

Theorem 16. The following two conditions on ideals I, J of a lattice L are
equivalent:

(i) ΓD(I) = ΓD(J).
(ii) For any i ∈ I and any j ∈ J there exist i1 ∈ I and j1 ∈ J such that

i ≤ i1 & j ≤ j1 & (i1, j1) ∈ D(L).
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Proof: Suppose first that ΓD(I) = ΓD(J) and let i ∈ I, j ∈ J .
Since i ∈ ΓD(I) ⊂ ΓD(J), there exists j2 ∈ J such that (i, j2) belongs to D(L).

Then (i ∨ j, j2 ∨ j) ∈ D(L). It follows from j2 ∨ j ∈ ΓD(J) ⊂ ΓD(I) that there
exists i2 ∈ I such that (i2, j ∨ j2) ∈ D(L). Hence

(7) (i ∨ i2, i ∨ j ∨ j2) ∈ D(L) & (i ∨ j ∨ i2, i ∨ j ∨ j2) ∈ D(L).

Now i ∨ i2 ∈ ΓD(I) ⊂ ΓD(J) and so there is j3 ∈ J with (i ∨ i2, j3) ∈ D(L).
Therefore,

(8) (i ∨ i2 ∨ j, j3 ∨ j) ∈ D(L).

Put i1 = i∨ i2, j1 = j ∨ j3. Then using (7) and (8), we get (i1, j1) ∈ D(L) and
it is evident that i ≤ i1 and j ≤ j1.
Next suppose conversely that I and J satisfy the condition (ii). By symmetry,

it is sufficient to prove that ΓD(I) ⊂ ΓD(J).
Let x ∈ ΓD(I). Then there exists i ∈ I with (x, i) ∈ D(L). Let j be an element

of J . By the assumption, there are i1 ≥ i, j1 ≥ j such that (i1, j1) ∈ D(L).
However, from (x, i) ∈ D(L) we obtain (x ∨ i1 ∨ j1, i1 ∨ j1) ∈ D(L). Similarly,
(i1, j1) ∈ D(L) implies that (i1∨j1, j1) ∈ D(L). Therefore, (x∨i1∨j1, j1) ∈ D(L)
and, consequently, x∨i1∨j1 ∈ ΓD(J). Since ΓD(J) is an ideal, we have x ∈ ΓD(J).

�

Corollary 17. Let a, b be elements of a lattice L.
Then

(i) the D-radical ΓD((a]) is equal to the D-radical ΓD((b]) if and only if
(a, b) ∈ D(L);

(ii) the prime radical rad((a]) is equal to the prime radical rad((b]) if and only

if (a, b) ∈ Ĉ(L).

Proof: (i) Suppose ΓD((a]) = ΓD((b]). By Theorem 16, there are a1, b1 such
that

a ≤ a1 & b ≤ b1 & a1 ∈ (a] & b1 ∈ (b] & (a1, b1) ∈ D(L).

Hence (a, b) ∈ D(L).
Conversely, suppose (a, b) ∈ D(L). For any i ∈ (a] and j ∈ (b] we then can put

i1 = a, j1 = b and use Theorem 16.
(ii) Now immediate. �

References

[1] Beran L., Orthomodular Lattices (Algebraic Approach), Reidel, Dordrecht, 1985.
[2] , Distributivity in finitely generated orthomodular lattices, Comment. Math. Univ.
Carolinae 28 (1987), 433–435.

[3] , On semiprime ideals in lattices, J. Pure Appl. Algebra 64 (1990), 223–227.
[4] , On the rhomboidal heredity in ideal lattices, Comment. Math. Univ. Carolinae 33
(1992), 723–726.



Remarks on special ideals in lattices 615

[5] Birkhoff G., Lattice Theory, 3rd ed., American Math. Soc. Colloq. Publ., vol. XXV, Provi-
dence, 1967.

[6] Chevalier G., Semiprime ideals in orthomodular lattices, Comment. Math. Univ. Carolinae
29 (1988), 379–386.

[7] Dubreil-Jacotin M.L., Lesieur L., Croisot R., Leçons sur la théorie des treillis, des structures
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