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Boundary value problems and periodic

solutions for semilinear evolution inclusions

Nikolaos S. Papageorgiou

Abstract. We consider boundary value problems for semilinear evolution inclusions. We
establish the existence of extremal solutions. Using that result, we show that the evo-
lution inclusion has periodic extremal trajectories. These results are then applied to
closed loop control systems. Finally, an example of a semilinear parabolic distributed
parameter control system is worked out in detail.

Keywords: evolution operator, multifunction, Hausdorff metric, extremal solution, peri-
odic solution, Fredholm alternative, control system, parabolic system

Classification: 34G20

1. Introduction

In this paper we consider the following boundary value problem for semilinear
evolution inclusions, defined on T = [0, b] with values in a separable Banach
space X :

(1)

{
ẋ(t) ∈ A(t)x(t) + ext F (t, x(t))

L(x) = w

}
.

Here {A(t)}t∈T is a family of generally unbounded, densely defined linear oper-
ators which generates an evolution operator K(t, s) ∈ L(X) = {space of bounded
linear operators from X into itself}, F (t, x) is an orientor field (i.e. a set-valued
vector field) and ext F (t, x) denotes the set of extreme points of F (t, x) and fi-
nally L : C(T, X) → X is a continuous, linear operator. By a solution of (1),
we understand a mild solution; i.e. a function x(·) ∈ C(T, X) such that x(t) =

K(t, 0)x(0) +
∫ t
0 K(t, s)f(s) ds for all t ∈ T and with f ∈ L1(T, X) = L1(X),

f(t) ∈ ext F (t, x(t)) a.e., while L(x) = w.
From an abstract viewpoint, our study here is a direct attempt to extend the

work done in [11]. We remark that the theory developed in [11] (in particular
Theorem 2, the “nonconvex” existence result) can no longer be applied in (1)
since the multifunction (t, x) → ext F (t, x) is not necessarily closed valued and,
in general, we cannot say anything about its continuity properties. At the same
time, we generalize the earlier works of Anichini [1], Kartsatos [5] and Zecca-
Zezza [17]. From the above works, Anichini [1] considered single-valued boundary
value problems in R

n over a compact interval. Kartsatos [5] considered semilinear
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single-valued boundary value problems in R
n over an unbounded interval, while

Zecca-Zezza [17] extended the work of Kartsatos to differential inclusions defined
in a separable Banach space. However, their formulation does not allow for the
presence of unbounded operators and therefore precludes the possibility of apply-
ing their work to partial differential inclusions (distributed parameter systems).
The plan of the paper is as follows. In Section 2, we present some background

material on multifunctions that will be needed in the sequel. Section 3 is concerned
with the existence of mild solutions for problem (1). In Section 4, we use the
existence result of Section 3, to establish the existence of periodic extremal (bang-
bang) trajectories. In Section 5, we show how our work can be used on control
systems and finally in Section 6, we work out in detail an example of a parabolic
partial differential inclusion.
2. Preliminaries

Throughout this paper, T denotes the interval [0, b] (endowed with the Lebesgue
measure λ(·)) and X stands for a separable Banach space with norm ‖ · ‖ and
whose dual X∗ has the Radon-Nikodym Property (RNP). The following notation
will also be used: Pf(c)(X) = {B ⊆ X : B is nonempty, closed (and convex)},

P(w)k(c) = {B ⊆ X : B is nonempty, (weakly-) compact (and convex)}. A mul-

tifunction (set-valued function) F : T → Pf (X) is said to be measurable, if for
every x ∈ X , the R+-valued function t → d(x, F (t)) = inf{‖x − z‖ : z ∈ F (t)} is
measurable. By S

p
F (1 ≤ p ≤ ∞) we will denote the set of selectors of F (·) that

belong in the Lebesgue-Bochner space Lp(T, X) = Lp(X), namely S
p
F = {f ∈

Lp(X) : f(t) ∈ F (t) a.e.}. This set may be empty. It is easy to check that for
a measurable F (·), Sp

F is nonempty if and only if t → inf{‖x‖ : x ∈ F (t)} ∈ L
p
+

with L
p
+ being the positive cone in the Lebesgue space Lp(T, R). Furthermore S

p
F

is a decomposable subset of Lp(X); i.e. if f1, f2 ∈ S
p
F and B is a Borel subset of

T , then χBf1 + χBcf2 ∈ S
p
F , where χB(·) stands for the characteristic function

of B.
On Pf (X), we can define a generalized metric, known in the literature as the

Hausdorff metric, by

h(B, C) = max

[
sup
b∈B

d(b, C), sup
c∈C

d(c, B)

]

for all B, C ∈ Pf (X). The space (Pf (X), h) is complete. A multifunction G :
X → Pf (X) is said to be Hausdorff continuous (h-continuous), if it is continuous
from X into the metric space (Pf (X), h).
Let Y be a complete, separable metric space (i.e. a Polish space). A multifunc-

tion F : T×Y → Pf (X) is said to satisfy the Scorza-Dragoni Property (S-D Prop-
erty), if for every ε > 0, there exists Tε ⊆ T closed, with λ(T \ Tε) < ε such that
F (·, ·) restricted on Tε ×Y is h-continuous. Conversely, if F : T × Y → Pkc(X) is
measurable in t ∈ T and h-continuous in y ∈ Y (i.e. F (·, ·) is a Carathéodory-type
multifunction), then F (·, ·) satisfies the Scorza-Dragoni Property. This follows im-
mediately from the classical Scorza-Dragoni theorem and the fact that (Pkc(X), h)
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is a Polish space (i.e. is complete and separable). Recall that the classical Scorza-
Dragoni theorem says that if V is a separable metric space, W a Polish space
and u : T × V → W is a Carathéodory function (i.e. measurable in t ∈ T , and
continuous in v ∈ V for almost all t ∈ T ), then given ε > 0 we can find Tε ⊆ T

closed with λ(T \ Tε) < ε such that u(·, ·) restricted on Tε × V is continuous.
Let ∆ = {(t, s) ∈ T × T : 0 ≤ s ≤ t ≤ b}. Then K : ∆→ L(X) is an evolution

operator if

(i) K(t, t) = I for all t ∈ [0, b],
(ii) K(t, r)K(r, s) = K(t, s) if 0 ≤ s ≤ r ≤ t ≤ b

and

(iii) K(·, ·) is a strongly continuous function.

Note that (iii) implies that there exists M > 0 such that sup(t,s)∈∆ ‖K(t, s)‖L ≤

M . Clearly if S(t) is a strongly continues semigroup, then S(t−s) is an evolution
operator. For further details, we refer to Tanabe [14, Chapter 4].

3. Existence theorem

In this section we present an existence result for problem (1). To this end, we
will need the following hypotheses on the data:

H(A): {A(t) : t ∈ T } is a family of generally unbounded, densely defined

linear operators that generates an evolution operator K(t, s) which is compact for
t − s > 0.

H(F ): F : T × X → Pwkc(X) is a multifunction s.t.

(1) (t, x)→ F (t, x) satisfies the S-D Property,
(2) sup‖x‖≤k |F (t, x)| = supy∈F (t,x) ‖y‖ ≤ ϕk(t) a.e. with ϕk(·) ∈ L

p
+

1 < p < ∞ and lim k→∞
1
k

∫ b
0 ϕk(t) dt = β < ∞.

H(L): L : C(T, X)→ X is a linear, continuous operator.

Let L̂ ∈ L(X) be defined by L̂(v) = L(K(·)v). We will assume that following

about L̂:
H0: L̂ is a bijection (hence by Banach’s theorem L̂−1 ∈ L(X)).

H1: (M‖L̂−1‖L‖L‖L + 1)Mβ < 1.

We will also need a simple lemma. Let L1w(X) denote the space of equivalence
classes of Bochner integrable functions x : T → X , with the (“weak”) norm

‖x‖w = sup{‖
∫ t2
t1

x(s) ds‖ : 0 ≤ t1 ≤ t2 ≤ b}. The notation
‖·‖w

−−−→ stands for

convergence in L1w(X).

Lemma. If {fn}n≥1 ⊆ Lp(X) 1 < p < ∞, supn≥1 ‖fn‖p < ∞ and fn
‖·‖w

−−−→ 0 as
n → ∞, then fn → 0 weakly in Lp(X).

Proof: Since by hypothesis X∗ has the RNP (see Section 2), from Theorem 1,

p. 98 of Diestel-Uhl [3], Lp(X)∗ = Lq(X∗), where 1p +
1
q = 1. Let ((·, ·)) de-

note the duality pairing between Lp(X) and Lq(X∗). Since {fn}n≥1 is bounded
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in Lp(X) and the space of X∗-valued step functions on T is dense in Lq(X∗),
we only need to show that ((fn, s)) → 0 as n → ∞ for each s : T → X∗ of

the form s(t) =
∑N

k=1 χ(tk−1,tk)(t)v
∗
k , with v∗k ∈ X∗. We have |((fn, s))| =

|
∑N

k=1

∫ tk
tk−1
(fn(s), v

∗
k) ds| ≤

∑N
k=1 ‖

∫ tk
tk−1

fn(s) ds‖ · ‖v∗k‖∗, where ‖ · ‖∗ denotes

the norm of X∗. It follows that |((fn, s))| ≤ ‖fn‖w
∑N

k=1 ‖v
∗
k‖∗ → 0 as n → ∞

and so the proof is complete. �

Now we are ready to state and prove our existence theorem concerning prob-
lem (1).

Theorem 1. If hypotheses H(A), H(F ), H(L), H0 and H1 hold, then prob-

lem (1) admits a solution.

Proof: Let E, H : C(T, X)→ 2C(T,X) be the multifunctions defined by
E(x) = {y ∈ C(T, X) : y(t) =

=

∫ t

0
K(t, s)f(s) ds, t ∈ T, f ∈ Lp(X), f(t) ∈ F (t, x(t)) a.e.}

and H(x) = {y ∈ C(T, X) : y(t) = K(t, x)L̂−1[w − L(z)] + z(t), z ∈ E(x)}.
Clearly both E(·) and H(·) have nonempty, closed and convex values (just note

that for every x(·) ∈ C(T, X), S
p
F (·,x(·))

∈ Pfc(L
p(X)); cf. hypothesis H(F )).

We claim that there exists a positive integer m ≥ 1 s.t. H(Bm) ⊆ Bm, where
Bm = {z ∈ C(T, X) : ‖z‖∞ ≤ m}. Suppose not. Then for every n ≥ 1, we can
find xn ∈ Bn such that |H(xn)| = sup{‖z‖∞ : z ∈ H(xn)} > n. Hence we have:

(2)

1 <
|H(xn)|

n
≤

≤
M‖L̂−1‖L · ‖w‖

n
+ sup

z∈E(xn)

M · ‖L̂−1‖L‖L‖L‖z‖∞
n

+ sup
z∈E(xn)

‖z‖∞
n

From the definition of the multifunction E(·), we know that if z ∈ E(xn), then

z(t) =

∫ t

0
K(t, s)f(s) ds, t ∈ T

=⇒ ‖z(t)‖ ≤

∫ t

0
M‖f(s)‖ ds

=⇒ ‖z‖∞ ≤ M

∫ b

0
ϕn(s) ds

=⇒
‖z‖∞

n
≤

M

n

∫ b

0
ϕn(s) ds

=⇒ sup
z∈E(xn)

‖z‖∞
n

≤
M

n

∫ b

0
ϕn(s) ds

=⇒ lim n→∞ sup
z∈E(xn)

‖z‖∞
n

≤ Mβ.
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Therefore by taking lim of both sides in (2), we get

1 ≤ (M · ‖L̂−1‖L‖L‖L + 1)Mβ < 1 (cf. hypothesis H1)

a contradiction. So indeed there exists m ≥ 1 s.t. H(Bm) ⊆ Bm.
Let Γ ⊆ C(T, X) be defined by

Γ = {y ∈ C(T, X) : y(t) =

∫ t

0
K(t, s)g(s) ds, t ∈ T, ‖g(t)‖ ≤ ϕm(t) a.e.}

Clearly this is a nonempty, closed and convex subset of C(T, X). We claim that
it is also compact. Since by hypothesis H(A), K(t, s) is compact for t − s > 0,
from Proposition 2.1 of [10], we know that given ε > 0, we can find δ1 > 0 such
that if t < t′, t′ − t < δ1, then

‖K(t′, s)− K(t, s)‖L <
ε

3‖ϕm‖1

for all s ∈ [0, t − δ], 0 < δ < t. Also, we can find δ2 > 0 such that if λ(C) < δ2,
then

2M

∫

C
ϕm(s) ds <

ε

3

(here, as before, λ(·) stands for the Lebesgue measure on T ). Let δ3 = min[δ1, δ2].
Let 0 < δ < δ3, let y ∈ Γ and let 0 < t < t′, t′ − t < δ3. We have:

‖y(t′)− y(t)‖

≤ ‖

∫ t′

t
K(t′, s)g(s) ds‖+ ‖

∫ t

t−δ
(K(t′, s)− K(t, s))g(s) ds‖

+‖

∫ t−δ

0
(K(t′, s)− K(t, s))g(s) ds‖

≤ M

∫ t′

t
ϕm(s) ds+ 2M

∫ t

t−δ
ϕm(s) ds+

∫ t−δ

0

ε

3‖ϕm‖1
ϕm(s) ds

<
ε

3
+

ε

3
+

ε

3
= ε.

So Γ is equicontinuous on [0, b]. For t = 0, using the strong continuity of the
evolution operator K(·, 0) and the absolute continuity of the indefinite Lebesgue
integral, we can easily see that Γ is equicontinuous at t = 0 too. Therefore Γ is
an equicontinuous subset of C(T, X).
Also let t ∈ T . Then

Γ(t) = {y(t) : y ∈ Γ} ⊆

∫ t

0
K(t, s)V (s) ds



330 N.S.Papageorgiou

with V (s) = {x ∈ X : ‖x‖ ≤ ϕm(s)}. Since the evolution operator K(t, s) is com-
pact for t − s > 0, K(t, s)V (s) ∈ Pkc(X) for almost all s ∈ [0, t]. Furthermore,
since ϕm(·) is measurable⇒ V (·) is measurable and so from the Radström embed-

ding theorem (see Klein-Thompson [6]), we get that
∫ t
0 K(t, s)V (s) ds ∈ Pkc(X)

for all t ∈ T . Thus we have that Γ(t) ∈ Pkc(X) for all t ∈ T and so from the
Arzela-Ascoli theorem we conclude that Γ ⊆ C(T, X) is compact.

Let Γ1 = {y ∈ C(T, X) : y(t) = K(t, 0)L̂−1[w − L(z)] + z(t), z ∈ Γ}. Clearly
then Γ1 is a nonempty, compact and convex subset of C(T, X). Let R : Γ1 →
Pfc(L

1(X)) be defined by
R(x) = S1F (·,x(·)) .

Using Theorem 4.5 of [9], we get that R(·) is h-continuous and also from Propo-
sition 3.1 of [8], we know that it has values in Pwkc(L

1(X)). Apply Theorem 1.1
of Tolstonogov [15], to get r : Γ1 → L1w(X) a continuous map s.t. r(x) ∈ ext R(x)
for all x ∈ Γ1. From Benamara [2], we know that ext R(x) = ext S1F (·,x(·)) =

S1ext F (·,x(·)) for all x ∈ Γ1. So r(x) ∈ S1ext F (·,x(·)) for all x ∈ Γ1.

Let θ : Γ1 → Γ1 be defined by

θ(x)(t) = K(t, 0)L̂−1[w − L(η(x))] + η(x)(t), t ∈ T

with η(x)(t) =
∫ t
0 K(t, s)r(x)(s) ds. Using the continuity of the selector r(·) and

the lemma (recall that for every k ≥ 1, ϕk ∈ L
p
+, 1 < p < ∞), we can easily see

that θ(·) is continuous. Apply Schauder’s fixed point theorem to get x = θ(x).
Clearly then, x(·) ∈ C(T, X) is the desired of (1). �

4. Periodic extremal solutions

In this section we use Theorem 1 to establish the existence of extremal (bang-
bang) solutions for the following periodic boundary value problem:

(3)

{
ẋ(t) ∈ A(t)x(t) + ext F (t, x(t))

x(0) = x(b)

}
.

We will need the following two hypotheses.

H(F )1: F : T × X → Pwkc(X) is a multifunction s.t.

(1) (t, x)→ F (t, x) has the S-D Property,
(2) sup‖x‖≤k |F (t, x)| = sup‖y∈F (t,x)‖ ‖y‖ ≤ ϕk(t) a.e., with ϕk ∈ L

p
+ 1 <

p < ∞, lim k→∞
1
k

∫ b
0 ϕk(s) ds = 0.

H2: K(b, 0)v if and only if v = 0.

Theorem 2. If hypotheses H(A), H(F )1 and H2 hold, then problem (3) admits
a solution.

Proof: In this case L : C(T, X) → X is defined by L(x) = x(b) − x(0). Then

L̂(v) = K(b, 0) v − v ⇒ L̂ = K(b, 0) − I. From hypothesis H(A), we know
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that K(b, 0) is compact. So from hypothesis H2 and the Fredholm alternative

theorem, we get that L̂−1 ∈ L(X). Thus we have satisfied hypothesis H0. Apply
Theorem 1 to conclude the existence of a periodic extremal trajectory. �

5. Control systems

In this section, we consider semilinear feedback (closed loop) control systems
and establish the existence of periodic trajectories generated by bang-bang con-
trols (extremal or bang-bang trajectories). The control space is modelled by Y

a separable Banach space. The control system under consideration is the follow-
ing:

(4)






x̂(t) = A(t)x(t) +B(t, x(t))u(t)

x(0) = x(b)

u(t) ∈ U(t, x(t)) a.e.





.

A trajectory x(·) ∈ C(T, X) is called extremal if it is generated by a control
u(t) ∈ ext U(t, x(t)) a.e. (“bang-bang” control).
We will need the following hypotheses:

H(B): B : T × X → L(Y, X) is a map s.t.

(1) for every ε > 0, there exists Tε ⊆ T closed with λ(T \ Tε) < ε s.t. B

restricted on Tε × X is continuous into L(Y, X) equipped with operator
norm topology,

(2) sup‖x‖≤k ‖B(t, x)‖L ≤ ϕk(t) a.e. with lim k→0
1
k

∫ b
0 ϕk(s) ds = 0, with

ϕk(·) ∈ L
p
+, 1 < p < ∞.

H(U): U : T × X → Pwkc(Y ) is a multifunction s.t.

(1) (t, x)→ U(t, x) has the S-D Property,

(2) |U(t, x)| = sup{‖u‖ : u ∈ U(t, x)} ≤ M̂ for all (t, x) ∈ T × X .

Theorem 3. If hypothesesH(A), H(B), H(U) and H2 hold, then control system

(4) admits a periodic extremal trajectory.

Proof: Let F : T × X → Pwkc(X) be defined by

F (t, x) = B(t, x)U(t, x).

Given ε > 0, because of hypothesis H(U) (1), we can find T 1ε ⊆ T closed with
λ(T \T 1ε ) < ε

2 such that U |T 1ε ×X is h-continuous. Similarly because of hypothesis

H(B) (1), we can find T 2ε ⊆ T 1ε closed with λ(T 1ε \T 2ε ) <
ε
2 such that B |T 2ε ×X is

continuous. Then λ(T \ T 2ε ) < ε and for (t, x), (t′, x′) ∈ T 2ε × X we have

h(F (t, x), F (t′, x′)) = h(B(t, x)U(t, x), B(t′, x′)U(t′, x′))

≤ h(B(t, x)U(t, x), B(t, x)U(t′, x′)) + h(B(t, x)U(t′, x′), B(t′, x′)U(t′, x′))

≤ ‖B(t, x)‖Lh(U(t, x), U(t′, x′)) + M̂‖B(t, x)− B(t′, x′)‖L .
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So we deduce that F |T 2ε ×X is h-continuous, i.e. F (·, ·) satisfies the S-D Property.
Finally note that

sup
‖x‖≤k

|F (t, x)| = sup
‖x‖≤k

sup
y∈F (t,x)

‖y‖ ≤ M̂ sup
‖x‖≤k

‖B(t, x)‖L ≤ M̂ϕk(t), t ∈ T.

A straightforward application of Aumann’s selection theorem (see Wagner [16,
Theorem 5.10]), shows that control system (4) is actually equivalent to the fol-
lowing evolution inclusion (deparametrized system):{

ẋ(t) ∈ A(t)x(t) + F (t, x(t))

x(0) = x(b)

}
.

By virtue of Theorem 2, we know that there exists x(·) ∈ C(T, X) a mild solution
of {

ẋ(t) ∈ A(t)x(t) + ext F (t, x(t))

x(0) = x(b)

}
.

Note that ext F (t, x(t)) = ext B(t, x(t))U(t, x(t)) ⊆ B(t, x(t)) ext U(t, x(t)).

Let f ∈ lp(X) be such that x(t) = K(t, 0)x(0) +
∫ t
0 K(t, s)f(s) ds, t ∈ T . Then

let
Θ(t) = {u ∈ ext U(t, x(t)) : f(t) = B(t, x(t))u} 6= ∅.

From Theorem 9.3 of Himmelberg [4], we know thatGr ext U(·, x(·)) = {(t, u) ∈
T × Y : u ∈ ext U(t, x(t))} ∈ L(T ) × B(Y ) with L(T ) being the Lebesgue
σ-field of T and B(Y ) the Borel σ-field of Y . Apply Aumann’s selection the-
orem to get u : T → Y measurable s.t. u(t) ∈ Θ(t) for all t ∈ T . Then

x(t) = K(t, 0)x(0) +
∫ t
0 K(t, s)B(s, x(s))u(s) ds, with y(t) ∈ ext U(t, x(t)) a.e.

and x(0) = x(b). So x(·) is the desired periodic extremal trajectory of (4). �

We can drop the separability hypothesis on the control space Y and instead
assume the following:

H3: Y = Z∗ with Z being a separable Banach space.

Remark. This alternative formulation incorporates in our abstract framework,
systems whose control space is L∞.

Theorem 4. If hypotheses H(A), H(B), H(U), H2 and H3 hold, then control

system (4) admits a periodic extremal trajectory.

Proof: Note that F (t, x) = B(t, x)U(t, x) ∈ Pwkc(X). Indeed let {yn}n≥1 ⊆
F (t, x). Then yn = B(t, x)un, un ∈ U(t, x). Note that since Z is separable,
U(t, x) equipped with the w∗-topology is compact-metrizable. So by passing to

a subsequence if necessary, we may assume that un
w∗

−−→ u. Then for all x∗ ∈ X∗,
we have:

(x∗, B(t, x)un)X,X∗ = (B(t, x)∗x∗, un)Z,Z∗ → 0 as n → ∞

⇒ yn → y weakly in X and clearly y = B(t, x)u, u ∈ U(t, x)

⇒ F (t, x) ∈ Pwkc(X).
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The rest of the proof is the same as that of Theorem 3. �

6. An example

In this section we present an example of a semilinear parabolic control system,
illustrating the applicability of our abstract results.
So let Z be a bounded domain in R

n, with boundary Γ = ∂Z. For z ∈ R
n,

we have z = (z1, . . . , zN ) and Dk =
∂

∂zk
is the elementary differential operator,

k = 1, . . . , N . We consider the following periodic control system:

(5)






∂x

∂t
−

N∑

i,j=1

Di(aij(t, z)Djx) = b(t, z, x(t, z))u(t, z) on T × Z

x |T×Γ= 0, ‖u(t, ·)‖L∞(Z) ≤ r(t, x(t, ·)) a.e.

x(0, z) = x(b, z) a.e.






.

We will need the following hypotheses:

H(a): aij ∈ L∞(T × Z), aij = aji, c0‖η‖
2 ≤

∑N
i,j=1 aij(t, z) ηiηj ≤ c1‖η‖

2

with 0 < c0 < c1 and for all η ∈ R
n, and |aij(t

′, z)− aij(t, z)| ≤ ξ(z)|t′ − t| a.e.
with ξ(·) ∈ L∞

+ (Z).

H(b): b : T × Z × R → R is a function s.t.

(1) (t, z)→ b(t, z, x) is measurable,
(2) x → b(t, z, x) is continuous,
(3) sup‖x‖

L2(Z)≤k ‖b(t, ·, x(·))‖L2(Z) ≤ ϕk(t) a.e. with ϕk ∈ L2+ and

lim k→∞
1
k

∫ b
0 ϕk(t) dt = 0.

H(r): r : T × L2(Z)→ R+ is a function s.t.

(1) t → r(t, x) is measurable,
(2) x → r(t, x) is continuous,

(3) r(t, x) ≤ M̂ for all (t, x) ∈ T × L2(Z).

We have the following result concerning (5).

Theorem 5. If hypotheses H(a), H(b) and H(r) hold, then control system (5)
admits a periodic extremal trajectory x(t, z) s.t.

Proof: Let a : T × H10 (Z)× H10 (Z)→ R be defined by

a(t, x, y) =

∫

Z

N∑

i,j=1

aij(t, z)Dix(z)Djy(z) dz.

Using the Cauchy-Schwartz inequality and the fact that (
∑N

i=1 ‖Dix‖
2
L2(Z)

)1/2

is an equivalent norm for the Sobolev space H10 (Z), we get that for some θ > 0

|a(t, x, y)| ≤ θ‖x‖H10 (Z)
· ‖y‖H10(Z)

, x, y ∈ H10 (Z).
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Also using hypothesis H(a) we can easily check that for some θ1 > 0

θ1‖x‖
2
H10 (Z)

≤ a(t, x, x), x ∈ H10 (Z).

Furthermore because of the Lipschitz property of the coefficients aij(·, z) we
get that for some θ2 > 0

|a(t′, x, y)− a(t, x, y)| ≤ θ2|t
′ − t| ‖x‖H10 (Z)

· ‖y‖H10(Z)
, t, t′ ∈ T, x, y ∈ H10 (Z).

Let A : T × H10 (Z)→ H−1(Z) = H10 (Z)
∗ be defined by

〈A(t)x, y〉 = a(t, x, y), (t, x, y) ∈ T × H10 (Z)× H10 (Z),

where by 〈·, ·〉 we denote the duality pairing of (H10 (Z), H
−1(Z)). From Theo-

rem 5.4.1 of Tanabe [14], we know that {A(t) : t ∈ T } generates an evolution
operator K(t, s) ∈ L(H), with H = L2(Z). Let AH (t) = A(t) |L2(Z)×L2(Z) be

the operator defined by

D(AH (t)) = {x ∈ H10 (Z) :

N∑

i,j=1

Di(aij(t, z)Djx(z)) ∈ L2(Z)}

and AH (t)x = −
N∑

i,j=1

Di(aij(t, z)Djx(z)).

We know that this is a linear, densely defined and self-adjoint operator (recall
by hypothesis H(a), aij = aji), with A(t) being its energetic extension. Let

ϕ : T × H → R = R ∪ {+∞} be defined by

ϕ(t, x) =

{
1
2

∫
Z

∑N
i,j=1 aij(t, z)Dix(z)Djy(z) dz x ∈ H10 (Z)

+∞ otherwise
.

We know (see for example [12]), that ϕ(t, ·) ∈ Γ0(H) (i.e. ϕ(t, ·) is proper, l.s.c,
convex function on H), ∂ϕ(t, x) = AH(t)x and furthermore exploiting the fact
that H10 (Z) embeds compactly in L2(Z), we can see that for every λ ∈ R, the level

set {x ∈ L2(Z) : ‖x‖2
L2(Z)

+ ϕ(t, x) ≤ λ} is compact (indeed it is closed, convex

and bounded in H10 (Z) and so by the compactness of the embedding of H
1
0 (Z) in

L2(Z), is compact in L2(Z)). So for every t ∈ T , ϕ(t, ·) is of compact type (see
[12]) and so the resolvent (I +λ∂ϕ(t, ·))−1 is compact for every λ > 0. Also from
the Konishi-Brezis theorem [7], we know that for every t ∈ T , ∂ϕ(t, ·) generates
a compact semigroup. So using inequality (4.12), p. 39 of Pavel [13], we deduce
that K(t, s) is equicontinuous on bounded subsets of H = L2(Z) (i.e. given ε > 0
and C ⊆ H a bounded subset, there is δ > 0 such that ‖K(t′, s)v−K(t, s)v‖L < ε
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for all |t′ − t| < δ and all v ∈ C). Thus finally, by invoking Theorem 5.1, p. 46 of
Pavel [13], we get that K(t, s) ∈ L(H) is compact for t − s > 0.
Next, let Y = L∞(Z) be the control space and U(t, x) = {u ∈ L∞(Z) :

‖u‖L∞(Z) ≤ r(t, x)} for all (t, x) ∈ T × L2(Z). Then by applying the classical

Scorza-Dragoni theorem on r(·, ·) we can get that U(·, ·) satisfies the S-D Property.

Finally because of hypothesis H(r) (3), we have |U(t, x)| ≤ M̂ . Also let B :
T × H → L(Y, H) be defined by B(t, x)(·) = b(t, ·, x(·)). Clearly because of H(b)
and the classical Scorza-Dragoni theorem, this satisfies hypotheses H(B) and H3.
Then rewrite (5) in the following equivalent abstract form:






ẋ(t) +A(t)x(t) = B(t, x(t))u(t)

x(0) = x(b)

u(t) ∈ U(t, x(t)) a.e.





.

Apply Theorem 4 to get a periodic extremal trajectory for (5). From Tanabe [14]

we know that x ∈ C(T, L2(Z)) ∩ L2(T, H10 (Z)) and
∂x
∂t ∈ L2(T, H−1(Z)). �

Remark. Note that the bang-bang control u(t, z) generating the periodic ex-
tremal trajectory x(t, z), is easily realized, since λ{t ∈ T : ‖u(t, ·)‖∞ 6= r(t, x(t, ·))}
= 0. Here λ is the Lebesgue measure on T . So at almost all times t ∈ T ,
ess sup

z∈Z
|u(t, z)| = r(t, x(t, ·)).
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