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Two cardinal inequalities for functionally Hausdorff spaces

Alessandro Fedeli

Abstract. In this paper, two cardinal inequalities for functionally Hausdorff spaces are
established. A bound on the cardinality of the τθ-closed hull of a subset of a functionally
Hausdorff space is given. Moreover, the following theorem is proved: ifX is a functionally

Hausdorff space, then |X| ≤ 2χ(X)wcd(X).
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A space X is said to be functionally Hausdorff if whenever x 6= y in X there
is a continuous real valued function f defined on X such that f(x) = 0 and
f(y) = 1. A well-known Arkhangel’skii’s theorem states that if X is a Hausdorff

space, then |X | ≤ 2χ(X)L(X) ([1], [6]). Bella and Cammaroto [2] established some
cardinal inequalities for Urysohn spaces that improve, for non regular spaces,
the Arkhangel’skii’s formula. In this paper, a bound on the cardinality of the
τθ-closed hull of a subset of a functionally Hausdorff space and a bound on the
cardinality of a functionally Hausdorff space are given. We refer the reader to [3]
and [4] for notations and definitions not explicitly given. All topological spaces
considered here are assumed to be infinite. Let E be a set; the cardinality of
E is denoted by |E|, Pk(E) is the collection of all subsets of E of cardinality
≤ k. χ(X) and L(X) denote respectively the character and the Lindelöf degree
of a space X .

Definition 1 [5]. Let A be a subset of a space X . A is called τ -open if A is
a union of cozero-sets of X . The τ -closure of A, denoted by clτ (A), is the set
of all points x ∈ X such that any cozero-set neighbourhood of x intersects A.
The τ -interior of A, denoted by intτ (A), is the set of all x such that there is
a cozero-set neighbourhood of x contained in A.

Definition 2. Let X be a topological space and A a subset of X . The τθ-closure
of A, denoted by clτθ(A), is the set of all points x ∈ X such that clτ (V ) ∩A 6= ∅
for every open neighbourhood V of x. A is said to be τθ-closed if A = clτθ(A).

As pointed to me by S. Watson, the τθ-closure is not in general idempotent.

Definition 3. Let X be a topological space and A a subset of X . The τθ-closed
hull of A, denoted by [A]τθ , is the smallest τθ-closed subset of X containing A.
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Clearly, [A]τθ =
⋂
{F : A ⊂ F and clτθ(F ) = F}. For every space X and

every A ⊂ X we have A ⊂ clτθ(A) ⊂ [A]τθ ⊂ clτ (A). It is obvious that if X is
a Tychonoff space, then A = clτθ(A) = [A]τθ = clτ (A) for any A ⊂ X .
The next result gives some conditions on a functionally Hausdorff space which

are equivalent to clτθ = clτ .

Proposition 4. For a functionally Hausdorff space X the following conditions
are equivalent:

(i) For each τ -open set V of X , V = clτ (V ).
(ii) For each open set G of X , G ⊂ intτ (clτ (G)).
(iii) For each subset A of X , clτθ(A) = clτ (A).
(iv) For each τ -open subset V of X , clτθ(V ) = clτ (V ).

Proof: (i) ⇔ (ii) Lemma 28 in [9]. (ii) ⇒ (iii) Let A ⊂ X and x /∈ clτθ(A), then
there is an open neighbourhood G of x such that clτ (G) ∩A = ∅. By hypothesis
G ⊂ intτ (clτ (G)), then there is a cozero set V such that x ∈ V ⊂ clτ (G), so
V ∩ A = ∅ and x /∈ clτ (A). Hence, clτθ(A) = clτ (A). (iii) ⇒ (iv) is obvious.
(iv) ⇒ (i) Let V be a τ -open subset of X , by hypothesis clτθ(V ) = clτ (V ). Now
let x /∈ V , then there is an open set G such that x ∈ G and G ∩ V = clτ (V ).
Since V is τ -open, we have clτ (G) ∩ V = ∅, hence x /∈ clτθ(V ). Therefore,
V = clτθ(V ) = clτ (V ). �

Remark 5. A functionally Hausdorff space X is called weakly absolutely closed
[8] provided that every τ -open filter base on X has an adherent point. An SW
space is a functionally Hausdorff space X such that every point-separating subal-
gebra of C∗(X) which contains the constants is uniformly dense in C∗(X) [8]. It is
worth noting that by Lemma 25 in [9] and Proposition 4, a functionally Hausdorff
space X is weakly absolutely closed iff it is an SW space and clτθ(A) = clτ (A)
for every A ⊂ X .

The following result gives an upper bound on the τθ-closed hull.

Theorem 6. Let X be a functionally Hausdorff space. If A is a subset of X ,

then |[A]τθ | ≤ |A|χ(X).

Proof: Let m = χ(X) and k = |A|. For each x ∈ X let B(x) be a base for X at
the point x such that |B(x)| ≤ m. If x ∈ clτθ(A), choose a point in clτ (U) ∩ A
for every U ∈ B(x) and let Bx be the set so obtained. Clearly, x ∈ clτθ(Bx)
and |Bx| ≤ m. Let Gx = {clτ (U) ∩ Bx : U ∈ B(x)}. For every U ∈ Bx we have
x ∈ clτθ(clτ (U) ∩ Bx), in fact, if V ∈ B(x) let W ∈ B(x) such that W ⊂ V ∩ U ,
then

∅ 6= clτ (W ) ∩Bx ⊂ clτ (V ∩ U) ∩Bx ⊂ clτ (V ) ∩ (clτ (U) ∩Bx).

Since X is functionally Hausdorff, then
⋂
{clτθ(clτ (U) ∩Bx) : U ∈ B(x)} = {x},

in fact let y 6= x, then there exist open sets G and H such that x ∈ G, y ∈ H and
clτ (G)∩clτ (H) = ∅, now let U ∈ B(x) such that U ⊂ G, then clτ (H)∩clτ (U) = ∅,
so y /∈

⋂
{clτθ(clτ (U) : U ∈ B(x))}, and, a fortiori, y /∈

⋂
{clτθ(clτ (U) ∩ Bx) :
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U ∈ B(x)}. So the map ψ : clτθ(A) → Pm(Pm(A)) defined by ψ(x) = Gx for
every x ∈ clτθ(A), is one to one. Since |Pm(Pm(A))| ≤ (km)m = km, then

| clτθ(A)| ≤ km = |A|χ(X). Let A0 = A and, by transfinite induction, define
for every α < m+ sets Aα such that Aα = clτθ(

⋃
{Aβ : β < α}). Clearly⋃

{Aα : α < m+} ⊂ [A]τθ. Now let x ∈ clτθ(
⋃
{Aα : α < m+}), for each

V ∈ B(x) choose a point in clτ (V ) ∩ (
⋃
{Aα : α < m+}) and let B be the set so

obtained, obviously B ∈ Pm(
⋃
{Aα : α < m+}) and x ∈ clτθ(B). Since m

+ is
regular, there is an ordinal α < m+ such that B ⊂ Aα, so

x ∈ clτθ(B) ⊂ clτθ(Aα) ⊂ Aα+1 ⊂
⋃

{Aα : α < m+},

therefore
⋃
{Aα : α < m+} is τθ-closed. Hence [A]τθ =

⋃
{Aα : α < m+}.

It remains to show that |Aα| ≤ km for each α < m+ (this is equivalent to
|
⋃
{Aα : α < m+}| ≤ km). Suppose there is an ordinal α < m+ such that

|Aα| > km and let γ = min{α : |Aα| > km}. Since |Aα| ≤ km for every β < γ,
we have |

⋃
{Aβ : β < γ}| ≤ km. Now Aγ = clτθ(

⋃
{Aβ : β < γ}), hence

|Aγ | = | clτθ(
⋃

{Aβ : β < γ})| ≤ |
⋃

{Aβ : β < γ}|χ(X) ≤ (km)m = km,

a contradiction. �

Definition 7. Let X be a topological space. The w-compactness degree of X ,
denoted by wcd(X), is defined as the smallest infinite cardinal number k with the
property that for every open cover U of X there is a subcollection V ∈ Pk(U) for
which X =

⋃
{clτ (V ) : V ∈ V}.

For every space X we have wcd(X) ≤ L(X) and this inequality can be proper.

Example 8. Let X be any infinite T3-space such that every continuous real
valued function defined on X is constant. Clearly wcd(X) = ℵ0 < L(X).

Example 9. For each α < ω1 let I(α) = {α}× an open interval in the real line.
Set X = ω1 ∪

⋃
{I(α) : α < ω1} and for x, y ∈ X define x < y if (i) x, y ∈ ω1 and

x < y in ω1, or (ii) x ∈ ω1, y ∈ I(β) and x ≤ β in ω1, or (iii) x ∈ I(γ), y ∈ ω1
and γ < y in ω1, or (iv) x ∈ I(α), y ∈ I(β) and α < β in ω1, or (v) x, y ∈ I(α)
and x < y in I(α). Let σ be the order topology on X . Let Y = X ∪ {ω1}, define
x < ω1 for every x ∈ X and let ̺ be the order topology on Y . If τ is the topology
on Y generated by ̺ ∪ {Y − L : L is the set of limit ordinals in Y − {ω1}}, then
(Y, τ) is a functionally Hausdorff H-closed space which fails to be Lindelöf [7], so
wcd(Y ) = ℵ0 < L(Y ).

Theorem 10. If X is a functionally Hausdorff space, then |X | ≤ 2χ(X)wcd(X).

Proof: Let m = χ(X)wcd(X) and for every x ∈ X let B(x) be a base for X at
the point x such that |B(x)| ≤ m. Construct a family {Cα : α < m+} of subsets
of X such that
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(1) for any α < m+ Cα is τθ-closed;
(2) for any α < m+ |Cα| ≤ 2m;
(3) if α < β < m+, then Cα ⊂ Cβ ;

(4) for any α < m+, if U ⊂
⋃
{B(x) : x ∈

⋃
{Cβ : β < α}}, |U| ≤ m and

X −
⋃
{clτ (U) : U ∈ U} 6= ∅, then Cα −

⋃
{clτ (U) : U ∈ U} 6= ∅.

The construction is done by transfinite induction. Let p ∈ X and C0 = {p}.
Let 0 < α < m+ and assume that Cβ has been constructed for every β < α.
Let Bα =

⋃
{B(x) : x ∈

⋃
{Cβ : β < α}}, clearly |Bα| ≤ 2m. For any U ⊂

Bα such that |U| ≤ m and X −
⋃
{clτ (U) : U ∈ U} 6= ∅, choose a point in

X −
⋃
{clτ (U) : U ∈ U} and let A be the set so obtained, obviously |A| ≤ 2m.

Let Cα = [A ∪ (
⋃
{Cβ : β < α})]τθ, Cα satisfies (1), (3), (4) and, by Theorem 6,

also (2). The set C =
⋃
{Cα : α < m+} is τθ-closed, in fact let x ∈ clτθ(C), for

every V ∈ B(x) choose a point in clτ (V ) ∩ C and let K be the set so obtained,
clearly |K| ≤ m, therefore there exists an α < m+ such that K ⊂ Cα, then
x ∈ clτθ(K) ⊂ clτθ(Cα) = Cα ⊂ C. Obviously |C| ≤ 2m, so to complete the
proof it suffices to show that C = X . Let us suppose that y ∈ X − C, since
X is functionally Hausdorff, then for any x ∈ C there is a Ux ∈ B(x) such that
y /∈ clτ (Ux); for every x ∈ X − C let Ux ∈ B(x) such that clτ (Ux) ∩ C = ∅
(C is τθ-closed). {Ux}x∈X is an open cover of X , since wcd(X) ≤ m there
is a B ⊂ X such that |B| ≤ m and X =

⋃
{clτ (Ux) : x ∈ B}, clearly C ⊂⋃

{clτ (Ux) : x ∈ B ∩ C}. Since |B ∩ C| ≤ m, there is an α < m+ such that
B ∩ C ⊂ Cα. Let U = {Ux : x ∈ B ∩ C}, U ⊂

⋃
{B(x) : x ∈

⋃
{Cβ : β < α+ 1}},

|U| ≤ m, y ∈ X −
⋃
{clτ (Ux) : Ux ∈ U} and Cα+1 −

⋃
{clτ (Ux) : Ux ∈ U} = ∅,

a contradiction. Hence C = X and the proof is complete. �

Remark 11. Let X be a functionally Hausdorff space and let wX be the com-
pletely regular space which has the same points and continuous real valued func-
tions as those of X . Clearly L(wX) ≤ wcd(X) for every functionally Haus-
dorff space X . On the other hand, there exist functionally Hausdorff spaces
X such that χ(X) < χ(wX) (see e.g. [9, Example 36]). I do not know if
χ(wX)L(wX) ≤ χ(X)wcd(X) for every functionally Hausdorff space X ; if this
is the case, then Theorem 10 is a consequence of the Arkhangel’skii’s inequality
quoted at the beginning.
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