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ON A 1-FACTOR OF THE FOURTH POWER
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Summary. Let G be a connected graph of even order p = 4. Consider a triangle-free subgraph H

of G such that the maximum degree of H is less than or equal to two. It is proved that there
exists a 1-factor F of G* with the property that E(F) N E(H) = 0.
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By a graph we mean here a graph in the sense of [1] or [2]. Let G be a graph;
we denote by V(G), E(G), and 4(G) the vertex set, the edge set, and the maximum
degree of G, respectively; if u and u’ are vertices of G, then we denote by dg(u, u')
the distance between u and u’ in G; if P = V(G) and P = 0, then the subgraph of G
induced by P will be denoted by {(P)g4; by the order of G we mean the number
|V(G)|. We say that a graph G is triangle-free if no subgraph of G is isomorphic
to the complete graph K. We say that a graph F is a 1-factor of a graph G if F is
a regular graph of degree one, and at the same time a spanning subgraph of G.

Let G be a graph, and let n be a positive integer. We denote by G" the graph with
V(G") = V(G) such that two vertices v and v’ are adjacent in G" if and only if 1 <
< dg(v,v’) < n. The graph G" is called the n-th power of G.

In the present paper we shall prove that if G is a connected graph of even order
p =4, and H is a triangle-free subgraph of G* with A(H) < 2, then there exists
a 1-factor F of G* such that E(F) n E(H) = 0.

Remark 1. Let G be the tree in Fig. 1, and let H be the spanning subgraph of G*
with

3
E(H) = _Ul{uiluiZ’ Uiplhss, Uisllia} -
i=

We can see that H is a subgraph of a hamiltonian cycle of G*. Obviously, H is not
a subgraph of G3. It is easy to show that there exists no 1-factor F of G* such that
E(F)n E(H) = 0.

Remark 2. Let G be the tree in Fig. 2, and let H be the spanning subgraph of G*
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with

3
E(H) = U {vn”iz, V;20;3, UiBUil} .

Obviously, H is not triangle-free. Again, there exists no 1-factor F of G* such that
E(F)n E(H) = 0.

Va2
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Vs Yt

i

Fig. 2

Let G be a graph. By a D-partition of G we mean a partition # of V(G) such that
for each P € 2, the following condition hold:
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(1) |[P| = 4 or 6;

(2) there exists u € V(G) such that (P U {u})¢ is connected;

(3) if |P| = 6 and {P)¢ is not connected, then {P); has two components of order
three.

Lemma 1. Let G be a connected graph of even order p = 4. Then there exists
a D-paritition of G.

Proof. Consider an arbitrary spanning tree T of G. The statement of the lemma
is obvious for p = 4 or 6. Let p = 8. Then T is isomorphic to one of 23 trees of
order eight presented in the list in [2], p. 233. We can see that T has a D-partition.
Therefore, there exists a D-partition of G.

Let p = 10. Assume that for any connected graph G’ of order p — 4 or p — 6,
we have proved that there exists a D-partition of G'.

Let u, and u, be distinct vertices of T such that u,u, € E(T). Then T — u,u, has
exactly two components, say T; and T,, where T; denotes the component which
contains u,. We define V(uy, u,) = V(Ty).

As follows from the lemma in [3], there exist distinct vertices u and u, of T such
that uu, € E(T),

(4) [V(u, uo)| = 4, and

(5) |V(v, u)| < 3 for every vertex v of T'such that u # v = u, and uv € E(T).

If [V(u, uo)| = 4 or 6, we put P = V(u, u,). If there exist distinct vertices v, and v,
of T — u — ug, such that uv,, uv, € E(T) and |V(vy, u)| = 3 = |V(v,, u)|, then we
put P = V(vy, u) U V(v,, u).

Assume that |V/(u, u,)| # 4, 6 and that there is at most one vertex v of T — u — u,
such that uv e E(T) and |V(v, u)| = 3. It follows from (4) and (5) that there exist
ie{2,3,4} and distinct vertices ¥y, ...,9; of T — u — uq, such that udy,...,ud; €
€ E(T) and

[V(y, u)| + ... + V(55 u)| = 4.
We put
P =V, u)u...u V(5 u).

It is clear that T — P is a tree, and therefore, G — P is connected. Since |P| =4
or 6, it follows from the induction hypothesis that there exists a D-partition 2’
of G — P. Clearly, ' U {P} is a D-partition of G, which complete the proof of
the lemma.

Lemma 2. Let G be a graph isomorphic to K¢ — e or K¢, and let H be a triangle-
free subgraph of G with A(H) =< 2. Then there exists a 1-factor F of G such that
E(F)n E(H) = 0.

Proof. First let G be isomorphic to Ks — e. Then there exist distinct vertices
Uy, ..., ug such that

417



V(G) = {uy, ..., us} and
E(G) = {um;; i, je{l,...,6), i +j — {uju,) .

There exists a spanning subgraph H* of G such that E(H) = E(H*), H* is triangle-
free, A(H*) =2, and for any éeE(G)— E(H*), A(H + &) = 3. Denote U =
= {u,, u,}. We distinguish eight cases:

1. H* is a hamiltonian cycle of G and both components of H* — U are nontrivial.
Without loss of generality we assume that

E(H*) = {uguy, uyus, ..., usus, .u(,ul} )

2. H* is a hamiltonian cycle of G, and one of the components of H* — U is trivial.
Without loss of generality, let

E(H*) = {uu,, uyuy, ugus, usuyz, uzlig, Ugly} .
3. H* is a hamiltonian u;, — u, path of G. Without loss of generality, let
E(H*) = {uuy, uyug, Uglis, Usls, Ustly} .

4. One of the components of H* is a cycle C of order five, and U < V(C). Without
loss of generality, let

E(H*) = {“1“2; UylUy, Uglls, UslUg, “6“1} .

5. One of the components of H* is a cycle C of order five, and [U n V(C)| = 1.
Without loss of generality, let

E(H*) = {u2u3’ UzlUy, Ugls, UsUg, uﬁ“z} .

6. One of the components of H* is a cycle C of order four, and U = V(C).
Without loss of generality, let

E(H*) = {u1u23 u’2u47 u4u5, uSuls u3u6} .

7. One of the components of H* is a cycle C of order four, and |U n V(C)| = 1.
Without loss of generality, let

E(H*) = {uu;, U3, Uzllg, Ughty, Uglis) .

8. One of the components of H* is a cycle of order four, and U n V(C) = 0.
Without loss of generality, let

E(H*) = {“2“3’ Usls, Uslg, “6“2} .

We put E(F) = {u,u;, uyus, ugug'. Clearly, E(F)n E(H*) = 0, and thus E(F) n
N E(H) = 0.

If G is isomorphic to K, then the result of the lemma easily follows.

Now we shall prove the main result of the present paper.
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Theorem 1. Let G be a connected graph of even order p = 4, and let H be
a triangle-free subgraph of G* with A(H) £ 2. Then there exists a 1-factor F
of G* such that E(F)n E(H) = 0.

Proof. According to Lemma 1 there exists a D-partition P of G. We shall show
that for each P e 2,

(6) there exists a 1-factor Fp of {P)ga such that E(Fp) n E(H) = 0.

Consider an arbitrary P € 2. According to (1), |[P| = 4 or 6. Let |P| = 4. It follows
from (2) that (P)¢4 is complete, which implies (6).

Let |P| = 6. If {P)g is isomorphic to K¢ — e or K¢, then Lemma 2 implies (6).
We shall assume that {P)g;.isisomorphic neither to K4 — e nor to K¢. Then (P); is
disconnected. According to (2) and (3) there exist distinct vertices u,, ..., ug and v
of G such that P = {u,, ..., us}, and

<{uls ceey Ug, U}>G > <{u1a U, u3}>c and <{u4, Us, us})c

are connected. Without loss of generality we assume that u,us, usv, vu,, usus € E(G)
Since {P)g4 is not complete, at least one of the graphs

{uy, uy, 3,0y and  uy, us, tg, V)g

is a path. Thus, without loss of generality we assume that u,u,, u,u; € E(G) and
uyuy ¢ E(G). We can see that for any i,je {1, ..., 6},

if i<j and (i,j)¢{(1,5),(1,6),(2,6)}, then wuu;eE(G*).

If min (dg(u,, us), dg(uy,ue)) <3, then (P)gs is isomorphic to either K¢ — e
or K¢, which is a contradiction. Hence

dG(uz, u5) = 4 and dG(uz, u6) g 4 .

We distinguish two cases:

1. Let ujug¢ E(H). If uu, ¢ E(H), then we put E(Fp) = {uju,, uyus, usug).
Assume that wuyu, e E(H). Then dg(uy, us) < 4. If uyus, uu, ¢ E(H), we put
E(Fp) = {uyus, usuy, usugy. If uuse E(H) or uyu,e E(H), we put E(Fp) =
= {u,u,, usug, ugus}. Since H is triangle-free and 4(H) < 2, we can see that
E(Fp) n E(H) = 0.

2. Let ujug e E(H). Then dg(u,, ug) = 4. If dg(uy, u,) < 3, then (P)gs is iso-
morphic to K¢ — e or K4, which is a contradiction. Thus, we assume that
de(uy, uy) = 4. If uyus ¢ E(H), we put E(Fp) = {u u,, uyug, usus}. If uzus € E(H),
we put E(Fp) = {uuy, uyu;, usus'. Clearly, E(Fp) n E(H) = 0.

Since P was chosen arbitrarily, the proof is complete.

The following result was proved by Sekanina in [4].

Theorem A ([4]). Let G be a connected graph of order p Z 1. Then for any
distinct vertices u and v of G, there exists a hamiltonian u — v path of G*. Con-
sequently, if p = 3, then there exists a hamiltonian cycle of G°.

419



Combining Theorems 1 and A, we immediately obtain two further results; the
latter was proved by Wisztovd in [5].

Corollary 1. Let G be a connected graph of even order p = 4, and let u and v be
distinct vertices of G. Then there exist a hamiltonian u — v path H of G*> and a 1-
factor F of G* such that E(F)n E(H) = 0.

Corollary 2 ([5]). Let G be a connected graph of even order p = 4. Then there
exists a hamiltonian cycle H of G* and a 1-factor F of G* such that E(F) n E(H) = 0.
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Souhrn

O 1-FAKTORU CTVRTE MOCNINY SOUVISLEHO GRAFU
LADISLAV NEBESKY
Necht G je souvisly graf o sudém pod&tu uzla vét§im r.eZ dvé. UvaZzujme podgraf H tieti mocniny
grafu G a predpoklddejme, Ze H neobsahuje trojuhelnik a Ze jeho maximdalni stupeii neptevySuje

dvé. V ¢lanku je ukazano, Ze existuje 1-faktor F &tvrté mocniny grafu G takovy, ze F a H jsou
hranové disjunktni.

Pe3rome

OB 1-®AKTOPE Il‘ETBEPTOI'/'I CTEITEHU CBA3HOI'O I'PA®A
LADISLAV NEBESKY
IIyctb G — cBsi3HbIiA rpad) ¢ YETHBIM YMCIOM y370B GoNblIMM ABYX M IycTh H — monrpad ero
TPSTEi CTENEeHH, KOTOPbI HEe COAEPKHUT TPEYTOJIbHMK M MaKCHMallbHas CTENEeHb KOTOPOro He

6onblue ABYX. B craThe 40Ka3aHO, YTO cymecTsyeT 1-dakTop F yeTBepTOii cTenenu rpada G Takoii,
yto F u H pebepHOo HenepeceKaroTCs. :
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