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TIME-PERIODIC SOLUTIONS OF TELEGRAPH EQUATIONS
IN n SPATIAL VARIABLES

HANA PETZELTOVA, MILAN STEDRY, Praha

(Received June 27, 1983)

1. INTRODUCTION

The aim of this paper is to extend to the case of n spatial variables a result of
P. H. Rabinowitz [3] on the existence of classical solutions of the equation

(1.1) Up — Uy + 0ty + 6g(t, X, Uy Upy Uy Uppy Upy Uy,) = 0, x€(0, )
with the boundary conditions

(1.2) u(t,0) = u(t,7) = 0

and the periodicity conditions

(1.3) u(t + o, x) = u(t, x).

Under the assumption that g is a sufficiently smooth function, periodic in ¢ with
period w, « > 0 and ¢ is close to zero, P. H. Rabinowitz proved that there is a clas-
sical solution to (1.1)—(1.3).

The classical Newton method cannot be used for proving this result since the
“loss of derivatives” appears as a consequence of the presence of the second order
derivatives in the composition operator g(t, x, u, ..., uxx). To overcome this dif-
ficulty P. H. Rabinowitz applied a Moser theorem [2] in which the existence of an
approximate solution to the linearized equation is required. This means that a viscosi-
ty term is added to the linearized equation and the exact solution of the equation so
obtained stands for the approximate solution of the linearized equation.

This approach is also applied. in [5] to the equation

Uy + Uprry + o, = & G(u)
and in a more general form in [6] to the equations of the type
Uy + (= 1Pty + au, — u = & G(u)
where G(u) = g(t, x, U, Uy, Uy, ooy Uyp, Upy, Uy) OF G(u) = g(t, X, U, Uy, Uy, .oy Uy,

u,x, upr .
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We are going to extend the result of [3] to the case of n spatial variables. The
elliptic operator occurring in the equation is changed accordingly. We shall apply the
theorem from [1] which requires to solve the linearized equation only. As the “‘loss
of derivatives” occurs in the t-variable we shall use a sequence of spaces whose ele-
ments improve their differentiability properties in the variable ¢. Since all the functions
are periodic in ¢ it is easy to introduce the truncation operator from [1] by means
of truncated Fourier series.

We shall suppose that 2 = R"is a bounded open domain with a smooth boundary.
We set

0 =[0,2n] x 2,

and from now on we shall suppose that all functions occurring in the problem are
real-valued and periodic in ¢ with the period 2z. Other periods than 27 can be treated
similarly.

The following notation will be used. For o = (rxl, ceny tx,,) we shall denote Ial =
=0a; +... +a, and D% = D¥ ... Di. Similarly, D] = ¢/[or. For y = (v0,7),
Y = (P15 -+ ¥a)> We put ]y] =9y + ]y’l and D!, = DI°DY.

By H”(Q), p a positive integer, we denote the space of all functions v periodic in ¢
with the period 27 with D} ,v e I*(Q) for |y| < p. We set

1| < p}

o] = ( ijz(t, x) dx dt>“2 .

G(u) = g(t, x, u, u, u,, Vu, Vu,, VVu)

[ol, = max {[ D} v

’

where

By

we denote the composition operator containing all derivatives D] .u, lyl =< 2. The
function g is supposed to be smooth and periodic in ¢ with the period 27 on the set
R x Q x 0, where 0 is a neighbourhood of zero in R*, » = 3(n + 1) + n(n — 1)/2.
Further let us suppose that we are given an operator A by '

(1.4) (du)(x) = 3 (1) DYAz(x) DS u(x)),

la]=1,]8151

where the functions 4,, are smooth functions on @ satisfying
Ap = Ap, tor ]al = lﬂl =1.
Finally, let d(x) be a smooth function on @ satisfying

(1.5) dx)2dy>0 for xeQ.
We shall deal with the problem given by the equation

(1.6) U, + d(x)u, + Au + ¢ G(u) =0
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and the boundary and periodicity conditions

1.7 u(t,x)=0 for teR, xe€dQ,

(1.8) u(t + 2m, x) = u(t,x) for teR, xeQ.

To specify the assumptions under which this problem is to be examined we denote

by A, the bilinear form associated with the operator A, namely,

(1.9) Aov,0) = Y (Aglx) Div, Doy,

le]<1,]8]=1
where

(v, @) = '. u(t, x) o(t, x) dt dx ,
Jo

ie., |v] = <v, v) 2. Further, let B, be the bilinear form associated with the linear
part of the equation (1.6),

(1.10) Bo(v, @) = v, + d(x) v,, 0) + Ao(v, 0).
Denoting
(1.11) Av = 2v, + dgv,

we shall suppose that
(1.12) By(v, Av) 2 d,|v||, dy >0,

holds for all v such that v, v, € H'(Q) and v(¢, *) = 0 on Q.
We shall prove the following result.

Theorem 1.1. Let d, A,; and g be sufficiently smooth functions satisfying the
assumptions listed above. Then for every & close to zero there exists a classical
solution to (1.6)—(1.8).

Infact, we will show that the solutionis much smoother. The assumptions of regular-
ity of the functions d, 4,4, g allow to satisfy high regularity demands of the theorem
from [1]. The assumption that |¢| is small means that u = 0 is “close” to a solution
of (1.6)—(1.8). The hypothesis (1.12) suggests that the problem is ‘‘nonresonant”
and can easily be shown to be satisfied for some equations. For example, for the equa-
tion of the form

U, + ou, - Au + eg(t, x, u, ..., VVu) = 0
with (1.7) and (1.8), which is a direct generalization of (1.1)—(1.3), we have

BO(D’ (P) = (g + avy, @) + Zl<vx,’ (ij> .
j=

Then
By(v, 2v,) = 2 af|v,[?
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as a consequence of the 2zn-periodicity in ¢ and, similarly,

oo, o) = = [of? + 3. [

Hence
Bo(v, 20, + av) = af[lo|* + ¥ o [?).
j=

which shows that (1.12) is satisfied with Av = 2v, + av.

In Section 2 we give Moser’s theorem. Spaces are introduced in Section 3. The
Moser theorem is applied in Scction 4. The linearized equation is solved in Section 5.
Section 6 contains the proofs of three auxiliary assertions used in Section 5.

2. MOSER’S THEOREM

In this section a slightly changed version of the theorem from [1] is given. Let us
suppose that we are given two sequences of Banach spaces Uy, Fy, and a sequence
of operators Ty, N = 1, 2, ..., such that

(2.1) Uo2U,2U,2..., F2F,2F,2...,
(22) "TNu
(2.3) I(id — Ty) u

< aN“'d”u

Upey =

v, < aN~"*||u

U,» rrSgOa

Urss? rgoa s§.5

with constants @ > 0 and 6 = 0. Further, let r, ¢ and o be nonnegative integers,
r = o. Let us suppose that for a nonnegative integer k depending on r, g, 6 and 4,
the mapping f satisfies the following hypotheses with a constant o > 0:

(2.9) Forany ueU,, |u
() fW)<F,,
(ii) f'(u) is linear and bounded from U, into F, .

v, S a”t

3

(2.5) Forany u,veU,, |u|y, So™!, |u+ov|y, Sa™t,
we have
|/ + v) = £(u) = f'(u) o] £, < a]o]2, -
(2.6) If ueU,,, and N =1 satisfy
lullv,,, S a”'N* for A=0,1,...,k,
then

[f@)|f,., S aN* for 4=0,1,... k.
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2.7) If ueU,,, heF,, and N1 satisfy

lullv,sr < @™ IN*, |h|p,., S N* for 2=0,1,...,k,
then the equation

f'w)v="h

has a solution veU,_,,, satisfying

() [olu,... < b,

(i) |o|v,-,sr S a®N* for A=0,1,..., k.

Theorem 2.1. Under the above hypotheses there is n > 0 such that the equation
f(u) = 0 has a-solution in {u; |ul|y, < «™*} provided | f(0)|r, < 1.

3. SPACES

We set no=[3(n+1)] +1, ny=2n, — 1 and m = n, + 2. All function
spaces mentioned below are spaces of real-valued functions periodic in t with the
period 2. To include the boundary condition (1.7) into the spaces we set

B = {ue H'(Q); u(t, ) = 0 on 8Q} .
By the same symbol we denote also the space
B ={ueH'(Q); u=0 on dQ}.
Further, we denote
U,={ueB; u,e H(Q), ¢ =0, ..., p},

F, ={u;u.cH"(Q), ¢ =0,...,p}
with the norms

llu”Up = max {"uﬂum; q= o,..., P} 5
"u”FP = max {“ut"Hnl; q = 0’ ey P} .
Here H'(Q) has its usual meaning in which it has been used in Section 1.

For a positive integer j we denote e;(f) = (1/r)sin jt and e_j(f) = (1/x) cos jt.
For j = 0 we set eo(f) = 1/2x. Then every function u € U, can be written in the form

u=7y u,(x) e,(t)
JjeZ
with
[z, = max {3 |i* D3, zeays [s] + |o] = m + p, |a] < m}.
Jje
Hence, setting, for a positive N,

(34) (1) () = 3 ux) )

<N
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we have Ty : U, - U, and
(3.2) | Tvullo,... = N*[u]lo, ,
(3.3) [(id ~ Ty) uflu, = N~

Further, for a positive integer M, we denote

Zy = {u;u = 3 ujx)efn)}

lil=M

Urs*

For nonnegative integers p and s we put

X = {u; D;Du e IX(Q), I + |o| <'s, |o] < p}

with
|4 xs.r = max {| DiD3u; I + |o| < s, [a| < p}
and
H°? = {u; Diue IX(Q), |2| < p}
with

[4llao.r = max {|[D3ul; |o| < p}.

The norm in H?(Q) will be given by
o]l acay = max {| D3] aay; [of < p} -
Thus if v = ) v/(x) e;(t) € H>?(Q), then

Iollzo.pe) = (Z“"i”%mm)m .
J

Finally, we denote by C™(Q) the space of functions on Q having continuous deriva-
tives on Q up to the order m. For u € H"*"(Q) we have, by Sobolev’s embedding
theorem,

[ullemegy = €of|u]|mmeniy -

4. APPLICATION OF MOSER’S THEOREM

The spaces Uy, Fy and the operators T defined in Section 3 satisfy (2.1)—(2.3)
with 6 = 0and a = 1. If u € U, is such that ||u|y, is sufficiently small, then the com-
position operator g(t, Xy Uy Uypy oeny VVu) is well-defined and we can set

fu) = uy + d(x)u, + Au + eg(t, x, u, u,, u,,, Vu, Vu,, VVu).

‘We take r = ¢ = ¢ = 2 and we shall apply Theorem 2.1 to the mapping f,. Ob-
viously, for |y| <2, D}, is a linear and bounded mapping of U,,; ‘nto F,, ;.
Reasoning as in Lemma 4.2 below it is easy to show that f, satisfies the hypotheses
{2.4)—(2.6) of Theorem 2.1.

Lemma 4.1. If u, ve H"(Q), then uve H"(Q) and |luv||,, < c|u,, [[v]-
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Proof. This holds even for functions from H"(Q), [2]. In the case of H"(Q) the
proof is particularly simple. We have to estimate ||(D}'u) D} for |y,| + |v2| < n 1
At least one of the indices y;, say y,;, has to satisfy lyll no — 1. Then ||(D
D] S [5Ttlony 10Tl ol Il 2 e ol T compter e
proof.

Lemma 4.2. Let g(t, x,{y, ..., {,) be a smooth function on R x Q x 0, where 0
is a neighbourhood of zero in R*. Let 8 be such that
G(w) (1, x) = g(t, x, wy(t, ), ..., w(t, x))
is well defined on M = {w = (wy, ..., w,); |wjl|lr, <B,j=1,...,%}. Then

(i) G is a continuous mapping of M into F,;

(i) i illpzer S BN* for j=1,..,% and 1 =
=0,1,...,k, then |[GW)|F,,, S BN* for A =0,1,..., k.

Proof. We shall deal only with the case (ii) since (i) is similar. For I < 2 + 1 we
shall estimate D} G(w) in H™(Q). This means to estimate in H"(Q)

(29) (w) H H (Do)

p=1s=1

with nonnegative integers o, satisfying

1
(4.1) y Z sog, < 1.
s=1p=1
Here 9g denotes a certain derivative of g whose order and form need not be specified
and which satisfies |2 g(w)|,, < c¢. By assumption, ||D{w p”,,l < eN®~2* where
jt = max (0, j). Hence the estimate of D; G(w) in H™(Q) is c¢N¥* where x <
< Z Z a,,(s — 2)*. In virtue of (4. 1) x < (I = 2)* < A. This completes the proof.
s=1p=1
To show that f, satisfies the assumption (2.7) we shall deal with the operator
f.(u) which has the form

fiw)v=v, +d(x)v, + Av +

+ & Z (— 1)1 a,4(t, x) DEDZ0 + & Y “a,(t, x) DZv, + ea(t, x) v,,,
lal,181= la] =1

where

aﬁ(t x)

= ety (o VO for = p, o = o] =

ap(t,x) = — 1__o

2W(t,x,u,...,VVu) for a % f, |a|=|/3|=
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(this means a,5 = ag, for |o| = || =

a(t, x) = (ag )( ., VVu) for lal <1, p=0,

ay(t,x) =0 for «=0, |p|=1,

t, x) ( , oo VVU), a(t, x) = (t . VVu).

- a(D a( Uye)

By Lemma 4.2, if ue U, ,, and |uy,,, < aN*for A =0,1,....k, then a € F2‘+k
and
(42) la|fpes < BN* for A=0,1,...,k,
where b is independent of N. Here, we have shorten the notation writting a instead

of a,g, a, or a. This convention will be used throughout the paper. Further, let
he F, ., satisfy

(43) k] pper S aN*, A=10,1,...,k.

In the next section we shall give the proof of the following lemma.

Lemma 4.3. There are positive constants &, and c (independent of N) such that the
following implication holds:

If a and h satisfy (4.2) and (4.3), respectively, then for every ¢, |e| =< &g, there
is a unique v € U, satisfying f,(u) v = h. Moreover,

(44) loloo = ¢l »
(4.5) [v]v, £ N* for A=0,1,...,k.

This lemma shows that f;(u) satisfies the hypothesis (2.7) with ¢ = 2. Theorem 1.1
now follows from Theorem 2.1 applied to the mapping f,.

5. SOLUTION OF THE LINEARIZED EQUATION

The bilinear form B, associated with f,(u) v is given by
Bs(v’ (0) = BO(U’ (P) + 8] | IZI <aaﬂD:v’ D£¢> +
a|=|Bl=1

+ e Z <(D£aaﬁ) D;U, ¢> +¢& Z <aaﬂva’ (P> 8
lal=181=1 la]=1,8=0
€ Z {a,Div,, @ + eavy, @),

laj =1
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where B, is defined by (1.10) and the functions a,4, a, and a satisty (4.2). Further,
we put

Afv, ) = Ao(v. 0) + & Y {a,Diw, Dip) +
lel 18151

+ sl I-%I_I«Dﬁa,ﬂ) D, @) .

We begin by showing that
(5.1) By(v, Av) = dy|v|?

for every ve H'(Q) n B with v, € H'(Q) (nB). The estimate of Boy(v, Av) is given
by (1.12). All the remaining terms can be estimated by & c||v|3. For instance, for
o * B, lrxl = Iﬂl = 1, we have a,; = a4, and therefore

|<aaﬁDzvs D:ﬂsvt> + <aﬁang9 D:Dt>| =

= |{(D{ae) Do, Divy| < cllafcyg) [0]1 -
Similarly,

[<a.D2v,, 20,)| = [K(D%a,) v, v,)| S [a]crg I0]13 -

Hence we have (5.1) for Iel < &, & sutficiently small. In what follows the value ¢,
will be further reduced sometimes without any particular reference.

If ue HY(Q) N B, i.=., if u does not depend on ¢, then Ay(u, u) = Bo(u, Au)|d,.
Hence, by (1.12), we have

(5-2) Ao(u, u) 2 dy|u||fr, for ueH'(Q)N B

with a positive d,. Since any ve H>'(Q) n B can be written as v = Y. v(x) e/(t)
with v; € H{(Q) n B, we get I

Ao(v, v) = Y Ao(v;, v)) Z d2 Y |[v]| ey = d2|0]| 010y -
J J
This implies
(5.3 Av,v) 2 ds||v||}o.p forall ve H*'(Q)n B

for sufficiently small ¢ and d; > 0.

We shall suppose that the functions a and h satisfy (4.2) and (4.3). Let us fix
a positive integer M. The mapping 4 is a linear homeomorphism of HY(Q) n B n Z,,
onto itself. Using (5.1) we find a (unique) v € H'(Q) N B n Z,, satisfying

(54 B(v,¢) =<h, 9> for oeH Q)N BN Z,y.
Putting,(o = Av and using (5.1) we have
(55) lo] a1 < el -

In what follows we shall show that v satisfies

(5'6) ”v”Uo = c“h"l"x 4
(5.7) [v]lv, S eN* for A=0,1,...,k,
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with a constant ¢ independent of & and N. Thus for every positive integer M we can
find v = vy, and then let M — co. As a limit we shall obtain a (unique) v satisfying
(5.4) for all ¢ € H'(Q) n B, (5.6) and (5.7). Hence f;(u) v = h and Lemma 4.3 will
be proved.

Now we prove the estimates (5.6) and (5.7) for v with a particular fixed M. By
definition of B,, we easily find that for 1 < I < 2n, + k,

(5-8) B,(vy1, Av) = B(v, (—1)" Avpi) +
!
+e Z (l) { Z <(D£,aaﬁ) D:D:+l_pv’ DgAUr"‘) -
r=1\p/ "1a1=Tp1=1

- Z <(Dtpaa)D;D:+1—pv, AU,:) -

la]=1
—((Dfa) Dy*? v, Avyy + Y, ((D?*'a,g) DiD;Pv, DEAv-1) —
la|=|8]=1
o |=%1=1<(D5’Dfiaaﬂ) D3D;™Pv, Avy) - l<1Zw=0<(D:’aa,,,) DED!~%v, Avd} .

It is easy to check that every term in { } is estimated by
(5.9) |(D?D5 <a) (D:="Df )| [Joalls
with p=0,1,..., 1, |oc| <1, Iﬂl < 1. For p = 0 these terms are estimated by
| DExallccoy [oallt < befoal? -
Putting ¢ = (—1)! Av,21 in (5.4) we get
B(v, (=1)! Avpr) = <hy, Ava) S ||| ooy -

Using this in (5.8) with all terms of the type (5.9) with p = 0 shifted to the left-hand
side, we get

(5-10) (dy — ecy) [va]ls £ |ha| + e Z(1),
where
1
Z()= ¥ Y |(DiD.a) Di*Df 0| -
le|=1,|8]=1s=1

The following lemma provides an estimate of Z(I).

Lemma 5.1.
(i) Let 1 £ 1< m — 1 and ve H(Q). Then Z(I) < c|a|g, |v]
(i) Let A=0,1,....k—1 and veU, Then Z(m + A) = c{||a|rs.s [o]oo +

2
+ 3 [alsololonc )
We postpone the proof to the next section.
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Using part (i) of this lemma in (5.10) we get

(5.11) ledls = el#]e, -

Hence (5.4) has the form

(5.12) A(v, ¢) =<b, @) for ¢eH (Q)nBnZy,
where

b=h=—uv,—dx)v,+¢e Y aDiv, + av,).
lel=1

By (5.11), b € I*(Q). We now use the following lemma whose proof will be given in
the next section.

Lemma 5.2. There is ¢, such that if g e H**(Q) for some s < n, and |s| < &,
then, for every positive integer M, there exists a unique w e H****(Q) n B n Z,,
satisfying

A(w, 0) =<9, 9> for 9eH(Q)NnBNZy.

Moreover

[W]lao.ev20) = €llg]lmo.scor -
By this lemma and (5.12), v e H®**(Q). Thus (5.12) takes on the form

(= 1)1 {DEA4(x) D™ + ea,z,D5**, @) = <b, @) .

lel=1,]8151
Substituting (— I)'~?¢,:1-, for ¢ and integrating by parts, we get
A(v3-5,0) = g1, > for @eH Q)N BN Zy.
Here '
Jip = bt"P - A;U >

I - s o
Ay = 3 0 (1 7) () pE,

5,8",8
where the sum is taken over lﬁl < 2 and nonnegative integers s,s’,s + s’ =1 — p,
for which s = 1 in the case |ﬁ| = 2.
The following lemma provides estimates of g, ,.

Lemma 5.3.

(i) Let 1=1,...,m—1and p=1,...,1 be fixed. Let veH’(Q) A X", Then
“gl,p"HO,p-l = c{"h,x-pnno.p—l(g) + "a"Fz (“v"' + "v"X'“,P)}-

(ii) LetA=0,1,....,k — landp = 1,2,...,m — 1 befixed. Letve U, n X"+**1.r,
Then ||gm+1,p)|mo.r-1 S ¢{||Bemsa-s||mo.o-100) + ||a]| ]| 0] ms2s10 +

A
+ Z ”a"Fz-'-v iv”UA-v}'
v=0
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Now using Lemma 5.1—5.3 we prove the following two implications; I = 1, ..
m—-1,p=1,...,1I

519 1 oS clilers hen oofs = olrss S el
(519) 0 ol + [olisis S ey, then [olsrssoes < el -

(5.13) is a consequence of (5.10) and part (1) of Lemma 5.1. If ||v]|, + |[v]x1s1.0 <
=< c|]h| F,» We use part (i) of Lemma 5.3 to get a similar estimate for g;, and then
Lemma 5.2 with s = p — 1 to get |[va-5]po.r+1igy S ¢[|h|r,- This proves (5.14).

For I=m —1and p=m — 1, (5.14) yields o], < c|h]g, As [[*]m = |*[ves
the estimate (5.6) is proved. Using parts (ii) of Lemmas 5.1 and 5.3, we similarly
get (5.7). This completes the proof of Lemma 4.3.

6. PROOFS OF AUXILIARY LEMMAS

In this section we give the proofs of Lemmas 5.1 —5.3.

Proof of Lemma 5.1. For 1 £l <mand 0 £ 1 £ k — 1 we have
1+2
2i+4)= % X |(DiDi.a) D;**7*Df o] -

le]=1,[8]=1s

For j a nonpositive integer, we set Djv = v. On estimating Z(I + 1) we shall distin-
guish two cases.
(1) If 1 £ s < ng + 4, then

|(D:D5<a) DY**7*DE o] < .| Diallgs s [ DE** 0] <

< e D7 %l [ D277 ol < euflalle,, (D270 + o)

where v = max (0, s — n,).
(2 If np +A<s=1+ 4, then

|(D3D} xa) D *7* Dl || < | DT 2alls, | DF* 4] g1 <
= efales. ol
where p = max (0, + 2 — n; — 1). This follows from the following computation:
s—2ng+ 221+ A=2np+2=(0+A—-n —1)+2.

To finish the proof we take A = 0and I < m — 1. Then v = 0, p = 0 and part (i)
follows from the derived estimates. For I = m, v ranges over the set 0,1,..., 4,
4 = A + 1 and part (ii) follows immediately.

Proof of Lemma 5.2. We begin by showing that for every b € H**(Q) we can find
a unique ¥b e H***?(Q) n B n Z,, satisfying

(6.1) Ao(¥b, 9) = (b, 0> VYoeH*MQ)NBNZy.
Writing b = ) bj(x) e(), we have b; € H(2) n B and ||b||go.«0y = ]| b;
]

anca) -
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Since A, satisfies (5.2), we apply Theorem 9.8 from [4]. For every j € Z we obtain
a unique v; € H**+%(2) N B such that Ayv; = b; and |[v;]us+20) = €3]|bj| o) We

put ¥b = 3 v(x) ej(t). It is easy to verify that ¥b satisfies (6.1) and that
ljls=M

” 'Pb“m'm(c) = c"b“mw(e) .

Further, we show that, for a satisfying (4.2) and |y| <2,

(62) laDkv| gy = ¢f|o]|mo.e+2(qy -

This means, for |a| + la’l < s, to estimate |[(Da) D% *"v||. We shall distinguish
two cases. (1) For Ial < ny — 1, we have

[(D2a) DX 70| < esfalzne-1]o]lmorv2gy = eb[o]noesao -

(2) For |a| = n,, we have loc'l =< s — ng and thus
2n
||(D;',a) D;‘+Yv“2 =J J |D:a|2
0 J2
2n 2
5 . [ ete imam It )
0

2n
< ¢;max {[|a(t, *)|fn, @ t€ [0, 2“]}‘[ lo(t, Mmanieng 2y dt <
0

DY*7p|* dx dt <

élar|+2(n) dx dt é

< cfflalln, + fadn} Jolfo.sag) »

since Ia’l + ny 4+ 2 < s+ 2. (6.2) is proved and this implies that the operator

o= Y a,D:’vis a bounded mapping of H***%(Q) into HO’S(Q).Therefore,
lef,[81=1
for ¢ sufficiently small, the mapping ¥(g — e=/v) is a contraction on H°"+2(Q) N B

and its fixed point is the desired function w. This completes the proof of the lemma.

Proof of Lemma 5.3. For I=1,...,m, p=1,..,min(,m — 1) and 1 =
=0,1,..., k — 1 we shall estimate HQ,H,,,||HO,,,-1(Q). Ifl=1...m-1, p=
=1,...,1 and 2 = 0, we get the estimate in (i);if I=m, p=1,...m — 1 and
A=0,1,...,k — 1, we get (ii). To obtain an estimate for “gz+z.p||m-p~x(g, we shall
deal with

(63) |(D:D5a) DF*+ D *4]
where s, §', 0, @, &' and f satisfy
s+ =l+1-p, la|+la’|§P—1, a‘+|[3|§2
and the following implication holds:
(6.4) if |f|=2, then s21.

We shall distinguish three cases.
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(1) Let s + |a| <n,+A+1and Ial < ny — 1. Then (6.3) does not exceed

e DDl |70 0]
Setting
v=max(0,s + |¢| — ng — 1)
we have ||DiD%a|,, < |a|r,.,. since s + |a| + ng S ny + 2+ v. If A =0, then
v =0. For A > 0, vis an element of the set 0, ..., 4.
Further, we shall estimate | D7 **' D% *#v|. Obviously,

(6.5) S+ l|+@+[B)SI+A+1—5—|of.

If s+ |a| = 0, then v = 0 and, by (6.4), || < 1. Hence |«| + || < p and this
yields
D5+ DZ 4] < [o]xienerr

Thus (6.3) does not exceed ¢,||alr, [[v] x1 42410 If s + |a| > 0,then v< s + Ial - 1.
Further || + || £ p + 1 £ m and, by (6.5),

”D:+S'D;'+pv“ =< ”U”xl+;.-v,m.

For 2 =0 we have [v]yiy2-v,m < |||, and therefore (6.3) does not exceed
¢i|ag, o] For 2> 0and I = m, ||v] x142-v.m < |[0]u,_, and (6.3) does not exceed
al|lFzsy [VllUa-v

(2) Let s + |a| S ng + A+ 1 and |¢| = no. From s + |«| < v + ny + 1 we have
|D;Dza|| < |a|f,,, and (6.3) is estimated by c,|a|s,,, ||D7** D *Pv|n,. Now
|oc’|+|ﬁ|<p and s’+|rx’|+(a+|ﬂ|)+n0§l+l+1+n0—|<x|—s. Thus,
if v =0, then |[D7**' D} *Pp|,, < |vllxi+asrp- v >0,ie. v =15+ lcxl —ng— 1,
then | D7**'Di**v|,, < |v]|xi+2-v.». Thus in this case (6.3) is estimated by
clall [olarenes + Talroon [olrrencen)

(3) Let s+ |of = np + A + 2. Then, obviously, |DiD%a| < |a|,,, and
”Di:'T'D;'”’v”,,D < ofi since " + || + (@ + [B) + no ST+ A+ 14+ny— s —
-l =1-1
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