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Valuations of lines

Josef Mlček

Abstract. We enlarge the problem of valuations of triads on so called lines. A line in an
e-structure A = 〈A, F, E〉 (it means that 〈A, F 〉 is a semigroup and E is an automorphism
or an antiautomorphism on 〈A, F 〉 such that E ◦ E = Id ↾ A) is, generally, a sequence
A ↾ B, A ↾ Uc, c ∈ FZ (where FZ is the class of finite integers) of substructures of A such
that B ⊆ Uc ⊆ Ud holds for each c ≤ d. We denote this line as A(Uc, B)c∈FZ and we say

that a mapping H is a valuation of the line A(Uc, B)c∈FZ in a line Â(Ûc, B̂)c∈FZ if it is, for

each c ∈ FZ, a valuation of the triad A(Uc, B) in Â(Ûc, B̂). Some theorems on an existence
of a valuation of a given line in another one are presented and some examples concerning
equivalences and ideals are discussed. A generalization of the metrization theorem is
presented, too.

Keywords: valuation, triad, metrization theorem, semigroup

Classification: 03E70, 54E35, 20M14

The problem of valuations concerns the question whether there exists a certain
representationH of a given structure A in another one Â. The structures in question
are semigroups with a certain automorphism or antiautomorphism i.e. structures
of the form 〈A, F, E〉 where 〈A, F 〉 is a semigroup and E is an automorphism or an
antiautomorphism of 〈A, F 〉 such that E ◦ E is the identity on A. The described
structure is called an e-structure. The mentioned representation preserves some
structural properties of the relevant e-structures; it is called a valuation of A in Â.
(See [M2], [M3].) We specify, moreover, this general situation demanding to find
a valuation of certain “descriptive” type in a hierarchy of classes. For example,
having an e-structure A = 〈P(a),∪, Id〉 , where a is a set, and the e-structure

Â = 〈Q+,+, Id〉 (where Id is everywhere the identity on the relevant class and
Q+ is the class of all non-negative rational numbers), we look for a set-valuation

H of A in Â. This means that we have H : P(a) → Q+ and H is a set-mapping
such that H(u ∪ v) ≤ H(u) + H(v). The relation ≤ is the so called canonical
relation of the e-structure 〈Q+,+, Id〉; it is defined in this structure by the relation
x ≤ y ⇔ (∃z)(x + z = y). The solution of our task is trivial: Let r ∈ Q+ be fixed.
Putting H(u) = r for all u ⊆ a we obtain a required mapping. Assume, moreover,
that U ⊆ P(a) is a subclass closed under operation ∪, and put [0]+ = {r ∈ Q+; r

.
=

0}. Then [0]+ is a subclass of Q+ closed under the operation +. Now, the task
to find a set-valuation as above with the additional property that U = H−1′′[0]+

and {∅} = H−1′′{0} is more complicated. The required mapping is said to be
a (set-) valuation of the triad A(U, {∅}) (i.e. of the triple A, A ↾ U, A ↾ {∅} of
substructures of the structure A) in the triad 〈Q+,+, Id〉([0]+, {0}). The last triad
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is the so called canonical π-one; it is denoted as Tπ . A canonical σ-triad is the triad
〈N,+, Id〉(FN, {0}); we denote this triad as Tσ. It is known, for example, that
every triad A(U, B), where A, B are sets and U is a π-class (σ-class resp.) has
a set-valuation in Tπ (Tσ-resp.).
In this article, we deal with so called lines. A line in a given e-structure A over

B is a sequence A ↾ B, A ↾ Uc, c ∈ FZ of substructures of A such that B ⊆ Uc ⊆ Ud

holds for each c ≤ d, c, d ∈ FZ. We denote such a line as A(Uc, B). A mapping H

is a valuation of a line A(Uc, B)c∈FZ in a line Â(Ûc, B̂)c∈FZ if it is, for each c ∈ FZ,

a valuation of the triad A(Uc, B) in Â(Ûc, B̂).

We shall study the so called (π(S)−σ(S))-lines. It means that A and B belong
to a so called standard universe S of classes, the classes Uc with c odd are π(S)-
classes, i.e. classes of the form

⋂
n∈FNXn, where {Xn}n ⊆ S, and the classes Uc

with c even are σ(S)-classes, i.e. classes of the form
⋃

n∈FNXn, where {Xn}n ⊆ S.
We shall look for a valuation H ∈ S of such a (π(S) − σ(S))-line in a canonical
one. By a canonical line we mean a line Lπ−σ(ζ) which is defined in the section
Lines and valuations; this line is a line in the e-structure 〈Q+,+, Id〉 over {∅}.
The system SdV of all set-theoretically definable classes is the basical example of

the standard universe S of classes. Note that, generally, we cannot find a valuation
H of a given (π(SdV ) − σ(SdV ))-line in a canonical one such that H belongs to
SdV ; see Remarks in the paragraph Valuations of (π − σ)-Lines. We prove that
our problem of valuations of (π(S)− σ(S))-lines is solvable in so called saturated
standard universes of classes. Let us present that the revealment SdV of the system
SdV is such a saturated standard universe of classes.
Let us introduce briefly two domains of applications of valuations of lines.

A sequence {Ec}c∈FZ of equivalences on a set z such that Ec ⊆ Ec+1 holds for
each c ∈ FZ, each Ec with c odd is a π-class and each Ec with c even is a σ-class,
can be seen as a (π(S)− σ(S))-line. This fact enables us to state a generalization
of some known metrization theorems of equivalences ([M2],[Gui]).
Similarly, we can study “(π − σ)-lines” of ideals on a set a. Here, we must

deal with so called monotonic valuations of lines, i.e. valuations which preserve
canonical relations of relevant e-structures. We investigate this problems in the last
paragraph.

§1 Lines and valuations

We work in the alternative set theory; we shall use usual notations of this theory.
Recall that small Latin letters range over sets and i, j, k, l, m, n range over finite
natural numbers. By a collection we mean a collection of classes which satisfy a given
formula of the language FLV. The collection of all set-theoretically definable sets
is denoted by SdV ; it is a codable system.

We say that a structure 〈A, F, E〉 is an e-structure if we have the following:

1) 〈A, F 〉 is a semigroup (i.e. F is an associative operation on A),
2) E ◦ E is the identity on A,
3) we have either, for each x, y ∈ A, F (E(x), E(y)) = E(F (x, y)) or, for each

x, y ∈ A, F (E(x), E(y)) = E(F (y, x)).
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Let 〈A, F, E〉 be an e-structure. We define, on A, a canonical relation ⊳ A 〈A, E〉
by:

x ⊳ A y ⇔ (∃z ∈ A)(F (x, z) = y).

Assume that A = 〈A, F, E〉, Â = 〈Â, F̂ , Ê〉 are two e-structures. A mapping

H : A → Â is said to be a valuation of A in Â if we have:

a) H(F (x, y)) ⊳
Â

F̂ (H(x, y)) holds for each x, y ∈ A,

b) H(E(x)) = Ê(H(x)) holds for each x ∈ A.

Let A be an e-structure. Then the triple 〈A, A ↾ U, A ↾ B〉, where B ⊆ U ⊆ A and
A ↾ B, A ↾ U are substructures of A, is said to be a triad over the e-structure A. We
denote it as A(U, B). A mapping H is called a valuation of the triad 〈A, F, E〉(U, B)

in the triad 〈Â, F̂ , Ê〉(Û , B̂), if H is a valuation of 〈A, F, E〉 in 〈Â, F̂ , Ê〉 and we
have, moreover,

c) H−1′′ Û = U, H−1′′B̂ = B.

We use the following notations: Let r ∈ Q+. Then r · [Q+] = {r · d; d ∈ Q+ &
d

.
= 0}, r ·BQ+ = {r · b; b ∈ BQ+}. We have r · [Q+] = {x ∈ Q+; (∀n)(x ≤ r · n)}
and r ·BQ+ = {x ∈ Q+; (∃n)(x ≤ r · n)}.

We can generalize the notion of the triad by the following way:
Let A, A ↾ B be two e-structures, B ⊆ A.
A line in A over B is a sequence {A, A ↾ Uc, A ↾ B}c∈FZ such that we have

1) A ↾ Uc is an e-structure and B ⊆ Uc holds for each c ∈ FZ,
2) c < d ⇒ Uc ⊆ Ud.

Let us denote such a line by the symbol

A(Uc, B)c∈FZ.

A valuation of a line A(Uc, B)c∈FZ in a line Â(Ûc, B̂)c∈FZ is a valuation H of the

structure A in Â such that H−1′′Ûc = Uc holds for each c ∈ FZ and H−1′′B̂ = B.

Example. Let ζ ∈ N− FN. Put

Uc(ζ) = (2
ζ)c · [0]+ whenever c ∈ FZ is odd,

Uc(ζ) = (2
ζ)c−1 ·BQ+ whenever c ∈ FZ is even.

Then
〈Q+,+, Id〉(Uc, {0})

is a line in the e-structure 〈Q+,+, Id〉 over {0}.

Let us present the following interpretation of a line. Let 〈E1, E2〉 be a couple of
equivalences on a class A ∈ SdV such that E1 ⊆ E2 and E1 is a π-equivalence, E2
is a σ- equivalence. We can see this situation as a formalization of the phenomenon
of two horizons; the horizon of “microcosmos” which is represented by the first of
the equivalences in question and the horizon of “macrocosmos” represented by the
second one. The couple presented is called biequivalence. The sequence {Ec}c∈FZ,
where each Ec is an equivalence on a fixed class from SdV , Ec ⊆ Ec+1 and Ec is
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a π-class and Ec+1 is a σ-class for each odd c ∈ FZ, can be seen as a formalization
of a “line of horizons”.
Note that an equivalence E on a class B can be studied as an e-structure. Indeed,

let A = 〈A, F, E〉 be a structure defined as follows:

A = B2 ∪ {∅},
F : A2 → A is a function defined by

F (〈x, y〉, 〈r, s〉) = 〈x, s〉 (resp. ∅ )⇔ y = r (resp. y 6= r)

F (w, ∅) = F (∅, w) = ∅, whenever w ∈ A,

E : A → A is a function defined by

E(〈x, y〉) = 〈y, x〉), E(∅) = ∅.

We can see that A is an e-structure and E can be identified with the triad A(E ∪
{∅}, Id ↾ B ∪ {∅}). Thus the sequence {Ec}c∈FZ induces the line A(Ec ∪ {∅},
Id ↾ B ∪ {∅})c∈FZ; we denote it by the symbol L(Ec)c∈FZ.

We can see, moreover, that every valuationH : A → [0, 1]Q of the triad presented

in 〈Q+,+, Id〉([0]+, {0}) induces a rational metric D : B × B → [0, 1]Q given by
the relation D(x, y) = H(〈x, y〉. We have

〈x, u〉 ∈ E ⇔ D(x, y)
.
= 0.

We conclude that a valuation H of the line L(Ec)c∈FZ in the line from the
previous example induces the mapping similarly as above, which can be seen as
a “horizon-metric” for the line of equivalences in question. A proposition on the
existence of such a valuation represents thus a generalization of the theorem on
metrization (see [Gui],[M2]); such a proposition will be precisely formulated below.

We shall study, roughly speaking, “(π−σ)-lines”, i.e. lines A(Uc, B) where A, B
belong to a collection S and the classes Uc are π(S)-classes whenever c is odd and
σ(S)-classes whenever c is even.
A class

⋂
n Xn, where {Xn} ⊆ S, is called a π(S)-class and a class

⋃
n Xn,

where {Xn} ⊆ S, is called a σ(S)-class.

A line A(Uc, B)c∈FZ is called a (π(S) − σ(S))-line in A over B, if A, B ∈ S

and, for each c ∈ FZ odd, Uc is a π(S)-class and Uc+1 is a σ(S)-class.

The collection S plays a role of a universe of primary visual objects. The system
SdV of all set-theoretically definable classes is a good example of such a collection;
we can naturally see here σ-classes, π-classes, σπ-classes as secondary visual objects.
We say that a collection of classes is universe of classes if it is closed under definition
by normal formulas of the language FLV with class-parameters from this collection.
Thus, having a universe U of classes and a normal formula ϕ(x, X1, X2, . . . , Xk) of
the language FLV such that the classes X1, X2, . . . , Xk belong to U, we see that
the class {x;ϕ(x, X1, X2, . . . , Xk)} belongs to U, too. Note that every universe
of classes contains all sets. More generally, every set-theoretically definable class
belongs to each universe of classes. By a standard universe of classes we call each
universe of classes which contains only such non-empty subclasses of the class of
natural numbers which have the first element. We can see (see [M1]) that every
standard universe of classes contains only the revealed classes and does not contain
a proper semiset. It satisfies all axioms of Gödel-Bernays theory of finite sets.
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A standard universe U of classes is said to be standard saturated universe of classes
if we have the following: Let {Xn}n∈FN be a sequence of classes of this universe.
Then there exists a relation R from U such that

(∀n)R′′{n} = Xn.

Convention. Throughout this paper, let S denote a standard universe of classes.

We see that the line from the first example is a π(SdV ) − σ(SdV ))-line in
〈Q+,+, Id〉 over {∅}. We denote it by

Lπ−σ(ζ).

Recall that it is defined for each ζ ∈ N− FN.

§2 Valuations of (π − σ)-lines

Theorem (on valuations of (π(S)−σ(S))-lines). Let S be a codable saturated
standard universe and let A(Uc, B)c∈FZ be a (π(S)−σ(S))-line in A over B. Then
there exists a valuation of this line in an Lπ−σ(ζ) which belongs to S.

Let A(Uc, B)c∈FZ be a (π(SdV)−σ(SdV))-line in A over B and let A be a set.
Then there exists a set-valuation of this line in an Lπ−σ(ζ).

We give a proof of the theorem in the two following sections. At first, in the
section Valuations of uniform (π−σ)-lines, we introduce a notion of a uniform (π−
σ)-line in A over B w.r.t. S and prove a proposition on an existence of a valuation
H ∈ S of such a line in an Lπ−σ(ζ). Secondly, we prove that, in a codable saturated
standard universe, the notion of the (π(S)−σ(S))-line in A over B coincides with
this one of the uniform (π − σ)-line in A over B w.r.t. S. This second step is done
in the section (π − σ)-uniform lines w.r.t. a saturated standard universe. Finally,
our theorem is an easy consequence of the mentioned assertions. This is presented
at the end of this section.

Valuations of uniform (π − σ)-lines.

A relation R is called a σ-string , if we have

dom(R) ∈ N & (∀α ∈ dom(R)− 1)(R′′{α} ⊆ R′′{α+ 1}).

Let 〈A, F, E〉(B, B) be a triad. We say that a σ-string R is a σ-string in 〈A, F, E〉
over B if the following items hold:

1) R(0) = B, R(θ) = A, where θ + 1 = dom(R),
2) F ′′R2(α) ⊆ R(α+1), F ′′

3R3(α) ⊆ R(α+1) is true for each α ∈ θ; we denote

F3 : A
3 → A the function defined by F3(x, y, z) = F (F (x, y), z),

3) E′′R(α) ⊆ R(α) holds for each α ≤ θ.

Recall the lemma on a valuation over a σ-string which is proved in [M2].
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Lemma (on a valuation over a σ-string). Let S be a standard universe. Let

A(B, B) ∈ S be a triad and assume that R ∈ S is a σ-string in A over B. Suppose,
moreover, that θ + 1 = dom(R).
Then there exists a valuation H ∈ S of a triad A(B, B) in 〈N,+, Id〉({0}, {0})

such that, for each α ∈ θ, we have

R(α) ⊆ {x ∈ A;H(x) ≤ 2α} ⊆ R(α+ 1).

Natural number ζ /∈ FN is called a distance in a σ-string R, whenever there
exists a number η ∈ N − FN so that we have dom(R) − 1 = 2ζ · η. Suppose
that ζ /∈ FN is a distance in a σ-string R and let η ∈ N − FN be a number
such that we have dom(R) − 1 = 2ζ · η. We define the function zR,ζ = z on
[−η, η] with values in dom(R) as follows: Let us denote θ = dom(R) − 1. Then

z(0) = θ
2 , z(c) = z(0) + c · ζ whenever c ∈ [−η, η] − {0} holds. Assuming R is

a σ-string in A over B, we can see that R(z(−η)) = B, R(z(η)) = A hold.

Let ζ be a distance in a σ-string R in A over B.
We say that a line A(Uc, B)c∈FZ is a 〈R, ζ〉-line in A over B if we have:

Uc =
⋂

n R′′{z(c)− n}, whenever c ∈ FZ is odd,
Uc =

⋃
n R′′{z(c − 1) + n}, whenever c ∈ FZ is even.

Let ζ be a distance in a σ-string R in A over B and let R ∈ S, dom(R) =
θ + 1, A, B ∈ S. Then there exists a valuation H over a σ-string R, H ∈ S. We
have (∀x ∈ B)H(x) ≤ 2−θ. We have, moreover, for each c ∈ FZ odd,

x ∈ Uc ⇔ (∀n)H(x) ≤ 2z(c)−n ⇔ 2−z(0) · H(x) ∈ (2ζ)c · [0]+,

x ∈ Uc+1 ⇔ (∃n)H(x) ≤ 2z(c)+n ⇔ 2−z(0) · H(x) ∈ (2ζ)c ·BQ+.

We say that a line A(Uc, B)c∈FZ is a uniform (π − σ)-line in A over B w.r.t.
S, if there are A, B ∈ S and a σ-string R ∈ S in A over B and a distance ζ in
this string such that A(Uc, B)c∈FZ is an 〈R, ζ〉-line in A over B. Saying a uniform
(π − σ)-line w.r.t. S we mean a uniform (π − δ)-line in an A over a B w.r.t. S.
We can see that the line Lπ−σ(ζ) is a (π−σ)-line in 〈Q+,+, Id〉 over {0} w.r.t.

SdV. Indeed, let η ∈ N − FN. We define the relation R on θ + 1 = 2ζη + 1 by
R(α) = {x ∈ Q+; x ≤ 2α−ζη} whenever 0 < αθ and we put in addition R(0) =
{0}, R(θ) = Q+. Then R ∈ S and R is a σ-string in 〈Q+,+, Id〉 over {0}. Let
z : [−η, η]→ θ be a function defined by the relation z(0) = θ/2, z(γ) = z(0)+ γζ =
ζη + γζ for γ ∈ [−η, η] − {0}. We have, for each c ∈ FZ odd and x ∈ Q+, the
following:

x ∈
⋂

n R(z(c)− n) ⇔ (∀n)(x ≤ 2z(c)−n−ζη) ⇔ (∀n)(x ≤ 2cζ−n) ⇔ x ∈ 2cζ · [0]+,

x ∈
⋃

n R(z(c) + n)⇔ (∃n)(x ≤ 2z(c)+n−ζη)⇔ (∃n)(x ≤ 2cζ+n)⇔ x ∈ 2cζ ·BQ+.
Thus Lπ−σ(ζ) is an 〈R, ζ〉-line in 〈Q+,+, Id〉 over {0}. We can deduce from

the fact above that the following theorem holds.

Theorem (on a valuation of a uniform (π − σ)-line). Let S be a standard

universe. Then every uniform (π − σ)-line w.r.t. S has a valuation in an Lπ−σ(ζ)
which belongs to S.

Let us clarify some questions about uniform lines.
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Lemma. Let S be a standard universe and let L be a line in a structure from
S. Let H ∈ S be a valuation of L in a uniform (π − σ)-line w.r.t. S. Then L is
a uniform (π − σ)-line w.r.t. S.

Proof: Suppose that L = A(Uc, B)c∈FZ has the valuation H ∈ S in L̂ =

Â(Ûc, B̂)c∈FZ and let L̂ be an 〈R, ζ〉-uniform line in Â over B̂, R ∈ S. Put z = zR,ζ

as above. Let us define the string S on θ + 1 = 2ηζ + 1 = dom(R) by the relation
S(α) = H−1′′R(α). We can see that S ∈ S and that it is a σ-string in A over
B. Indeed, assuming A = 〈A, F, E〉, we have x, y ∈ S(α) ⇒ H(x), H(y) ∈ R(α)
whenever α+ 1 ∈ dom(S). Further, the relation E′′S(α) ⊆ S(α) is easy.

We have, for each c ∈ FZ odd: Uc = H−1′′Ûc =
⋂

n H−1′′R(z(c) − n) =⋂
n S(z(c) − n), Uc−1 = H−1′′Ûc−1 = H−1′′ ⋃

n R(z(c) + n) =
⋃

n H−1′′R(z(c) +
n) =

⋃
n S(z(c) + n). Thus, L is an 〈S, ζ〉-line in A over B w.r.t. S. �

Lemma. Let L be an 〈R, ζ〉-line in A over B, ζ̃ ∈ ζ − FN. Then there is an R̃

such that L is an 〈R̃, ζ̃〉-line in A over B. If R ∈ S then R̃ can be chosen from S.

Proof: Let Â(Ûc, B̂)c∈FZ be an 〈R, ζ〉-uniform line and assume that R ∈ S. Let
z = zR,ζ be as above and let η̃ ∈ η − FN. We define a function z̃ : [−η̃, η̃]→ [0, θ],

where θ̃ = 2·η̃·ζ̃, by z̃(γ) = η̃·ζ̃+γ ·ζ̃. We define the relation R̃ with dom(R̃) = [0, θ̃]

as follows: Put R̃(0) = B, R̃(θ̃) = A. Put, for each γ ∈ [−θ̃ + 1, θ̃ − 1] and

α ∈ [−ζ̃, ζ̃ − 1] such that ζ̃(γ) + α > 0, R̃(z̃(γ) + α) = R(z(γ) + α). We wish to

prove that R̃ and ζ̃ have the required properties.

Let us prove, at first, that R̃ is a σ-string in A over B. Assume that A =

〈A, F, E〉. It is easy that E′′R̃(δ) ⊆ R̃(δ) holds for each δ ≤ θ̃. Assume that

δ = z̃(γ) + α holds for some γ ∈ [−θ̃ + 1, θ̃ − 1], α ∈ [−ζ̃, ζ̃ − 1]. We have, for each

x, y ∈ R̃(δ), F (x, y) ∈ R(z(γ) + α + 1). Thus F (x, y) ∈ R̃(δ + 1) holds. We can

similarly prove that x, y, z ∈ R̃(δ)⇒ F3(x, y, z) ∈ R̃(δ + 1).

It remains to prove that, for each c ∈ FZ odd, Uc =
⋂

n R̃(z̃(c)− n) and Uc−1 =⋃
n R̃(z̃(c) + n) hold. But it follows immediately from the definition of R̃. Finally,

assuming R ∈ S, we can see that R̃ ∈ S. �

The following proposition is an easy consequence of the above results.

Proposition (on valuation in Lπ−σ(ζ)). Let S be a standard universe and let

L be a line in an A which belongs to S. Then L has a valuation from S in an

Lπ−σ(ζ) iff L is a uniform (π − σ)-line w.r.t. S.

(π − σ)-uniform lines w.r.t. a saturated standard universe.

We give a criterion of the uniformity of lines.
We shall use the following notation: Let S ⊆ V3. We denote, for 〈x, y〉 ∈ dom(S),

the class S′′{〈x, y〉} by S(x, y).

Lemma (on uniform lines). Let S be a saturated standard universe and suppose
that A(Uc, B)c∈FZ is a line, A, B ∈ S. Let S be a relation and ξ ∈ N− FN be

such that we have

1) dom(S) = FZ,
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2) S′′{c} is, for each c ∈ FZ, a σ-string in A over B, dom(S′′{c}) = ξ+1 and
S′′{c} ∈ S,

3) the relations Uc =
⋂

n S(c, ξ − n), Uc+1 =
⋃

n S(c, n) hold for each c ∈ FZ
odd.

Then A(Uc, B)c∈FZ is a uniform (π − σ)-line in A over B w.r.t. S.

Proof: We are looking for a σ-string R ∈ S and a number β such that the line
in question is an 〈R, β〉-line in A over B. We shall say that a σ-string R is a weak
σ-string in A over B if there exists a relation R on natural numbers with values in
A such that the extension of each number from its domain contains B as a subclass
and

a) F ′′R2(α) ⊆ R(α + 1), F ′′
3 R3(α) ⊆ R(α + 1) holds for each α ∈ θ, where

F3 : A
3 → A is a function defined by the relation F3(x, y, z) = F (F (x, y), z).

b) E′′R(α) ⊆ R(α) holds for each α ∈ θ + 1.

We say sometimes that the domain of a σ-string is the length of the string in
question.
The classes Uc, c ∈ FZ, are linearly ordered by the inclusion. We deduce from

this and by using the prolongation axiom that there exists a number δ ∈ N− FN
and numbers

lc ∈ FN, c ∈ FZ odd,
nc ∈ FN, c ∈ FZ even,

so that we have for each c ∈ FZ odd

S(c, ξ−(nc+δ)) ⊆ S(c, ξ−nc) ⊆ S(c+1, lc) ⊆ S(c+1, lc+δ) ⊆ S(c+2, ξ−(nc+2+δ)).

We have, for each c ∈ FZ odd:

F ′′
3 (S(c, ξ − nc − 1))

3 ⊆ S(c, ξ − nc) ⊆ S(c+ 1, lc + 1)

and

F ′′
3 (S(c+ 1, lc + δ − 1))3 ⊆ S(c+ 1, lc + δ) ⊆ S(c+ 2, ξ − (nc+2 + δ))

⊆ S(c+ 2, ξ − (nc+2 + δ − 1)).

We denote, for each c ∈ FZ odd, Ic = {α; ξ − (nc + δ) < α < ξ − nc} and

Ic+1 = {α; lc < α < lc + δ}. Every set Ic has δ − 1 elements. Let S̃c be the
relation which is obtained from S(c) ↾ Ic by the natural renumbering of its domain

Ic (starting from the number 0). We see that S̃c is a weak σ-string in A over B of
the length δ − 1, which belongs, moreover, to S. We can see that, for each c < d

from FZ and α, β ≤ δ − 1, the relation F ′′
3 (S̃c(α))

3 ⊆ S̃d(β) holds. Put β = δ − 1.
We have, for c ∈ FZ odd,

Uc =
⋂

n S̃c(β − n), Uc+1 =
⋃

n S̃c(n).

There exists a relation S̃ on FZ such that we have for each c ∈ FZ: S̃(c) = S̃c.
There exists, moreover, a number γ ∈ N− FN and a relation T ∈ S such that

1) dom(T ) = [−γ, γ],
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2) S̃ ⊆ T ,
3) c ∈ dom(T )⇒ T ′′{c} is a weak σ-string in A over B of the length β,
4) c, d ∈ dom(T ) & c < d ⇒ (α, α′ ∈ β ⇒ T (c, α) ⊆ T (d, α′) &

F ′′
3 (T (c, α))

3 ⊆ T (d, α′) & F ′′(T (c, α))2 ⊆ T (d, α′)).

Especially, we have for each c ∈ FZ odd:

Uc =
⋂

n T (c, β − n), Uc+1 =
⋃

n T (c, n).

Let us define the function z : [−γ, γ] → [0, 2βγ] by z(c) = βγ + cγ. Let R be the
relation with domain [0, 2βγ] such that R ∈ S, R(0) = B, R(2βγ) = A and, for
each c ∈ [−γ, γ − 1] and 0 ≤ α ≤ β − 1, holds

R(z(c) + α) = T (c, α).

Thus R is a σ-string in A over B and β is a distance in R. We have for each c ∈ FZ:
1 ≤ α ≤ β ⇒ R(z(c)− α) = R(z(c − 1) + β − 1). Thus, for c ∈ FZ odd, it holds

⋂
n R(z(c)− n) =

⋂
n R(z(c − 1) + β − n) =

⋂
n T (c, β − n) = Uc,⋃

n R(z(c) + n) =
⋃

n T (c, n) = Uc+1.

The proof is finished. �

Lemma. Let S be a codable saturated standard universe and let A(Uc, B)c∈FZ
be a (π(S)− σ(S))-line in A over B. Then there exist a relation S and a number
ζ ∈ N− FN such that the items 1) – 3) from the lemma on uniform lines hold.

Proof: Let U be a relation such that dom(U) = FZ and, for each c ∈ FZ,
Uc = U ′′{c} holds. Let 〈T, K〉 be a codable pair for S, i.e. we assume that
S = {T ′′{z}; z ∈ K} holds. Take ξ ∈ N−FN. Let L be the relation on FZ defined
by the formula

L′′{c} = {z; z is a code of a σ-string R ∈ S in A over B of the length ξ /∈ FN and
⋂

n R′′{ξ − n} = U ′′{c} holds whenever c is odd and
⋃

n R′′{n} = U ′′{c} holds whenever c is even}.

Note that the existence of the relation R, mentioned in the definition of L, follows
from the proposition on σ-string in e-structure (see [M2]) and from our assumption
that S is a saturated standard universe.
Let G be such a function on FZ which satisfies: c ∈ FZ⇒ G(c) ∈ L′′{c}. Let S

be the relation with domain FZ, such that we have for each c ∈ FZ:

S′′{c} = T ′′G(c).

Then S has the required properties. �

We deduce from this lemma and by using the lemma on uniform lines that the
following proposition holds.



676 J.Mlček

Proposition. Let S be a codable saturated standard universe. Then the collection
of (π(S)− σ(S))-lines in A over B is equal to this one of uniform (π − σ)-lines in
A over B w.r.t. S.

Now, we can finish the proof of the theorem on valuations of (π(S)−σ(S))-lines.
The first part is an immediate consequence of the previous results and of the lemma
on a valuation of uniform (π − σ)-line. The second part follows from the first one.
It is because the line in question is a (π(SdV∗)− σ(SdV∗))-line in A over B and
that SdV∗ is a codable saturated standard universe. Thus there exists a valuation
from SdV∗ of the line in question in an Lπ−σ(ζ) which has the domain equal to the
set A. Consequently, this valuation is a set. �

Remarks.

1. We cannot omit, in the theorem on valuations of (π(S) − σ(S))-lines, the

assumption, that S is saturated. Indeed, the equivalence
◦
= defined on V by the

relation x
◦
= y ⇔ (ϕ(x)⇔ ϕ(y)) holds for each set-formula ϕ of the language FL∅)

is a π(SdV)-equivalence which is no πV-class. (See [M1] .) Thus there is no

valuation H ∈ SdV of L(
◦
=) in an Lπ−σ(ζ, 1).

2. By a finite (π(S)− σ(S))-line we mean a finite sequence
{A, A ↾ Un, A ↾ B}n∈[1,l] of triads (where 1 ≤ l ) such that 1 ≤ m < n ≤ l ⇒

B ⊆ Um ⊆ Un and, for each 1 ≤ m ≤ l odd, Um is a π(S)-class, Um+1 is a σ(S)-
class (whenever m + 1 ≤ 1 ) and A, B ∈ S. We denote this line as A(Uc, B)c≤l;
l is called the length of the presented line. The notion of a valuation of a finite
line of the length l in another one of the length l is defined naturally. Put, for
each c ∈ FZ, c ≤ 0, Uc = B and, for each c > l, Uc = A. Then A(Uc, B)c∈FZ
is a (π(S) − σ(S))-line. Having such a (π(S) − σ(S))-line A(Uc, B)c∈FZ and
assuming that S is a standard saturated universe we can see that there exists
a relation S ∈ S and ζ ∈ N − FN such that the items 1) - 3) from the lemma on
uniform lines hold. We deduce from this that there exists a valuation H ∈ S of
A(Uc, B)c∈FZ in Lπ−σ(ζ).
Denoting Lπ−σ(ζ, l), for l ≥ 1, the finite line 〈Q+,+, Id〉(Un(ζ), {0})n∈[1,l], we

can formulate the following proposition.

Proposition. Let S be a standard saturated universe. Assume that L is a finite
(π(S) − σ(S))-line of the length l. Then there exists a valuation H ∈ S of L in
an Lπ−σ(ζ, l).

Metrization.

Let {Ec}c∈I , where I = FZ or I = [1, l] for some l ≥ 1, be a sequence of
equivalences on a class Z ∈ S. Suppose that, for each c < d, c, d ∈ I, the relation
Ec ⊆ Ed holds and we have, for each c ∈ I odd (even, resp.) that Uc is a π(S)-class
(σ(S)-class resp.). We say that {Ec}c∈I is a (π(S)− σ(S))-line of equivalences.

Theorem (on a metrization of a (π(S)− σ(S))-line of equivalences). Let
{Ec}c∈I be a (π(S) − σ(S))-line of equivalences on a class Z ∈ S, where S is

a standard saturated universe.

1) Assume that I = FZ and let S be a codable system. Then there exist
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a rational metric D : Z2 → Q+ and a number ζ ∈ N − FN such that we
have, for each c ∈ FZ odd:

(∗) 〈x, y〉 ∈ Ec ⇔ D(x, y) ∈ (2c·ζ) · [0]+, 〈x, y〉 ∈ Ec+1 ⇔ D(x, y) ∈ (2c·ζ) ·BQ+.

2) Assume that I = [1, l]. Then there exist a rational metric D : Z2 → Q+

and a number ζ ∈ N − FN such that (∗) holds for each c odd, provided
c ∈ [1, l].

Proof: 1) Let L(Ec)c∈FZ be the (π−σ)-line described above. We deduce from the
last theorem that there exists a valuation H in S of this line in an Lπ−σ(ζ). The
metric in question can be defined on Z2 by D(x, y) = H(〈x, y〉). 2) can be proved
quite analogously by using the last proposition. �

§3 Monotonic valuations of (π − σ)-lines

A valuationH of an e-structure A in Â is called a monotonic valuation if we have
(x, y ∈ A & x ⊳ A y)⇒ (H(x) ⊳

Â
H(y)). By a monotonic valuation of a line in

another one we mean a valuation of the first line in the second one such that it is
a monotonic valuation of the relevant e-structures. More explicitly, a mapping H is
said to be a monotonic valuation of the line A(Uc, B)c∈FZ in the line Â(Ûc, B̂)c∈FZ
if H is a valuation of A(Uc, B)c∈FZ in Â(Ûc, B̂)c∈FZ such that H is a monotonic

valuation of A in Â.
By a closed line in A over B we mean a line A(Uc, B)c∈FZ such that all Uc and

B are closed under ⊳ . We can naturally modify the definitions above to obtain
the relevant ones which are connected with the notion of a closed line. A σ-string
S is said to be a closed σ-string in A over B if it is a σ-string in A over B and
we have for each α ∈ dom(S): ⊳ ′′S(α) ⊆ S(α). By an 〈R, ζ〉-closed line in A over

B we mean an 〈R, ζ〉-line in A over B such that R is a closed σ-string in A over
B. A(Uc, B)c∈FZ is said to be a uniform (π − σ)-closed line in A over B w.r.t.
S if there exist an R ∈ S and ζ ∈ N − FN such that the line in question is an
〈R, ζ〉-closed line in A over B and A, B ∈ S.
Recall (see [M3]) that an e-structure 〈A, F, E〉 ∈ S has a u-expansion in S if

there exists a mapping G : A2 → A, G ∈ S such that 1) x ⊳ A y ⇒ G(y, x) = x
and 2) G(x, y) ⊳ A x holds for each x, y ∈ A and that it is commutative if F is
a commutative mapping on A.

Theorem (on monotonic valuation of uniform (π − σ)-closed lines). Let S

be a standard universe. Assume that L = A(Uc, B)c∈FZ, A is commutative and

A has a u-expansion in S. Then every uniform (π − σ)-closed line w.r.t. S has
a monotonic valuation in an Lπ−σ(ζ) which belongs to S.

Proof: We can state, observing the proof of the theorem on monotonic valua-
tion of σS - and πS -triads in [M3], p.383-384, that there exists a normal formula
Φ(x, y, X, Y ) of the language FLV such that we have: Let A(B, B) ∈ S be a closed
commutative triad and suppose that A has a u-expansion in S. Let S be a closed
σ-string in A over B. Then the mapping H = {〈x, y〉; Φ(x, y, A, S)} is a monotonic



678 J.Mlček

valuation of A(B, B) in 〈N,+, Id〉({0}, {0}) such that, for each α + 1 ∈ dom(S),
the relation S(α) ⊆ {x; H(x) ≤ 2α} ⊆ S(α+ 1) holds.
Let R ∈ S be a closed π-string in A over B and let ζ ∈ N − FN be such that

the line A(Uc, B)c∈FZ in question is an 〈R, ζ〉-closed line in A over B w.r.t. S.
Let H be defined as above. Assuming that dom(S) = θ + 1 we have, for each
c ∈ FZ odd, similarly as it is mentioned before the theorem on valuation of uniform
(π − σ)-lines: a) x ∈ Uc ⇔ (∀n)H(x) ≤ 2z(c)−n ⇔ 2−z(0) · H(x) ∈ (2ζ)c · [0]+, b)

x ∈ Uc+1 ⇔ (∃n)H(x) ≤ 2z(c)+n ⇔ 2−z(0) ·H(x) ∈ (2ζ)c ·BQ+. Thus the mapping
H is a monotonic valuation of the line in question in Lπ−σ(ζ). �

We shall clarify a question what kinds of lines are closed uniform ones. Replacing,
in the lemma on uniform lines, the assumption “A(Uc, B)c∈FZ is a line, A, B ∈ S”
by “A(Uc, B)c∈FZ is a closed line, A, B ∈ S” and the assumption “S(c) is a σ-
string in A over B” by “S(c) is a closed σ-string in A over B” we obtain, replacing
the conclusion by “A(Uc, B)c∈FZ is a closed uniform (π−σ)-line in A over B w.r.t.
S”, a true proposition. We define similarly as above that a line A(Uc, B)c∈FZ is
a closed (π(S)−σ(S))-line in A over B, if A, B ∈ S and such that, for each c ∈ FZ
odd, Uc is a π(S)-class and Uc+1 is a σ(S)-class and, moreover, each Uc is closed
under the canonical relation of A. We can see, analyzing the proof of the lemma on
monotonic valuations of σS - and πS -triads in [M3] that the following holds:

Let S be a standard universe. Let A(B, B) ∈ S be a closed triad and suppose that

S ∈ S is a σ-string in A over B. Then there exists a closed σ-string R in A over

B such that
⋃

n R(n) =
⋃

n S(n).

We can prove, by using this assertion, quite analogously as above that the next
proposition holds:

Let S be a codable saturated standard universe. Then the collection of closed

(π(S)− σ(S))-lines in A over B is equal to this one of closed uniform (π − σ)-lines
in A over B w.r.t. S.

We obtain immediately as a consequence:

Theorem (on monotonic valuations of (π − σ)-lines). Let S be a codable

saturated standard universe and assume that A ∈ S is a commutative e-structure
which has a u-expansion in S. Let A(Uc, B)c∈FZ be a closed (π(S) − σ(S))-line
in A over B. Then there exists a monotonic valuation of this line in an Lπ−σ(ζ)
which belongs to S.

Let A(Uc, B)c∈FZ be a closed (π(SdV) − σ(SdV))-line in A over B and let A
be a set. Then there exists a monotonic set-valuation of this triad in an Lπ−σ(ζ).

Let us present an application of the last theorem.

Theorem. Let A be a set and let {Jc}c∈FZ be a class of ideals on A such that
Jc+1 ⊆ Jc holds for each c ∈ FZ and, for each c ∈ FZ odd, Jc is a π-class and
Jc+1 is a σ-class. Then there exist a monotone and subadditive set-mapping
h : P(A)→ Q+ and a number ζ ∈ N−FN such that we have h−1′′{0} = {∅} and,
for each c ∈ FZ odd, Uc = h−1′′(2ζ·c) · [0]+, Uc−1 = h−1′′(2ζ ·c) ·BQ+.
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A proof of this theorem follows from the fact that 〈P(A),∪, Id〉(Jc, {∅})c∈FZ is
a closed (πV−σV)-line and the structure 〈P(A),∪, Id〉 is a commutative e-structure
which has a u-expansion in SdV.
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