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Časopis pro pěstování matematiky, roč. 109 (1984), Praha 

ON A CODIMENSION THREE BIFURCATION 

MILAN MEDVED, Bratislava 

(Received November 29, 1982) 

In this paper we study unfoldings of the vector field 

x = X0(x) = Ax + G(x), 

where x = (xl9 x2, x3), G e C00, G(x) = 0(||x||), the matrix A = (atj) is equivalent 
to the nilpotent matrix S with Fs just above the diagonal and 0's elsewhere. Some 
results contained in this paper have been announced in [15]. The unfoldings of the 
above vector field, possessing symmetry under the change of sign, X0(x) = — Xo( —x), 
are studied in [16]. 

Under generic hypotheses on the quadratic terms, we derive a normal form for 
unfoldings of X0 which enables us to find the bifurcation diagram of the critical 
points. We show that generically there is a curve Z2(Zlc) in the parameter space, 
where the linear part of the corresponding vector field, computed at a critical point, 
has zero as an eigenvalue of multiplicity two (a couple of pure imaginary eigenvalues 
and one zero eigenvalue). Using Bogdanov's results [3] we describe the bifurcations 
near the curve Z 2 . The case of the codimension two singularity, which occurs on the 
curve Z l c , is more complicated. It has been partially solved by several authors [5], 
[7 — 10]. There are a number of different cases of very complicated bifurcations near 
the curve Z l c . The problem of global bifurcations of the phase portraits when the 
parameter goes from a nieghbourhood of Z 2 to a neighbourhood of Zlc remains open. 

1. P R E L I M I N A R Y LEMMAS 

Consider an unfolding of the vector field X0, represented by the three-parameter 
family of vector fields 

(1.1) X=f(x,8), 

where / = (fiJ2J2) e C00, x= (xl9 x2, x3), e = (el9 e2, e3). We also write fE(x) 
instead of/(x, e). 

The vector field f0 = X0 may be rewitten as 

(1.2) 
* 1 * i 

x 2 = A X 2 + 
3 - *K 

(Px, x) + h^xj 
(ßx, x) + h2(x) 
(Rx9 x) + h3(x) 



where P = (pij), Q = (g/7), R = (ru) are symmetric matrices, A = (a ,;)>(': 
the scalar product in R3, ht(x) = o(\\x\\2), i = 1, 2, 3. 

There exists a linear change of coordinates y = Nx such that (1.2) becomes 

yi = y2 + (Py, y) + gi(y), 
(1-3) Y0: y2 = y3 + (6y, y) + g2(y), 

y3 = (&y, y) + g3(y) -

"((N-7PN-V,y)" 
((N-')'QN-ly,y) 

( ( N - ^ K N - ^ y ) 

•)is 

(IЫ JO 

(UУ, y) 
(Ry,y) 

N 9t(y) = o(\\y\\2), i = 1 , 2 , 3 , 

(N *)' is the transpose of N 1 . 

Lemma 1. There exists a smooth local dijfeomorphism & transforming the vector 
field Y0 to 

(1.4) Ф*Yo'- * i = x2, x2 = x3, x3 = (Tx, x) + h(x), 

where T = R + T0, h(x) = o( | |x | | 2), T0 = (r?) is a symmetric matrix with t°u = 0, 
t°i2 = §ii, t°13 = plx + q12, P = (pu), Q = (qu)9 R = (rtj). 

Proof. The diffeomorphism H: zx = yu z 2 = y2 + (Py, y) + g^y), z 3 = )>3 

transforms (1.3) to the vector field H* Y0(z) = z2 djdz^^ + (z3 + (gz, z) + 
+ £2(z)) S/3z2 + (Rz, z) + <?3(z)) 0/0z3, where g,(z) = O(||z||2), i = 2, 3, (3 = Q + 
+ P, K = R, P = (pij) is a symmetric matrix with ptl = 0, j?12 = pll5 p13 = p12, 
P22 = 2Pi2> P23 = P13 + P22, P33 = 2P23. Then <P = KoH, where K: xx = zl9 

x2 = zl9 ^3 = -̂ 3 + (&> z) + 02(z)-

Lemma 2. Let T = (r0) be the matrix from (1.4). Then the numbers q = tlj\t11, 
j = 2, 3, are invariant with respect to regular transformations of coordinates in 
the phase space that keep the origin fixed. 

Proof. Consider a diffeomorphism of the form R: yt = xt + Xt{x) + o(||x||2), 
i = 1, 2, 3, where the functions Xt are homogeneous polynomials of degree 2. We 
assume that R maps (1.4) to a vector field of the same form. Any diffeomorphism 
transforming (1.2) to the form (1.4) and keeping the origin fixed, is composed of the 
mapping *F = # o N, where <P, N are as above, of a mapping of the form R and of 
a linear mapping Q, which does not change the linear part of the vector field (1.4). 
The mapping Q must be of the form Q(X) = Dx, where D = (dtj), dkk = k, k = 1, 2, 3, 
di2 = d23 = e, d13 = d, du = 0 for i > j , X, e, S are real numbers, X 4= 0. It suf­
fices to prove the invariance of q with respect to the mappings R and o. 

By using the fact that the mapping R preserves the form (1.4) it is easy to check that 

/ \ _ dXi dxt 
Xi+i[x) — -— x2 + -— x3 , 

o*! ox2 

1,2, 



and therefore 

v
 , N d2Xt 2 „ &2Xt d Xi 2 dX! 

X3(x) = ~ x\ + 2 x
2
x

3
 + —--

1
 x

2
 + —-

dxx dxx dx2 dx2 dxx 

з 

This implies that the vector field K*(^*Y0) has the form (1.4) with a matrix T = (t\j) 

instead of the matrix T = (ttj) and t\} = tXj,j = 1, 2, 3, i.e. the mapping R does not 

change the numbers t1}, j = 1, 2, 3. 

It remains to prove the invariance of q with respect to the mapping Q. This mapping 

transforms the vector field (1.4) to the form (1.3), where P = (ptj) = Sf, Q = 

= (qiJ) = eT, R = (rij) = lT, T = (ttj) = ( I T 1 ) ' TD~\ pn = Sr2tll9 qtl = 

= eA 2-"n- qi2 = ~ e 2 ^ 3 ' n + eA 2t12, rl2 = -eA 2 r n + A *t1 2, r n = A Ltll9 

r13 = (e2A~3 — SeA~2) t l l — sA~2tl2 + A - 1 t 1 3 . By Lemma 1 there exists a smooth 

local diffeomorphism transforming the vector field to the form (1.4), with a matrix 

f = (iij) = R + T0 instead of the matrix T, and the first row of the matrix T0 is 

(0, qn, qi2 + Pi i). Therefore ? n = l~ltll9t12 = r12 + qn = J.~1/1 2, ?i3 = ? 1 3 + 

+ qi2 + Pn = ^ ^ 1 3 a nd t n e proof is complete. 

2. NORMAL FORM 

By Lemma 1 the family (1.1) may be written in the form 

(2.1) * ! = x 2 + vx(x, E), 

x2 = x3 + v2(x, e) . 

x 3 = f n x 2 + l12x1x2 + t13x1x3 + t23x2x3 + t22x\ + t33x
2

3 + v3(x, e) , 

where v,(x, 0) = 0, i = 1, 2, v3(x, 0) = o(||x|2). 

Assuming t l i + 0 , we may introduce new coordinates y = ttlx and then (2.1) 

becomes 

(2.2) yx = y2 + vv(y, s) , 

y2 = y3 + v2(y, E) , 

y3 = yl + ^ l y l y 2 + ^ 2 y l y 3 + *23y2y3 + *22y2 + ?33y3 + ^ ( y , *) , 

where v{y, 0) = 0, / = 1, 2, v3(j;, 0) = o(| |y | | 2), coj = tij+1jtll9 j = 1, 2, are in­

variants of the germ, represented by the family (1.1). 

Introducing again new coordinates ul = yl9 u2 = y2 + vx(y, s), u3 = y3, we 

obtain a family of the form (2.2) with v1 = 0. Transforming the resulting family by 

the diffeomorphism zx = ul9 z2 = u2, z3 = u3 + v2(y, s), we get a family of the 

form (2.2) with vx = 0, v2 = 0. This family may be written in the form 

(2.3) Zi = Z2 , 

z 2 = z 3 » 

y3 = ^(zi> e) + '2Qi{~u ') + ZsQii'u e) + z2fi3(z3, e) + 

+ z2

2<Pl(z,e) + z2

3f2(z,e), 



where F, Qh Vj9 i = 1, 2, 3, j = 1, 2, are C°°-functions, 

F(o,o) = ^ M = o, *WS = 2, --3-M). 
G'Zj dzf dZj 

i = 1,2, &(0,0) = 0 , k= 1 ,2 ,3 . 

Lemma 3. If a>1 =t= 0, co2 + 0, then there exists a smooth regular mapping y = 
= y(z, e), y(0, 0) = 0, transforming the family (2.3) to the form 

(2.4) y! = y2 , 

y2 = y3 , 

y3 = F(yl9 e) + P(e)y2 + y^C^yi, e) + yiys^yi, e) + 

+ y2G3(y3, e) + y\Vi(y\ e) + yMy, e) , 

where F, CA, C2, C3, /?, IP^ ¥'2 are smooth functions, 

E(o,o) = ^ M = o, ^ M = 2, 
dyi dyi 

0,(0,' 0) = a>,, i = l , 2 , p(0) = 0 . C3(y3, 0) = 0(|>!3|) . 

Proof. Let yx = z1 — a(e), v2 = z2, y3 = z3, where a is any smooth function. 
Then the family (2.3) becomes yx = y2, y2 = y3, y3 = F^ + a(e), e) + y22i(yi + 
+ a(e), e) +^y322(yi + a(fi), e) + y263(y3, e) + y2^i(y, e) + y3#2(y, e), where 
#.(y, e) = fi(y1 + a(e), y2, y3, e), Q2(y1 + a(e), e) = Q2(cc(e), e) + yj&CVi* e), 
Q2(0, 0) = 0, dQ2(0, 0)jdy\ = co2, Q2(0, 0) = co2. Since w2 + 0, the implicit function 
theorem implies that there exists a neighbourhood U of 0 e R3 and a smooth function 
a : U -> K1 such that a(<r) = 0, Q2(a(e), e) = 0 for all e e U. From Taylor's expansion 
of the function Q1 we have Q^y, + a(e), s) = 0(e) + yiG^, e) + ^(|yi|), where /?, 
Cx e C00, /?(0) = 0, C lx0, 0) = 80,(0, 0)1 dyx = c^ and so the family obtained has 
the form (2.4). 

If F is the function from Lemma 3, then by the Malgrange-Weierstrass preparation 
theorem (see [14]) there exist smooth functions <p,(e), (p,(0) = 0, i = 1, 2, 0(yl9 e), 
0(0, 0) = 1, such that F(yl9 e) = (y\ + (p2(e) yx + 9i(e)) G(yl9 e) and therefore the 
family (2.4) may be written as 

yi = y2 , 

y2 = y3 , 

y3 = (<Pi(e) + (p2(e) yi + yi + <p2(e) y2 + yiy2Qi(yi, e) + 

+ yiy3e2(yi, e) + y223(y3, e) + yl*i(y, e) + y3#2(y, e)) 0(yl9 e) , 

where O, Qi(pi9 *j e C00, <p,<0) = 0, * / 0 , 0) = 0, i = 1, 2, 3, ; = 1, 2, gfc(0, 0) = 
= cok9 k = 1,2, (9(0,0) = 1. 



We have assumed o1 + 0, o)2 =t= 0 in the previous lemmas. Now we show that these 
:onditions are generically satisfied in the space of three-parameter families of vector 
fields of the form (1.1). To this aim, we define some algebraic manifolds. 

Let S be the nilpotent matrix with l's just above the diagonal and 0's elsewhere. 
For the matrix A = (atj) of the linear part of the vector field X0 there exists a regular 
matrix N = (ctj) such that NAN-1 = S. Since rank A = 2, there exists at least one 
nonzero minor of order 2. There is no loss of generality to assume 

A3 = d e t r a i 2 H + 0. T«12 «131 
\a22 a23\ 

This condition corresponds to a stratum of some algebraic manifold, which will be 
specified later. Under the assumption that some other minor of order 2 is nonzero, 
we have to do with another stratum of this algebraic manifold and all computations 
for this case are similar to those for A3 4= 0. 

First let us express the elements of the matrix N as functions of elements of the 
matrix A. If A3 4= 0, then 

C 1 1 = -J-detP"^], - . - -^detP"^! -. ,-0 , 
A3 L^i3 AiJ A3 [_al3 A3J 

c21 = J - d e t P ^ 1 , c IdetP-yi C23 = 0 , 
^ 3 L^3 Cl33_\ A3 La13 ^ 3 J 

c3l = Ax, c32 = A2, c33 = A3, where 

A^detP22^2], A2 = de tr
f l 3 2 f l l 21. 

Lfl23 a33\ [a33 al3\ 

The characteristic equation of the matrix A = (a{j) is 

- A 3 + c2k
2 + c^X + c0 = 0 , 

where c0 = det A, ct = a23a32 + alta33 + al2a2l - a22a33 - al3a3l - atla22 

c2 = Sp A = axl + a22 + a33. Therefore A has zero as an eigenvalue of multiplicity 
3 if and only if det A = 0, Sp A = 0, ct = 0. 

Denote by F30 the set of all smooth vector fields on K3. Let / v(x) be the k-jet 
of v e r3 at a point x and let J3(x) be the set of all such k-jets. For v e r3, j 2 v(x) = 
= (v(x), D v(x), D2 v(x)), we may identify D v(x) with 

( 

SVÍ(X) dVí(x) dv^x) dv3(x)\ 9 

' ' ~~\ ' ~~\ ' • • •' 3 I 
Gx! OX2 OX3 CX3 J 

and because of the symmetry of the matrices D2 vk(x) we may identify D2 v(x) with 

/a2»i(x) d2vt(x) d2
Vl(x) d2

Vl(x) d2
Vl(x) d2v,(x) ^ _^2v3(x)\cRl8 

\ 8x\ ' dx2
2 ' 8x2

3 ' 8xt dx2 ' 8xt dx3 ' dx2 dx3 ' ' 8x2 dxj 



This means that the 2-jet j 2 v(x) may be identified with 

3vj(x) dv3(x) d2vx(x) ( ( \ SvAx 

[v{x)>lt дxъ dx\ 

д2v3(x) 

ôx2 ôx3 

\eR30 

Let us define the following sets: 
Tk = {(a, A, B) e J2

3: F{a, A, B) = 0, i = 1, 2, 3, F4(a, A, B) = tlk = 0, a = 0, 
rank A = 2}, k = 1, 2, 3, where F1 = Sp A, F2 = det A, F3 = tf23a32 + ci11a33 + 
+ ai2a2i — a22a33 ~ ^13^31 ~ ^u^22» -4 = (atj) and tu, l12, l13 are the elements 
of the matrix T from (1.4), which are functions of the elements of the matrices A, B 
(the elements of B are in fact the elements of the matrices P, Q, R from (1.2)). Direct 
computations show that 

' u = c 3 1 (a u c ' u + a12c21 + a13c31) + c3 2(/?uc'u + P12c21 + 

+ P13C31) + c33(?ucii + 7i2c21 + y13c31), 

'12 = c 3 1 (a n c i 2 + a12c22 + a13c32) + c32(/?uc'12 + P12c22 + 

+ 0i3c32) + ^33(711^12 + yi2C22 + 713^2) + c 2 i ( a u c ' u + 

+ a12c'21 + a13c31) + c22(Pnc\i + P12c21 + P13c'31) , 

hs = (c3i«i3 + c32^i3 + c33y13)c33 + c 2 1 (a u c i 2 + a12c22 + 

+ 0-13C32) + c22(Pxlc\2 + /?12c22 + P13c32) + c u ( a u c ' u + 

+ a12c21 + a13c31) + c1 2(/?uc'u + P12c21 + P13c31) , 

where a u = c u / ? u + c21p12 + c31p13, a12 = c'up12 + c21p22 + c'31p23, a13 = 
= c'11p13 + c'21p23 + c31p33 (the same for pn and y u , /c = 1, 2, 3, where we have 
qu and r0-, respectively, instead of pu), NAN'1 = S, S is as above, N = (ctj), 
N"1 = (cu). The elements cty are functions of the elements of the matrix A expressed 
as above (we assume A3 4= 0). 

Lemma 4. The sets Tl9 T2, T3 are smooth submanifolds of J3 Of codimension 7. 

Proof. (1) for T2: Let F = (Fl9 F2, F3, F4): K30 -> K4, where Fi9 i = 1, 2, 3, 4, 
are the functions from the definition of the sets Tk. It suffices to show that rank DF = 
= 4. 

det 

дГ, дРх дР\ дР^ 

дац да31 да21 сги 

ðF4 ðF4 дF4 

dalx da31 da21 

дFţ 

дr„ 

ÕF\ 

дru 

Чз > 

where A23 = a12-43 — ^i3-42- It suffices to show that Fu + F12 4= 0. By the above 
formulae for cu we have that c u = k1A23,c12 = k2A23,cl3 = 0 and hence A23 4= 0. 
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Therefore it suffices to show that 

k 2 

(£)'•(£) + 0. 

If WJ express c\j as functions of ci}, then the formula for tl2 yields tl2 = 
— 172 ̂ 33^i2c22 rn + d2c3 3(c1 2c2i + c22ci 1) ri2 + (terms independent of rn and 
''12)' d'1 = detN and therefore A = dx c\3(c\2c\2 + (ci2c2i + c22cn)

2). Since 
3̂3 = ^3 4= 0, c22 = kA23 =j= 0, we obtain that A = 0 if and only if c n = c12 = 0. 

However, c13 = 0, N is regular and therefore A + 0. 
(2) for Tx: F4 = tn = dc\3c\2rn + (terms independent of rn), c22 = kA23 + 

+ 0, c33 = A3 + 0 and therefore dFAjdrxl + 0, i.e. rank DF = 4. 
(3) for T3:F4 = t13 = d2 c\2c22(cllc22 — c12c21)ql2 + (terms independent of 

q12). This implies that dF4Jdq12 + 0, i.e. rank DF = 4 and the proof of the lemma 
is complete. 

Denote by D°° the set of all smooth mapping from R3 x R3 into R3 and for any 
fe D°° define the mapping Vf: R3 x R3 -> j \ , Vf(x, e) = j2fE(x), (x, e)eR3 x R3 

(fe(x) = f(x, e)). As a consequence of Lemma 4 and Thorn's transversality theorem 
(see e.g. [13, Theorem 3.1]) we obtain 

Lemma 5. (1) There exists a residual subset Df of D00 such that if f e DJ0, then 
Vf(R

3 x K3) n (Tj u T2 u T3) = 0. 
(2) If X cz R3 x R3 is a compact set, then there exists an open dense subset Dx 

of D™ such that if f e Dx, then Vf(X) n (T{ u T2 u T3) = 0. 
Let I = {(a, A) e J3: a = 0, det A = 0, Sp A = 0, c t = 0, A is a nonzero matrix], 

A = (atj), c1 are as above. From the above computations it follows that £is a smooth 
submanifold of J3 of codimension 6. 

Definition. The family (\.\) is called nondegenrate, if ln . f12 . t13 #- 0 and 

(2.6) 0,0(0,0,2; 

($f transversally intersects I at (0, 0)), where ^f(x, e) = j l fc(x). 

Denote by II00 the set of all families of vector fields of the form (1A). As a con­
sequence of Lemma 5 and Thorn's transversality theorem we obtain the following 
lemma. 

Lemma 6. The set of all nondegenerate families of vector fields H™ <= H°° is 
open dense in H00. 

LetfeHJ0 and suppose that it is already in the form (2.5). Define the mapping 
cf: R6 -> R\ af(y, e) = (f(y, e), Sp DyfE(y), det DyfE(y\ HE(y)), where DyfE(y) = 
= (tfi/y' e)) -s t r ie differential of the mappingfat y, Sp DyfE(y) = an + a22 + a33, 
#£(y) = - « 2 2 a 3 3 + a32a23 + ana33 - a13a31 - aua22 + a12a2i. The form of 
the mapping af and the forms of the functions defining the set imply that the trans-



versality condition (2.6) is equivalent to the regularity of the mapping af at the origin, 
i.e. to the condition det Daf(0, 0) 4= 0. 

If / = (fiJiJ*), then Sp DyfE(y) = df3jdy3, det DyfE(y) = df3jdyi, HM(y) = 
= df3jdy2. Using the form of the family (2.5) one can show that det Daf(0, 0) = 
= —co2 det Dcp(0), cp = (<pu cp2, (p3). Since co2 4= 0 and det crf(0, 0) 4= 0 forfe Hf, 
we obtain that det D cp(0) =j= 0. This enables us to introduce new coordinates in the 
parameter space: fit = cpfe), i = 1, 2, 3, and we obtain a family of the form (2.5) 
with iih Q{y»<p-l(fi)) 0 = 1,2), Q3(y3,(p-l(ii)), *j(y,<p-l(ii)) e(y1,(p-1(^)) 
instead of cofe), Qi(yl9s)y Q3(y3> e)> ^Xy> £)> ®(yn «). respectively, where \i = 
= (fil9 fi2, pi3). Dividing the right-hand side of the resulting family by the function 
0(yl9 (p~1(fi)) the family becomes 

(2.7) Z! = z2d(zl9 fi)9 z2 = z3&(zi9 ii), i 3 = R(z, u) , 

where 0 , Re C°°, 0(0, 0) = 1 and R has the same form as the right-hand side of 
(2.5) with 0 = 1. This family is C°°-equivalent to (2.5). Now, if we put ux = z,, 
u2 = z20(zl9 JU), w3 = Z3, the family becomes 

Ul = u2, u2 = u30(ul9 fi)9 u3 = R(u, fi) , 

where 0, Re C00, (5(0, 0) = 1, R(u, JJ) has the same form as R. Finally, introducing 
new coordinates yx = ul9 y2 = u2, y3 = u30(u1? \i), one obtains a family of the 
form 

(2.8) yx = y2, 

h = y3 > 

y3 = J"l + A*2yl + yl + r<3y2 + yly26l(yl> V) + 

+ yly362(yl> l>) + y2G3(y3> A*) + y2^l(y> A*) + y3^2(y> i") , 

where Q l5 Q2, Q3, <Pl9 <£2
 a r e smooth functions, Qt(0, 0) = col9 Q2(0, 0) = co2. 

We have proved the following theorem. 

Theorem. There exists an open dense subset H™ of the set H°° of all three-para­
meter families of vector fields of the form ( l . l) such that iffeHf, then f is non-
degenerate, and it is possible to transform this family by a smooth regular trans­
formation of coordinates in a sufficiently small neighbourhood of the origin in 
R3 x R3 to the form (2.8), where cox, co2 are invariants of the germ, represented 
by the family f. 

3. BIFURCATION DIAGRAM 

Letfe Hf be a family of the form (2.8). All critical points of this family have the 
form (yl9 0, 0), where j ^ is a real root of the equation 

y2 + W + f i = 0 . 
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Let U be a neighbourhood of the origin in the parameter space and let Sk (k = 
= 0, 1, 2) be the set of all j.i e U for which (2.8) has k critical points. 

Lemma 7. There exists a smooth function fit = S(fi2) such that St = {/* = 
= ( / I 1 , / I 2 , / I 3 ) G [ / : / I 1 - - S ( 4 5(0) = S'(0) = 0, S"(0) > 0}, i.e. St is a fold 
dividing U into two components, one of which is S0 and the other is S2. 

If /(e S2, then the vector field (2.8) has two critical points F = (£l9 0, 0), G = 
= (Q2, 0, 0), where ^ = - j-(u2 - v), £2 = \(~ix2 - v), v = (u2

2 - 4 / 0 1 ' 2 . 
Let Sl2 = SlvS2 and letK = (£, 0, 0) be a critical point of (2.8). Denote byL(K) 

the matrix of the linear part of (2.8), computed at K. The characteristic equation 
of L(KJ is 

(3.1) X3 - a2X
2 - axX - a0 = 0 , 

where |a0 | = |v|, ax = (/^ + Z) 6i(£> )̂» ai = £ 6 2 ^ A*)- -f /* e S,, then the vector 
field (2.8) has one critical point K = (^, 0, 0), where £ = — \j.i2. If /(e S2, then the 
matrix L(F) (L(GJ) has the characteristic equation of the form (3A), where £ = 
= 4'j (S = £2) and fl0 = v > 0 (a0 = - v < 0). 

First assume JJ. e Sl. Then the matrix L(K) has zero as an eigenvalue. Obviously, 
it is of multiplicity 2 if and only if, in addition to the identity \JL\ — 4/^ = 0 defining 
the set Sl9 the following holds: 

H(n2, ^3) = (^3 - iVi) Qi(-iHi, H) = 0, Ih * 0 . 

Since Qi(0, 0) = col 4= 0, the last identity is satisfied in a sufficiently small neigh­
bourhood of the origin only if/i3 = n(fi2) = in2.Wx(*) = ( i ' 2 , ', >/(')) anc* ^ , s a ne igh-
bourhood of the origin in Rl, then /(W) is a one-dimensional smooth submanifold 
of S{. For /LIEZ2(K) = z(W ) \{0}, the matrix L(K) has zero as an eigenvalue of 
multiplicity 2 and the third eigenvalue is X3 = — ifi2Qi( — i\i2, /*)• The matrix L(K) 
has zero as an eigenvalue of multiplicity 1 and a couple of pure imaginary eigenvalues 
if and only if a0 = 0, a2 = 0, ax < 0, i.e. nv = 0, /f2 = 0, /n3co1 < 0. Denote Zlc = 
= {//: /iA = 0, \i2 = 0, fi3wx < 0}. 

We have proved the following lemma. 

Lemma 8. There exist one-dimensional smooth submanifolds Z2 and Z l c of S1 

such that the following holds: 
(1) Z2 is the set of all f.ieU (U is a neighbourhood of the origin) for which the 

matrix L(K) has eigenvalues: Xy = X2 = 0, X3 4= 0, where sign X3 = — sign/t2cu1; 
(2) Z l c is the set of all [ieU for which the matrix has one zero eigenvalue and 

a couple of pure imaginary eigenvalues 

(3) Z 2 \ Z 2 = {0}, Z l c \ Z l c = {0}. 

Now assume n e S2. By means of the substitution z + \a2 for X in the characteristic 
equation (3A) of the matrix L(K) we obtain 

(3.2) z3 + 3pz + 2q = 0 , 
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where 

(3.3) P = - " ł K + \a\), Ч = - K я o + І « I Ö 2 + Гт^) • 

t o ^ O 

Fig. 1. 

The discriminant of the equation (3.2) is D = D(^) = g 2 -f p 3 . Let us introduce new 
coordinates on S12 via the mapping 

(3.4) . v. = a0 = (A ~ 4^i)1/2 , 

QF: v2 = a2 = — i(i"2 - (A«2 - 4/ij)1/2) Q2(£i> A*). 

V3 = «1 = |>3 ~ K/*2 - (/*2 " 4/..)1 '2)] &(«.., Mj • 

Obviously, gf is a smooth diffeomorphism on S2, but it is not C1 on St and 

(3.5) Si = c^S .) = ^ 1 2 ) = (v = (vi, v2, v3): v. = 0} . 

In these coordinates the characteristic equation of L(f) is 

(3.6) A3 - v2A
2 - v3A - v. = 0 . 

The discriminant of this equation is DF = DF(v) = p3 + q2, where 

(3.7) p = -i(v3 + iv\) , a = - i ( v , + iv2v3 + j ^ v i ) . 

Denote 9F = {v: DF(v) = 0}, 2$ = {v: DF(v) > 0}, Q)F = {v: Df(v) < 0}. 
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Lemma 9. If v eQ)F(pF\QjF), then the equation (3.1) has three distinct real 
roots (two distinct real roots', one real and a couple of complex roots). 

9F = J*"+ u &~, where &* = {v: vx = F*^, v3), v3 + \v\ = 0}, 

(3-8) F ^ , v3) = -Kv2v3 + hì) ±4гЛv>+ táY12 

УJ 27 

The functions F+,F are smooth on P? = {v: v3 + \v\ > 0}, but only C1 on 
P°F = {v: v3 + \v\ = 0}. F-(v2. 0) = £(-vl ± |v2|

2) and therefore E+(v2, 0) = 0 
for v2 = 0, E+(v2, 0) = -±vl > 0 for v2 < 0, F_(v2, 0) = -£v_ < 0 for v2 > 0. 
F"(v2, 0) = 0 for v2 ^ 0. Since 

дF^ív^, v3) t , 1 , . 2 Ч 1 /, 
H ^ = -зv 2 ± — (v3 + łv 2 ) 1 ' 2 , 
я,f- V 3 
ÔVo 

we have 

Ï ^ ) . 1 ( _ V 2 ± Ы ) 
дv* 

Fig. 2. 
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and therefore 

- Q - 3 - 0 for v 2 _ 0 , - Q - 3 - 0 for v2 _ 0, 
OV3 ČV3 

Ô2FҢъ, 0) 
= + ^v3 2|v2( 

Moreover, it is obvious that F+(v2, v3) = F~(v2, v3) if and only if v3 = ~iv 2 . The 
above properties of the function F + > F~ enable us to sketch the picture of the set Q)F 

(Fig. 2). Since QF(S2) = S2 = {v: vt > 0}, we are interested in the restriction of Q)f, 
Q)F, Q)F to this set only. 

Obviously Z 2 = QF(Z2) = {v: vt = 0, v3 = 0} and Zlc = QF(Z1C) = {v: vt = 0, 
v3 < 0}. 

Now we are interested in such v e@F for which the equation (3.6) has a couple 
of pure imaginary roots. For ve@F there is one real root Xx = u + v + ^v2 and 
a couple of complex ones A2 3 = iv 2 - \(u + v) + i(y/3j2)(u - v), where u = 
= ( _ 4 + (DF)

i/2)l/3, v = (~q - (DF)1/2j1/3> q>-2E are as above. This implies 
that Re X2 3 = 0 if and only if v eIF = {ve@F : HF(vl9 v2, v3) = 0}, where 
HF(vu v2, v3) = 2v2 - 3 ( ( - q + (D F ) 1 / 2 ) 1 / 3 + (~q - (DF)

x/2)l/3). For any v°3 < 0 
we have HF(0, 0, v3) = 0. The function HF is C1 in a neighbourhood of the point 
(0, 0, v°3) and dHF(0, 0, v\)jdvl = 3/v°. Therefore there is a ^-function vi = 
= Kv2> v3) defined in a neighbourhood V of (0, v3) such that h(0, v3) = 0 and 
HF(h(v2, v3), v2, v3) = 0 in V. Moreover, dh(0, v3)]dv2 = - v 3 > 0 and hence the 
function h(v2, v3) increases near the point v2 = 0. We have 

mi = -{DF)-^ (- | i {DFr + \ fA ((/>,r -*) 
5vx \ 5vx 2 d v j / 

- 3 / 2 _ 

- ( Й ( Ð f ) 1 / 2 + 2^f) ( ( Z ? f ) l / 2 + í) 

= -i(/>E)-1 / 2(((^E)1 / 2 - q)1/3 + ((DF)1/2 + q)1/3) + 0 for ve®* . 

Therefore the set IF is a two-dimensional C1-manifold defined not only locally near 
the set Z l c . We can express the set IF\ {v: vt = v3 = 0, v2 > 0} as the graph of a 
^-function vx = h(v2, v3), v3 <0,v2= 0. SinceHr(0, v2, 0) = 0,dHF(0, v2, 0)jdvx + 0 
for any v2 > 0, the uniqueness of the implicit function implies that lim h(v2, v3) = 0. 

v3->0 

Defining h(v2, 0) = 0, we obtain that IF is the graph of a function v1 = h(v2, v3) 
defined for all v2 _ 0, v3 ^ 0, which is C1 on {v: v2 > 0, v3 _ 0}. The boundary 
of the set IF is {v: vt = 0, v2 = 0, v3 _ 0} u {v: vx = 0, v3 = 0, v2 _ 0). 

Since for v e Q)F the equation (3.6) has one root of multiplicity two, it has no com­
plex root and therefore the surface lF does not intersect the surface Q)F. 
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We prove that 
dh(v2, v3) _ _ 

a = hm - - — — - < 0 for any v2 > 0 
v3->o 3v3 

/dHF(h')\/dHF(h')\-1 

Wv3 ) \ av. y 

sufficiently small. We have 

__________ = _ /"_____' 
dv3 

where h' = (h(v2, v3), v2, v3)) and dHF\dv3 = - ( D r Y 1 / 2 (-dqjdv, (((Df)'t2 -
- cz)1'3 + ((DFy> + flj>/3} _ K((DF)'/2 + <.)2/> - ((D f)"2 - qf'3)). Using the 
above formulae for dHFjd\\ and dHFjdv3 we obtain 

„-_21imf-MM^Al^3_) - K((^)1/2 + i)1/3 - ((Í>F)1/2 - i)1/s)V 

Since h(v2, 0) = 0, Z>_,(0, v2, 0) = 0, 

( - * ) " • 

дq(0, v2, 0) 

őv, 
= - ł v S 1 ^ > 

we obtain that a = — 4;V2 < 0 for v2 > 0. This together with the fact that the set 
IF n <2)F is empty implies that IF looks like in Fig. 2. 

New let us consider the critical point G = (£2, 0, 0). Similarly to the case of the 
critical point F, we introduce new coordinates via the mapping 

(3.9) *_ = -(n\ - 4 ^ ) 1 / 2 , 

QG' X2 = -i(t*2 + G"2 - 4/*,)1/2 Q2(£2> /*), 

*3 = 1*3 " i ( ^ 2 + (/<_ - 4 I / 0 1 / 2 ) Q i ( { 2 f //) • 

The mapping QG is a smooth diffeomorphism on S2 and 

(3.10) _?i = ^G(Si) = cfcc(S12) = {* = (« l f *2> *3) : *i = 0} , 

i"i = i(<l>2(*0 - x?) = <Pi(x), 

QG1'- 1*2 = <P2(K) , 

03 = P 3 ( * ) , 

where the functions (p2, <?3 satisfy the identities x2 = — i(p2(x) + *i) 62( - i(<P2(K) + 
+ * _ ) , ?(*))> *3 = [<P3(X) ~ i(<P2(x) + * i ) ] G l ( - i ( ^ 2 W + * l ) , ? ( * ) ) , <? =- (<?i, <?2> 
<p3). Since 6i(0) = 60i 4= 0, Q2(0) = co2 =j= 0, the existence of the functions <p2, <p3 e 
e C00 follows from the implicit function theorem. From these identities we obtain 

<ty2(0) ___ _ t dcp2(0) _ 2 dcp2(0) _ n 

OXl dx2 co2 ox3 

djM = 0, ^ B ( O ) _ 1 ^3(0) _ 1 
dXi ' ' dx2 co2' dx3 co1 
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and therefore 

(3.11) iií= - ( - K i x2- x\ + h2{x)\, 
4 V <o2 J 

2 
QG1'- Џi = - * i *2 + ^ M > 

ш2 

1 1 , / ч 
/l3 = X2 + Xъ + /73(и) , 

w, ш, 
where h2(и), h3(и) = : 0 ( | * | | ) . 

Hence we obtain 

V l = " * ! -

H = QғoQG

l : v2 = и2 + й2(и), 

v3 = ^3 + f*3(x) , 

where h2, h3 = 0{||^|). Since H(0, x2, x3) = (0, x2, x3)9 we have h{{x) = xx ft fa), 
i = 1, 2. The inverse mapping H"1 has the same form as H9 i.e. 

* i = ~ v i -

H"1: x 2 = v2 + v x H 2 (v), 

^3 = V 3 + v i # 3 ( v ) > 

where Hi(v) = 0 ( | v | | ) , i = 1, 2. Therefore the characteristic equation of the matrix 
L(G) has the form 

(3.12) X3 - (v2 + V l H2(v)) k2 - (v3 + vx H 3(V)) A + vx = 0 . 

The discriminant of this equation is DG = DG(v) = p3 + (J2, where p = p(v) = 

= PiH-'iv)), q = q(y) = £ ( # " « P = " K ^ + ^ 2 ) , g = " K " i + **2*3 + 
+ £*1). Let ®G = {v: DG(v) = 0}, ^ = {v: DG(v) > 0}, ®G = {v: DG(v) < 0}. 

In the .^-coordinates we have trie same bifurcation diagram as we have obtained 
for the critical point F in the v-coordinates. In order to obtain the bifurcation diagram 
not only for F and G separately, but also for F and G as a couple, we need to sketch 
the bifurcation diagram for G also in the v-coordinates. 

From the form of the mapping H it follows that H maps the a.3-axis onto the v3-
axis onto the v3-axis, the ?c2-axis onto the v2-axis and the %raxis is mapped by H 
onto a curve, which has its tangent at the origin close to the v raxis. 

The discriminant surface 3)G has the form QG = H+ u H", with H± = {v: vx = 
= F±{^29

 v3)> v i = 0}> where F±(v2, v3) is the solution of the implicit equation 

V l + -^±(V2 + V l#2vV2> V3)> V3 + V1#3V
V2> V3/) = 0 • 
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From this equation, the uniqueness of its solutions and from the properties of the 
functions F+, F" mentioned above it follows that the functions F+, F~ have the 
following properties: 

f+(v2, 0; = 0 for v2 >= 0, 

F~(y2, 0) > 0 íor v2 > 0, 

« = 0 for v ^ O , 
chҷ 

F+(v2, 0) < 0 for v2 < 0, 
F~(v2, 0) = 0 for v2 ^ 0, 

õF + (v2,0) 

ôv3 

õF~(v2,0) 

дv3 

< 0 for v2 < 0 , 

= 0 for v2 = 0, 
dp-(v2>0)>0 f o r V 2 > 0 > 

dv3 

d2F+(v2,0) n , n d2F~(v2,0) . 
\ 2 y < 0 for v2 > 0 and v , ' 7 > 0 

dv2 dv\ 
for v2 < 0. The properties of the functions F+,F~ are the same as for the functions 
— F+ and — F", respectively. From these properties we obtain that the surface Q)G 

looks like in Fig. 3. 

2)' 

Fig. 3. 
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Now we are interested in such v e &G for which the characteristic equation of the 
matrix L(G) has a couple of pure imaginary eigenvalues. For v e Q)G the equation 
(3.12) has one real root fi{ = U + V + \K2 and a couple of complex ones /?2>3 = 
= i*2 - \{U + V)± i(V3/2)(U - V), where x2 = v2 + vt H2(v), U = (-q + 
+ (DG)l/2y,\ V= (q - (DG)l/2)l/3. This implies that Re/?2>3 = 0 if and only if 
v e IG = {v e SG : HG(vi9 v2, v3) = 0}, where HG(vu v2, v3) = 2x2 - 3 ( ( -g + 
+ (0G)1 /2)1 /3 + (~q + (^G)1/2)1/3). For any v j < 0 w e have HG(0, 0, v°j = 0. 
The function HG is Cl in a neighbourhood of the point (0, 0, v3), and 
U7/G(0, 0, v3)/U'v1 = — v3 #= 0. Therefore there is a ̂ -function vx = k(v2, v3) defined in 
a neigbourhood of the point (0,'v3)such that k(0, v3) = Oand HG(k(v2, v3), v2, v3) = 0 
in this neighbourhood. Moreover, from the implicit equation we have dk(0,v3

y)jdv2 = 
= v3 < 0 for v3 < 0. Similarly to the case of the set IF, it is possible to extend the 
function v, = k(v2, v3) to a function k defined on the set {v: v2 ^ 0, v3 = 0} so 
that £ € C1 on {v: v2 = 0, v3 < 0] , £(v2, 0) = 0 for v2 = 0, £(0, v3) = 0 for v3 = 0 
and Iu = graph k. Moreover, 

.. ć)k(v2, v3) hm — - ^ — ^ < 0 for 
дv* 

any < 0. 
vз-0 

Similarly to the case of the set IF, it is possible to show that the surface IG does not 
intersect the surface $)G. We have shown that IG looks like in Fig. 3. 

For vt e 5- there is only one critical point K, for which the matrix L(K) has the 
eigenvalues Xt = 0, A2 3 = \(v2 + (v2 + 4v3)

1/2. The sets Z2, Z l c cz S± (see Lemma 8) 
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and R = {v e St: v2 + 4v3 = 0} divide the set St into the following components: 

Dl = {veSi: <P(v2, v3) = v\ + 4v3 < 0, v2 < 0} , 

D2 = {v e S,: V > 0, v2 < 0, v3 < 0} , D3 = {ve S: v3 > 0} , 

D4 = {v e Sx: ¥ > 0, v2 > 0, v3 < 0} , D5 = {veS^.V < 0, v2 > 0} 

(see Fig. 4). 

We have the following list of signs of eigenvalues of the matrix L(K): 

Xx = 0 for all v e S1 and 

D 1 : R e A 2 p 3 < 0 , Z ) 2 : A 2 < 0 , A3 < 0 , D3:A2>0, >l3 < 0 , 

D4: X2 > 0 , 13 > 0 , D5: Re 22>3 > 0 , 

Z2: X2 = 0 , A3 < 0 , Z2 : A3 = 0 , A2 > 0 , Z l c : A2 3 = + ia.>, 

to + 0, where Z2 = Z2 u Z 2 , Z2 = {v e Z2: v2 > 0}, ZJ = {v e Z2: v2 < 0}. 

Let us introduce the following notations: Q)x = 3p n 3Q, 32 = ©£ n ^ J , 

.^3 = S J n ^ G ; 1rE(-rG)(^F"(-rG)) i s t h e set of all v e - ^ F ( ^ G )
 f o r which t h e matrix 

Fig. 5. 
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L(F) (L(G)) has a couple of complex eigenvalues with positive (negative) real parts, 

h = 17 n IG , 12=/F
+n/c

+, I3 = /" n I^ , J1=Iin929 

J2=Ilr\2il9 J3=I1n®3, Kv=I2n®39 K2=I2n&l9~ 

K3 = I! n B2 , 

Ax = $}Fr\Q)Gc\ {v: v2 < 0, v3 < 0} , 

A2 = QlF n 2G n {v: v2 < 0, v3 > 0} , 

A3 = 0 F n 0 G n {v: v2 < 0, v3 > 0} , 

Bt = 9Fr\IG, B2 = ®Gr\ IF (see Fig. 5) . 

If the matrix l(F) (L(G)) has only real eigenvalues, then we denote them by Xl9 X2> 
^3 (Pi, Pi> Pz)- If v e Si(®G), then the matrix L(F) (L(G)) has one real and a couple 
of complex eigenvalues. Let us denote the real eigenvalue by X2(P3) and the complex 
one by X(P). Then detL(F) = X2\X\2 = vx > 0, det L(G) = p3\p\2 = - V l < 0 and 
therefore X2 > 0, J?3 < 0. Since X2 + 2 Re A = v2 and /?3 + 2 Re J? = v2 + vt H2(v) 
we obtain that Re X < 0 for v2 < 0 and Re P > 0 for v2 > 0, vx sufficiently small. 
These properties of the eigenvalues together with the list of signs of eigenvalues of 
the matrix L(K) for v e St enable us to deduce the following list of signs of eigenvalues 
for vx > 0: 

I!: Re X < 0 , X2 > 0 , Re jS < 0 , p3 < 0 , 

I2: R e 2 > 0 , X2>0, Re jS > 0 , P3 < 0 , 

I3: R e A < 0 , X2>0, Re j5 > 0 , P3 < 0 , 

Sl:X1<0, X2>0, X3 < 0, Pi>0, P2>0, p3<0, 

@2:ReX<0, X2 > 0 , Pt>0, P2 > 0 , P3 < 0 , 

S3:X1<0, X2>0, X3<0, R e j S > 0 , P3 < 0, 

J1:X1<0, X2>0, X3<0, R r j ? < 0 , p3 < 0, 

J2:X1<0, X2>0, X3<0, Px<0, p2<0, p3<0, 

J3:RcX<0, X2>0, Pi<0, p2<09 P3 < 0 9 

K1iX1>09 A 2 > 0 , > i 3 > 0 , R e j S > 0 , P3 < 0, 

K2:Xx>0, X2>0, X3>0, Pi>0, p2 > 0, p3 < 0, 

K3:ReX>0, X2 > 0 , Pt > 0, p2 > 0 , P3 < 0 , 

A1:X1=X3<0, X2>0, Pt=P2<09 P3<0, 

A2:Xl=X3<0, X2>0, p l = p2<09 p3<0, 

A3:X1=X3>0, X2>0, Pt = p2>0, P3<0, 

Bx: Xx = X3 < 0 , X2 > 0 , J?2f3 = ±ico , co + 0 , j53 < 0 , 

B2:X2t3=±iy, y + 0 , X2 > 0 , p1 = p2 > 0 , p3 < 0 . 
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4. BIFURCATIONS 

In this section we study the bifurcations of the family (2.8). Although we have 
obtained a relatively simple bifurcation diagram for the critical points, the bifurca­
tion diagram for the corresponding eigenvalues indicates that the bifurcations of the 
phase portraits are complicated. 

For ii° G Z2 we have (n°2)
2 - An\ = 0, 2$ - ft = 0. The point K = (-\ix°2, 0, 0) 

is the unique critical point of the vector field vMo (we denote by v^ the vector field 
corresponding to the parameter p). Let cf = ^(fi), i = 1, 2, be the roots of the equa­
tion y2 + \i2y + 11^ = 0 such that i((p

0) = —\li% (we assume IXESVKJ S2). If 
yx — £i = xu y2 = x2, y3 = x3, then the family (2.8) becomes 

(4.1) xx = x2 , 

X2 ~ X3 » 

x3 = JC^X-. + Zt - £2) + / i a ^ S l ^ l , H) + £i*22i(*i, I*) + 

+ ^ l^ 2 8l (^ l , I*) + tlX&ifal* V) + XxX3Q2{Xl9 v) + 

+ XlX3Q,3(x3> A*) + A$i(x> I*) + ^ 3 ^ 2 ^ P) , 

where the functions Q,, ^ have the same properties as the functions Qt, &j from (2.8). 
The family (4.1) has two critical points Kx = (0,0,0) and K2 = ({,0,0), where 
£ = £2 — f-.. The matrix of the linearization at Kx is L(K t) = A(li) = (au), where 

« u = «23 = 1, *3i = fi - ^25 «32 = (j"3 + £i) 2i(°> l*), a33 = £162(0, p) and the 
other entries are equal to zero. For fi° e Z2 also a31 = a32 = 0 and a33 = y = 
= -2^262(0, 0 , ^ , 0 ) . If 

i-y-1 y-'-y-'y-2] 
then C"1 = 0 - y'1 y _ 1 

\ 0 0 1 

and using the change of coordinates u = Cx we obtain 

(4.2) /uA /o 1 o\ /11A /11A /F 0 (U,A*)\ 

U 2 = 0 0 0 u2 + BoW "2 + F0(u, /1) , 
W \0 0 y/\u3J \u3J \F0(u,fi)J 

where F0(u, A*) = f(C_1w, ju), f is the nonlinear part of the right-hand side of the 
third equation of (4.1), B0Qi°) = 0, F0(u, n°) = -420o"i + -4020w2 + ^002^3 + 
+ ^uow iM2 + ^ioiMiW3 + A011u2u3 + o(||w[|2). By [6, Theorem 2.2] (see also 
[4], [11] the parametrized central manifold can be expressed as the graph of a func­
tion w3 = h(wl5 w2, y) defined locally, in a neighbourhood of the point (0, 0,/x°) 
for which 

A(0, 0, n°) = 8h(°>0>>l°) = ^ 0 . 0 . / ) = 0 . 
dut du2 
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Therefore the reduction of the family (4.2) to the central manifold has the form 

<«> &)=q(;;H<)+$::j> 
where B(n°) = 0, F(u, /.°) = A 200W1 + ^Í10UÍU2 + ^020 

-2) + y-2Qi(o,џ°). 

u\ + o([ |u | | 2 ),A 2 0 0 = y-

^110 = ~2y -(v~* -y 
Let us restrict the set of parameters to a neighbourhood U(n°) c P(fi°) of the 

point fi°, where P(lJ°) is a two-dimensional surface crossing the set Z 2 transversally 
at JU°. Using Bogdanov's method (see [3]) it is possible to rewrite the family (4.3) 
in suitable coordinates on U(fi°), e = Q(II), v = S(u), Q(II°) = 0, 3(0) = 0 to the form 

(4.4) ^ 2 J 

2̂ = ßi + є2vt + g(v, ß) , 

where g(v, 0) = (Qv, v) + 0(H|2) , Q = (<?,/) is a symmetric matrix with qn =f= 0. 
By [3, Lemma 2] q12 = ql2 . ^ 7 , where qxl = y~2, qi2 = -ly'1^1 - y~2) + 
+ 7~2Qi(0, li°). Therefore sign q12 = -sign/x2a>2 for ^2 sufficiently small. 

Denote by v+(v~) the family (4.4) with qi2 > 0 (ql2 < 0). We remark that it is 
possible to transform the family v~ to the same form with q12 > 0 by using the 
change of coordinates x2 -» — x2, t -> — t. The complete bifurcation diagram for 
the family t;c

+ is described in [ l , 3]. 
Now it is convenient to use the v-coordinales (see (3.4)). Since v2 = — \(\i2 — vx) . 

• 62(^1. V)> w e h a v e that q12 > 0 (q12 < 0) for v° = (0, y°2, 0) e Z^(Z2). This means 
that the bifurcations near v° e Z2(Z2) correspond to the bifurcations of the family 

».+(o. 

Fig. 6. 
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Assume v° e ZJ. For the family v~ there exists a curve R (see [3]), on which a stable 
focus bifurcates into a stable closed orbit and the focus becomes unstable. By the 
bifurcation diagram shown in Fig. 5, this Hopf bifurcation may occur only near 
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the point G. For v e 11(h) the matrix L(G) has one real eigenvalue jS3 < 0 and a couple 
of complex eigenvalues /?, P with Re j? < 0 (Re /? > 0). This means that if the para­
meter goes in the direction Ix -* I3, crossing the surface IG transversally, then the 
stable focus G bifurcates into a stable closed orbit and the focus becomes unstable. 
This determines the orientation of Bogdanov's bifurcation cycle. By [3] there must 
be a curve P in U(fi°) n I3 with the end-point at v° such that if the parameter v 
approaches this curve, the period of the closed orbit tends to infinity, i.e. the closed 
orbit bifurcates into a homoclinic orbit. This implies that for the family (2.8) (in the 
v-coordinates) there is a surface SG c I3 n Q)3 such that if the parameter v approaches 
this surface, the period of the closed orbit, arising on IG, tends to infinity. Since for 
a parameter from the set Zlc the corresponding central manifold is three-dimen­
sional, the two-dimensional central manifold corresponding to a parameter from the 
set ZJ is destroyed if the parameter passes out of a neighbourhood of the set ZJ. 
Therefore the global properties of the surface SG cannot be found by the methods 
of plane vector fields and so it is difficult to find them. We know the form of SG 

near ZJ. 
If v° e Zj , then by the bifurcation diagram, the Hopf bifurcation may occur near 

the point F only. For the family v* there exists a curve, on which an unstable focus 
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Fig. 9. 
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bifurcates into an unstable closed orbit. For v e K3(l3), the matrix L(F) has one real 

eigenvalue X2 > 0 and a couple of complex eigenvalues X, 1 with Re X > 0 (Re /I < 0). 

This means that if the parameter v goes in the direction K3 -+ I3, crossing the surface 

If transversally, an unstable focus bifurcates into an unstable closed orbit and this 

determines the orientation of Bogdanov's cycle. Similarly as above, Bogdanov's 

results imply that there must be a surface SF c I3 n Q)2 on which the closed orbit 

arising on If bifurcates into a homoclinic orbit. The problem of global properties 

of SF remains open. 

From the above considerations we conclude that in a neighbourhood of v° e Z 2 

the bifurcation diagram and the bifurcations look like in Figures 6 — 9. 

We have described the bifurcations near the set Z 2 . For the results bifurcations 

near the set Z l c we refer to the papers [5], [7—10]. The problem how the phase 

portraits appearing for the parameter from a neighbourhood of Z 2 may bifurcate 

into different phase portraits corresponding to the values of the parameters from 

a neighbourhood of the set Z l c remains open. 

The author would like to thank P. Brunovsky for many comments and remarks 

which contributed to the clarity of exposition of this paper. 
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