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ON A 1-FACTOR OF THE FOURTH POWER 
OF A CONNECTED GRAPH 

LADISLAV NEBESKY, Praha 

(Received May 23, 1986) 

Summary. Let G be a connected graph of even order p > 4. Consider a triangle-free subgraph H 
of G3 such that the maximum degree of H is less than or equal to two. It is proved that there 
exists a 1-factor F of G4 with the property that E(F) n F(H) = 0. 
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By a graph we mean here a graph in the sense of [ I ] or [2]. Let G be a graph; 
we denote by V(G),E(G), and A(G) the vertex set, the edge set, and the maximum 
degree of G, respectively; if u and ur are vertices of G, then we denote by dG(u, u) 
the distance between u and ur in G; if P .= V(G) and P =f= 0, then the subgraph of G 
induced by P will be denoted by <P>G; by the order of G we mean the number 
|V(G)|. We say that a graph G is triangle-free if no subgraph of G is isomorphic 
to the complete graph K3. We say that a graph F is a 1-factor of a graph G if F is 
a regular graph of degree one, and at the same time a spanning subgraph of G. 

Let G be a graph, and let n be a positive integer. We denote by Gn the graph with 
V(Gn) = V(G) such that two vertices v and vr are adjacent in Gn if and only if 1 = 

g dG(v, vr) = n. The graph Gn is called the n-th power of G. 
In the present paper we shall prove that if G is a connected graph of even order 

p = 4, and H is a triangle-free subgraph of G3 with A(H) = 2, then there exists 
a 1-factor F of G 4 such that E(F) n F(H) = 0. 

R e m a r k 1. Let G be the tree in Fig. 1, and let H be the spanning subgraph of G 4 

with 
3 

E(H) = U {unui29ui2ui39ui3ui4} . 
1 = 1 

We can see that H is a subgraph of a hamiltonian cycle of G4. Obviously, H is not 
a subgraph of G3. It is easy to show that there exists no 1-factor F of G 4 such that 
£(F) n E(H) = 0. 

Remark 2. Let G be the tree in Fig. 2, and let H be the spanning subgraph of G2 
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with 
з 

u 
/ = i 

E(H) = U {»ilVi2>Vi2Vn>Vi3Vil} 

Obviously, H is not triangle-free. Again, there exists no 1-factor F of G4 such that 
E(F) n E(H) = 0. 

v г г 

i 
Fig. 2 

Let G be a graph. By a D-partition of G we mean a partition ^ of V(G) such that 
for each P e ^ , the following condition hold: 
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(1) |P | = 4 or 6; 
(2) there exists w e V(G) such that <P u {w}>G is connected; 
(3) if |P | = 6 and <P>G is not connected, then <P>G has two components of order 

three. 

Lemma 1. Let G be a connected graph of even order p = 4. Then there exists 
a D-paritition of G. 

Proof. Consider an arbitrary spanning tree Tof G. The statement of the lemma 
is obvious for p = 4 or 6. Let p = 8. Then T is isomorphic to one of 23 trees of 
order eight presented in the list in [2], p. 233. We can see that Trias a D-partition. 
Therefore, there exists a D-partition of G. 

Let p = 10. Assume that for any connected graph Gf of order p — 4 or p — 6, 
we have proved that there exists a D-partition of G\ 

Let u± and w2 be distinct vertices of Tsuch that ulu2 e E(T). Then T — utu2 has 
exactly two components, say Tt and T2, where Tj denotes the component which 
contains uv We define V(w1? w2) = V(Tt). 

As follows from the lemma in [3], there exist distinct vertices w and w0 of T such 
that ww0 e E(T)9 

(4) V(w, w0)| = 4, and 
(5) V(v9 u)\ ^ 3 for every vertex v of Tsuch that w =# v =# w0 and uv e E(T). 
If |V(w, w0)| = 4 or 6, we put P = V(w, w0). If there exist distinct vertices v1 and v2 

of T— w — w0 such that uvl9uv2 e E(T) and \V(vl9 w)| = 3 = |V(v2, w)|, then we 
put P = V(vl5 w) u V(v2, w). 

Assume that |V(w, w0)| 4= 4, 6 and that there is at most one vertex v of T — w — w0 

such that uv e E(T) and |V(v, w)| = 3. It follows from (4) and (5) that there exist 
ie{29 3, 4} and distinct vertices vl9..., vt of T— u — w0 such that uvv ....ui^e 
eF(T) and 

|V(v1 ,w)|-r-. . . + |V(vf,w)| = 4 . 
We put 

P = V(v1?w)u . . . u V(vi, w). 

It is clear that T — P is a tree, and therefore, G — P is connected. Since |P| = 4 
or 6, it follows from the induction hypothesis that there exists a D-partition SP' 
of G — P. Clearly, &' u {P} is a D-partition of G, which complete the proof of 
the lemma. 

Lemma 2. Let G be a graph isomorphic to K6 — e or K69 and let H be a triangle-
free subgraph of G with A(H) _ 2. Then there exists a \-factor F of G such that 
E(F) n E(H) = 0. 

Proof. First let G be isomorphic to K6 — e. Then there exist distinct vertices 
ul9..., w6 such that 
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V(G) = {u1? . . . ,u6} and 

E(G) = {ufuy; i , ; e { l , . . . , 6 ] , i *j) - {uxu4] . 

There exists a spanning subgraph H* of G such that E(H) c E(H*)9 H* is triangle-
free, A(H*) = 2, and for any e e E(G)~ E(H*)9 A(H + e) = 3. Denote U = 
= {ul9 u4}. We distinguish eight cases: 

1. H* is a hamiltonian cycle of G and both components of H* — U are nontrivial. 
Without loss of generality we assume that 

E(H*) = {uxul9 u2u39 ..., u5u6, u6uj . 

2. H* is a hamiltonian cycle of G, and one of the components of H* — U is trivial. 
Without loss of generality, let 

E(H*) = [uxu29 u2u49 u4u5, u5u39 u3u6, u6ut} . 

3. H* is a hamiltonian ux — u4 path of G. Without loss of generality, let 

E(H*) = {u!u2, u2u6, u6u3, u3u5, u5u4} . 

4. One of the components of H* is a cycle C of order five, and U ^ V(C)- Without 
loss of generality, let 

E(H*) = {u!u2, u2u4, u4u5, u5u6, u6u!} . 

5. One of the components of H* is a cycle C of order five, and |U n V(C)| = 1. 
Without loss of generality, let 

E(H*) = {u2u39 u3u49 u4u5, u5u6, u6u2} . 

6. One of the components of H* is a cycle C of order four, and U ^ V(C). 
Without loss of generality, let 

E(H*) = {u!u2, u2u4, u4u5, usul9 u3u6} . 

7. One of the components of H* is a cycle C of order four, and jU n V(C)| = V 
Without loss of generality, let 

E(H*) = {uxul9 u2u39 u3u6, u6ul9 u4u5} . 

8. One of the components of H* is a cycle of order four, and Un V(C) = 0. 
Without loss of generality, let 

E(H*) = {u2u39 u3u59 u5u6, u6u2] . 

We put F(F) = {u!u3, u2u5, u4u6
>. Clearly, F(F) n E(H*) = 0, and thus F(F) n 

n E(H) = 0. 
If G is isomorphic to K6, then the result of the lemma easily follows. 
Now we shall prove the main result of the present paper. 
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Theorem 1. Let G be a connected graph of even order p = 4, and let H be 
a triangle-free subgraph of G3 with A(H) ^ 2. Then there exists a \-factor F 
of G4 such that E(F) n E(H) = 0. 

Proof. According to Lemma 1 there exists a D-partition P of G. We shall show 
that for each P e 0>9 

(6) there exists a 1-factor FP of <P>G4 such that E(FP) n E(H) = 0. 

Consider an arbitrary P e &. According to (l), |P | = 4 or 6. Let |P | = 4. It follows 
from (2) that <P>G4 is complete, which implies (6). 

Let |P | = 6. If <P>G4 is isomorphic to K6 — e or K6, then Lemma 2 implies (6). 
We shall assume that <P>G4 is isomorphic neither to K6 — e nor to K6. Then <P>G is 
disconnected. According to (2) and (3) there exist distinct vertices ul9..., w6 and u 
of G such that P = {w l5..., w6}, and 

<{w l5...,w6,i;}>G, <{w1,w2,w3}>G and <{w4, w5, w6}>G 

are connected. Without loss of generality we assume that w2w3, u3v9 uw4, w4w5 e E(G). 
Since <P>G4 is not complete, at least one of the graphs 

<w1? w2,w3,v>G and <w4, w5, w6, t?>G 

is a path. Thus, without loss of generality we assume that w1w2, w2w3 e E(G) and 
WjW3 <£ E(G). We can see that for any i9j e { l , ..., 6}, 

if i<j and (i,j)t {(1,5), (1,6), (2 ,6)} , then uiuJeE(G^). 

If min(dG(w2, w5), dG(w2,w6)) ^ 3, then <P>G4 is isomorphic to either K6 — e 
or K6, which is a contradiction. Hence 

Ĝ(w2> u5) = 4 and dG(ul9 w6) = 4 . 

We distinguish two cases: 
1. Let u3u6$E(H). If w1w4^F(H), then we put E(FP) = {wjW4, w2w5, w3w6}. 

Assume that w1w4e£(H). Then dG(wl5 w5) ^ 4. If wxw5, w2w4 £ E(H)9 we put 
E(FP) = {WiWg, w2w4, w3w6}. If u1u5eE(H) or w2w4eF(H), we put E(FP) = 
= {w1w2, w3w6, w4w5}. Since H is triangle-free and A(H) g 2, we can see that 
E(FP) n E(H) = 0. 

2. Let w3w6 e E(H). Then dG(w2, w6) = 4. If dG(w,, w4) = 3, then <P>G4 is iso­
morphic to K6 — e or K6, which is a contradiction. Thus, we assume that 
dG(ul9 w4) = 4. If w3w5 ^ E(H)9 we put E(FP) = {11^4, u2u69 w3w5}. If w3w5 e E(H)9 

we put E(FP) = {wAw4, w2w3, w5w6). Clearly, E(FP) n E(H) = 0. 
Since P was chosen arbitrarily, the proof is complete. 
The following result was proved by Sekanina in [4]. 

Theorem A ([4]). Let G be a connected graph of order P = V Then for any 
distinct vertices u and v of G, there exists a hamiltonian u — v path of G3. Con­
sequently, if p _̂  3, then there exists a hamiltonian cycle of G3. 
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Combining Theorems 1 and A, we immediately obtain two further results; the 

latter was proved by Wisztova in [5]. 

Corollary 1. Let G be a connected graph of even order p = 4, and let u and v be 

distinct vertices of G. Then there exist a hamiltonian u — v path H of G3 and a U 

factor F of G 4 such that E(F) n E(H) = 0. 

Corollary 2 ([5]). Let G be a connected graph of even order p = 4. Then there 

exists a hamiltonian cycle H of G3 and a \-factor F of G 4 such that E(F)n E(H) = 0. 
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Souhrn 

O 1-FAKTORU ČTVRTÉ MOCNINY SOUVISLÉHO GRAFU 

LADISLAV NEBESKÝ 

Nechť G je souvislý graf o sudém počtu uzlů větším než dvě. Uvažujme podgraf Htřetí mocniny 
grafu G a předpokládejme, že H neobsahuje trojúhelník a že jeho maximální stupeň nepřevyšuje 
dvě. V článku je ukázáno, že existuje 1-faktor F čtvrté mocniny grafu G takový, že F a H jsou 

Резюме 

ОБ 1-ФАКТОРЕ ЧЕТВЕРТОЙ СТЕПЕНИ СВЯЗНОГО ГРАФА 

^А^IЗ^АV № В Е 8 К * 

Пусть С — связный граф с чётным числом узлов большим двух и пусть Н — подграф его 
третей степени, который не содержит треугольник и максимальная степень которого не 
больше двух. В статье доказано, что существует 1-фактор .Г четвертой степени графа О такой, 
что Г и Н реберно непересекаются. 

Ашког'з аААгеы. РПогойска ГакшЧа Ш^еггку Каг1оуу, пат. КгазпоагпиУсй 2, 116 38 
Ргапа 1. 
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