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ON A CODIMENSION THREE BIFURCATION

MiLAN MEDVED, Bratislava

(Received November 29, 1982)

In this paper we study unfoldings of the vector field
% = Xo(x) = Ax + G(x),

where x = (xq, X5, x3), Ge C”, G(x) = o(||x||), the matrix 4 = (a;;) is equivalent
to the nilpotent matrix S with I’s just above the diagonal and 0’s elsewherc. Some
results contained in this paper have been announced in [15]. The unfoldings of the
above vector field, possessing symmetry under the change of sign, X (x) = = Xo(—x),
are studied in [16].

Under generic hypotheses on the quadratic terms, we derive a normal form for
unfoldings of X, which enables us to find the bifurcation diagram of the critical
points. We show that generically there is a curve Z,(Z,,) in the parameter space,
where the linear part of the corresponding vector field, computed at a critical point,
has zero as an eigenvalue of multiplicity two (a couple of pure imaginary eigenvalues
and one zero eigenvalue). Using Bogdanov’s results [3] we describe the bifurcations
near the curve Z,. The case of the codimension two singularity, which occurs on the
curve Z,,, is more complicated. It has been partially solved by several authors [5],
[7—10]. There are a number of different cases of very complicated bifurcations near
the curve Z;.. The problem of global bifurcations of the phase portraits when the
parameter goes from a nieghbourhood of Z, to a neighbourhood of Z, . remains open.

1. PRELIMINARY LEMMAS

Consider an unfolding of the vector field X, represented by the three-parameter
family of vector fields

(1.1) %= f(x,¢),

where f = (fy, f2.f3) € C®, x=(x1, X3, x3), ¢ = (e, &3, &3)- We also write f(x)
instead of f(x, ¢).

The vector field f, = X, may be rewitten as

%y X, (Px, x) + hy(x)
(1.2) Y| =A x|+ [(Ox,x) + hy(x) |,
X3 X3 (Rx, x) + hy(x)



where P = (p;;), @ = (g:;), R = (r;;) are symmetric matrices, A = (a;;), (*, *) is
the scalar product in R?, h(x) = o(|x|?), i = 1,2,3.
There exists a linear change of coordinates y = Nx such that (1.2) becomes

Y=y + Py, y) + a:(y), -

(1'3) Yo Va=y3 + (QJ’ y) + gz()’)
V3 = (Ry, y) + 953,
(Py, y) ((N~Yy PN"1y, y)
@y, )| =N (N ON"'y, 0|, gdy)=o(ly]|?), i=123,
(Ry, y) (N"YY RN"'y, y)

(N~1Y is the transpose of N~ 1.

Lemma 1. There exists a smooth local diffeomorphism @ transforming the vector
field Y, to

(1.9) D, Yo: Xy = X, X, = X3, X3 = (Tx, x) + h(x),

where T= R + T,, h(x) = o(”x”z) T, = (t);) is a symmetric matrix with ¢}, = 0,
122 = i1, 85 = Py + §120 P = (Biy), O = (d;;), R = (Fyy).

Proof. The diffeomorphism H:z, =y, z, = y, + (Py, ) + 9,(y), z3 = »3
transforms (1.3) to the vector field Hy Yo(z) = z, 8]0z; + (z3 + (Qz, z) +
+ gz(z)) 0/0z, + (Rz, z) + §5(2)) 8/0z5, where §{(z) = o(||z]?), i =2,3,0 = 0 +
+ P, R = R, P = (p,;) is a symmetric matrix with p;; = 0, p,, = Py, P13 = P12
P22 = 2P12, P23 = P13 + P2z, P33 = 2P3. Then & = Ko H, where K:x; = zy,
X, = 25, X3 = z3 + (02, 2) + §,(2).

Lemma 2. Let T = (;;) be the matrix from (1.4). Then the numbers q = t;[ty,,
Jj = 2,3, are invariant with respect to regular transformations of coordinates in
the phase space that keep the origin fixed.

Proof. Consider a diffeomorphism of the form R:y; = x; + X(x) + o(|x[?),
i = 1,2, 3, where the functions X; are homogeneous polynomials of degree 2. We
assume that R maps (1.4) to a vector field of the same form. Any diffeomorphism
transforming (1.2) to the form (1.4) and keeping the origin fixed, is composed of the
mapping ¥ = @ o N, where @, N are as above, of a mapping of the form R and of
a linear mapping ¢, which does not change the linear part of the vector field (1.4).
The mapping ¢ must be of the form g(x) = Dx, where D = (d;;), dy, = A, k = 1,2, 3,
dy; = dy3 =¢,dy3=96,d;; =0 fori>j, A ¢ 6 are real numbers, 4 + 0. It suf-
fices to prove the invariance of g with respect to the mappings R and g.

By using the fact that the mapping R preserves the form (1.4) it is easy to check that

6X
Xiv 1(x) = 6x
2

i=1,2,




and therefore

2 82 2X
0 le x3 42 X, X3X3 + a—l- x32 X, x

Xi(x) =
(%) X1 0x4 0x, 0x3 0x,4

This implies that the vector field Ry(®4Y,) has the form (1.4) with a matrix T" = (t};)
instead of the matrix T = (t;;) and t}; = ty;, j = 1, 2, 3, i.e. the mapping R does not
change the numbers ¢,;, j = 1,2, 3.

It remains to prove the invariance of g with respect to the mapping ¢. This mapping
transforms the vector field (1.4) to the form (1.3), where P = (p;;) = 6T, Q0 =
= (qij) =¢T, R = (FU) =iT, T= (?ij) = (D_l)' D™, Py = 5'1_2311’ Giy =
=eA" 2y, 12 = —€2 A3y + €Ay, Fip = —8A7 2y, + ATy, 1y = AT,
Fiz = (e?A73 — 6ed™2) 1y, — €A™ %1y, + A7 '145. By Lemma 1 there exists a smooth
local diffeomorphism transforming the vector field to the form (1.4), with a matrix
T=(#,;) = R + T, instead of the matrix T, and the first row of the matrix T, is
(0,311, Gy2 + P11) Therefore iyy = 27, 815 = Frp + §yy = A7 M0 13 = iz +
+ G2 + P11 = A7 't;5 and the proof is complete.

2. NORMAL FORM

By Lemma 1 the family (1.1) may be written in the form

(2.1) % =x2 + vy(x, €),
%, = X3 + vy(x, €) .

. 2 2 2
X3 =ty X7 + tXXy + 1y3X1X3 + 1a3X2X3 + 12X + 133%3 + v3(x, ),

where v(x, 0) = 0, i = 1, 2, vy(x, 0) = of||x[[?).
Assuming t;; # 0, we may introduce new coordinates y = f;;x and then (2.1)
becomes

(2~2) Vi1 =Yy2 + 51(}% 6) s

V2 =y + B:(y, e,

P3 =i+ 0319, + 029193 + Layays + 1oy + Bays + 53(0, £),
where §(»,0) =0, i = 1,2, #(y,0) = o(|y|?), @; = tyjss/tiss j = 1,2, are in-
variants of the germ, represented by the family (1.1).

Introducing again new coordinates u, = y;, u, = y, + 9,(y, &), us = y;, we
obtain a family of the form (2.2) with #, = 0. Transforming the resulting family by
the diffeomorphism z; = uy, z, = u,, z3 = u3 + ,(y, g), we get a family of the
form (2.2) with #; = 0, &, = 0. This family may be written in the form
(2.3) le = 22 ,

Z.2 = 2Z3,
V3 = F(zy, &) + 2,0,(2y, &) + 2305(21, &) + 2,05(z3, ) +
+ 239,(z,¢) + 25%,(z, ¢),



where F, 0, ¥, i = 1,2,3,j = 1,2, are C-functions,
oF(0.0) _, @F(0,0) _, 20(0,0) _
A - ) _—'2— - s T = i

0z, ozy 0z,

i=12, 00,0=0, k=123.

F(0,0) =

Lemma 3. If w; * 0, w, + 0, then there exists a smooth regular mapping y =
= y(z, ), ¥(0,0) = 0, transforming the family (2.3) to the form

(2.4) Y1 =1V,
Y2 =1y3,
V3 =F(y,, &) + Be) y2 + ¥y132G:i(r1, &) + y173Ga(ys, €) +
+ 72G3(v3, €) + v3¥i(re) + y3i¥a(y. €),

where F, G,, G,, G, B, ¥, ¥, are smooth functions,
2
F(0,0) = 0F(0, 0) -0, 0 F(O2 0) _
0yy iy
G(0,0) = w;, i=1,2, B0)=0, Gs(ys0)=0(ys)-

Proof. Let y, = z; — ofe), y, = z,, y3 = z3, where « is any smooth function.
Then the family (2.3) becomes y, = y,, J, = y3, J3 = F(yl + oc(s) s) + y2.0:(yy +
+ ofe). &) + 9302(yy + ale) &) + y20s(vs, ¢) + y3Pu(y, &) + y3¥s(y, ), where
7, (Y: 3) =¥ (Y1 + “(5) V2, Y3, 8) Qz(h + 0‘(8) g) = Qz(“(g) €) + }’1Q2(J/1’ 3)
0,(0,0) = 0,00,(0,0)/dy, = w,, 0,(0,0) = w,. Since w, * 0, the implicit function
theorem implies that there exists a neighbourhood U of 0 € R? and a smooth function
«: U — R'such that a(c) = 0, J,(a(e), ¢) = 0 for all ¢ € U. From Taylor’s expansion
of the function 0, we have 0,(y, + a(e), &) = B(e) + y,G,(yy, &) + O(IY1|) where f,
G,€C>, B(0) =0, G,(0,0) = 90,(0,0)/dy, = w, and so the family obtained has
the form (2.4).

If F is the function from Lemma 3, then by the Malgrange-Weierstrass preparation
theorem (see [14]) there exist smooth functions ¢(e), ¢,(0) = 0, i = 1,2, O(yy, &),

0(0,0) = 1, such that F(y,, &) = (¥} + ¢,(¢) y; + ¢,(¢)) O(y,, €) and therefore the
family (2.4) may be written as

b

Vi =1DY2,
Y2 =13,
V3= (‘Pl(s) + ‘Pz(ﬁ) yi + J"f + ‘Ps(s) Y2 + .V1y2Q1(,V1’ €) +
+ 3153Q:(y1 &) + y2Q3(y3, &) + ¥304(p, 8) + yi®a(y, 8) O(rss ),
where 0, Q;0;, ;€ C®, ¢(0) = 0, 940,0)=0, i=1,2,3,j=12, 0,(0,0) =
=w, k=1,20(0,0) =
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We have assumed @, # 0, », + 0in the previous lemmas. Now we show that these
conditions are generically satisfied in the space of three-parameter families of vector
ficlds of the form (1.1). To this aim, we define some algebraic manifolds.

Let S be the nilpotent matrix with 1’s just above the diagonal and 0’s elsewhere.
For the matrix A = (a;;) of the linear part of the vector ficld X, there exists a regular
matrix N = (c;,) such that NAN~! = §. Since rank A = 2, there exists at least one
nonzero minor of order 2. There is no loss of generality to assume

Ay = det [“” “”] +0.

az; dz3

This condition corresponds to a stratum of some algebraic manifold, which will be
specified later. Under the assumption that some other minor of order 2 is nonzero,
we have to do with another stratum of this algebraic manifold and all computations
for this case are similar to those for A5 % 0.

First let us express the elements of the matrix N as functions of elements of the
matrix A. If A3 % 0, then

a a;, A a a;, A
cu:fdet[12 2], Clz=:1£det|:12 2], ¢33 =0,

3 ags A; 3 agz A
1 A

C2| = —det[ 2 a23], 022 = .l_det[alz Az . C23 = 0,
A5 Az az; A; ays A;

C3 = Al’ Cyy = Az, C33 = A3, where

a,, a
dz3 d33 a3z a3
The characteristic equation of the matrix A = (a;;) is
—AB 4 24+ c=0,

where co = det A, ¢, = a3303; + ay1a33 + a,,a2; — 33033 — Ay3a3; — G110,
¢y =SpA = a,, + a,, + as3. Therefore A4 has zero as an eigenvalue of multiplicity
3ifand only ifdet A =0,SpA =0,¢; =0.

Denote by I'y the set of all smooth vector fields on R>. Let j* v(x) be the k-jet
of ve I'? at a point x and let J%(x) be the set of all such k-jets. For ve I'Y, j% v(x) =
= (v(x), D v(x), D? v(x)), we may identify D v(x) with

<6v,(x) , v, (x) ’ v, (x) ’ 503(")) e R®

RT)

6X1 5x2 6x3 a'x3 Vi
and because of the symmetry of the matrices D2 v,(x) we may identify D? v(x) with

(azu‘(x) 0%v,(x) 6zvl(x) 0%v,(x) 6zvl(x) 621’1("), 62”3("‘))61(18.

ox? 7 ox2 7 ax? ’ 0x, 0x, " ox, 0x, " 0xp0x3 0 0x, Bx,




This means that the 2-jet j2 v(x) may be identified with

(U(x), a”l("), . dvs(x) 0%vy(x) 52”3(X)>6R30.

)

0x, 0x; ox2 77 ax, 0x,

Let us define the following sets:
T, ={(a, A, B)e J3: Fa,A,B) =0, i=1,2,3, Fya,A,B)=1,=0, a=0,
rank A =2}, k = 1,2, 3, where F; = Sp A, F, = det 4, F3 = a,3a;; + a,,a33 +
+ 44,857 — 35833 — Ay3d3; — Ay1a33, A = (a;;) and 1,4, 5, t;5 are the elements
of the matrix T from (1.4), which are functions of the elements of the matrices A4, B
(the elements of B are in fact the elements of the matrices P, Q, R from (1.2)). Direct

computations show that

g = 031(“11",11 + ayacyy + 23303) + c32(Bisciy + Prachy +
+ Biacsi) + c33(rie€in + V12€21 + V13€31) 5

tiz = c34(@11€h2 + %5252 + @y3¢32) + c32(BriCiz + Brachr +
+ Bi3cha) + 33(y11€hz + V12652 + V13€52) + cai(®ichy +
+ @3¢y + %33¢5) + c22(Brichy + Biachy + Bischy),

tis = (31043 + €32B13 + €33713) €33 + ca1(211¢12 + %22 +
+ o5365;) + c22(Bi1Ciz + Brachy + Biacsz) + cpalogiciy +
+ ay2¢h; + 053¢5) + c2(Biicly + Biachy + Bischy),

where oy = ¢1P11 + €21P12 + €31P13s %12 = C11P12 F+ €21P22 + C51P23, U3 =
= ¢1P13 + €3 P23 + ¢31P33 (the same for f; and yy,, k = 1,2, 3, where we have
q;; and ry;, respectively, instead of p;;), NAN~' =S, S is as above, N = (c;),
N~' = (c;;)- The elements c;; are functions of the elements of the matrix A expressed
as above (we assume A3 # 0).

Lemma 4. The sets Ty, T,, T; are smooth submanifolds of J3 of codimension 7.

Proof. (1) for Ty: Let F = (Fy, F,, F3, F,): R?® —> R®, where F,, i = 1,2,3, 4,
are the functions from the definition of the sets T,. It suffices to show that rank DF =
= 4.

F‘-j=det ..................... =Z£A23,
oF, 0F, 0F, O0F, Fij

1 0ayy 0as; 0a,, Or;

where 4,3 = a;,A4; — a,34,. It suffices to show that F2, 4+ F2, + 0. By the above
formulae for c;; we have that ¢;; = k;A4,3,¢;, = k;A,3,¢y3 = Oand hence 4,3 + 0.
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Thercfore it suffices to show that

2 2
4= (%Y Ei‘—) +0.
ory, ory,

If w: express cj; as functions of c;;, then the formula for t,, yields t,, =
— d? 3301265271y + d% e33(ciacay + €32€4y) Fy2 + (terms independent of ry, and
riz), d-' =detN and therefore 4 = d*c3;(ci,c3, + (cra¢21 + €22¢11)?). Since
c33 = A3 £ 0, ¢;, = kA,53 + 0, we obtain that 4 = 0 if and only if ¢;; = ¢;, = 0.
However, ¢y3 = 0, N is regular and therefore 4 % 0.

(2) for Ty: Fy =ty = d c33¢3,ry, + (terms independent of ry,), c;, = kA, +
# 0, ¢33 = A; * 0 and therefore 0F,/dr,, * 0, i.e. rank DF = 4.

(3) for Ty: F, = t;3 = d* ¢},¢55(c11Ca2 — €;2€21) 412 + (terms independent of
q,). This implies that 6F,[dq,, # 0, i.e. rank DF = 4 and the proof of the lemma
is complete.

Denote by D® the set of all smooth mapping from R* x R?®into R* and for any
f € D* define the mapping ¥,: R® x R* - J3, ¥ (x,¢) = j2f(x), (x,e) e R® x R?
(fx) = f(x,¢€)). As a consequence of Lemma 4 and Thom’s transversality theorem
(see e.g. [13, Theorem 3.1]) we obtain

Lemma 5. (1) There exists a residual subset DY of D such that if f€ DY, then
Y(R*x RN (T, uT,uTs) =0.

(2) If X = R® x R3 is a compact set, then there exists an open dense subset Dy
of D such that if fe Dy, then ¥ {X) n (T, U T, U T3) = 0.

Let X = {(a, A)e Jy:a = 0,det A = 0,Sp A = 0,¢, = 0, A is a nonzero matrix},
A = (a,;), ¢, are as above. From the above computations it follows that Zisasmooth
submanifold of J} of codimension 6.

Definition. The family (1.1) is called nondegenrate, if t,y . t,5 .3 #+ 0 and
(2.6) D0 (0,02

(@, transversally intersects X at (0, 0)), where @,(x, ¢) = j' f,(x).

D:note by H® the set of all families of vector fields of the form (1.1). As a con-
sequence of Lemma 5 and Thom’s transversality theorem we obtain the following
lemma.

Lemma 6. The set of all nondegenerate families of vector fields HY = H® is
open dense in H®.

Let fe HY and suppose that it is already in the form (2.5). Define the mapping
0,1 R% - RS, oy, €) = (f(»¢), Sp D, f(y), det D, f.(y), H(y)), where D,f(y) =
= (a;;(», ¢)) is the differential of the mapping f at y, Sp D, fi(y) = @11 + a2z + a33,
H(y) = —ay,a33 + a3,a53 + ay,a33 — ay3d3; — a1,82; + 1251 The form of
the mapping o, and the forms of the functions defining the set imply that the trans-
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versality condition (2.6) is equivalent to the regularity of the mapping o at the origin,
i.e. to the condition det Do (0, 0) = 0.

If f= (fpfz,fs)a then Sp D, f(y) = 0f3/0y;, det D.vfs()’) = afs/a}'n Hyy) =
= 0f3/dy,. Using the form of the family (2.5) one can show that det Do (0, 0) =
= —w, det Dp(0), ¢ = (¢,, ¥,, @3). Since w, + 0 and det 0,(0, 0) & O for fe HY,
we obtain that det D ¢(0) = 0. This enables us to introduce new coordinates in the
parameter space: y; = ¢¢), i = 1,2, 3, and we obtain a family of the form (2.5)
with p, Q(yi e (1) (i=12), Qs(rs 0 (1), 2;(», 0 (1) O(r1, ¢ (1)
instead of @), Qiy1.¢), Qs(vs,¢), P,(y,¢), Oy, ¢), respectively, where u =
= ({3, M2, #3). Dividing the right-hand side of the resulting family by the function
O(yy, ¢~ *(u)) the family becomes

27 zy = 2,0(z,, n), 2, = 230(z,, 1), 23 = R(z,p),

where @, Re C®, @(0, 0) = 1 and R has the same form as the right-hand side of

(2.5) with @ = 1. This family is C*-equivalent to (2.5). Now, if we put u, = z,,
u, = z,0(zy, ), uy = z5, the family becomes
iy =y, ty=u30(uy,p), uy=Rup)),

where O, Re C*, 6(0,0) = 1, R(u, p) has the same form as R. Finally, introducing
new coordinates y, = uy, y, = Uy, y3 = u30(u,, p), one obtains a family of the
form

'(2-8) Vi =1Y2,
Y2 =3,
Vi =y + mayy + Y1+ Yz + 31320 #) +
+ 19302001 1) + 203(¥3, 1) + Y304y, 1) + Y382y, 1),
where Q,, Q,, @3, @,, P, are smooth functions, 0,(0,0) = w,, 0,(0,0) = w,.

We have proved the following theorem.

Theorem. There exists an open dense subset HY of the set H* of all three-para-
meter families of vector fields of the form (1.1) such that if fe HY, then f is non-
degenerate, and it is possible to transform this family by a smooth regular trans-
formation of coordinates in a sufficiently small neighbourhood of the origin in

R? x R® to the form (2.8), where w,, w, are invariants of the germ, represented
by the family f.

3. BIFURCATION DIAGRAM

Let fe HY be a family of the form (2.8). All critical points of this family have the
form (y,, 0, 0), where y, is a real root of the equation

y 4 py 4y =0.

10
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Lst U be a neighbourhood of the origin in the parameter space and let S, (k =
= 0. 1, 2) be the set of all x e U for which (2.8) has k critical points.

Lemma 7. There exists a smooth function p, = S(u;) such that S; = {u =
= (tys p2, 3) € Uz iy = S(i,), S(0) = S'(0) =0, S”(0) >0}, ie. S; is a fold
dividing U into two components, one of which is S, and the other is S,.

If p€S,, then the vector field (2.8) has two critical points F = (£,,0,0), G =
= (¢ 0, 0), where & = _%(ﬂz - V)a $y = %(—ﬂz - V), v= (l‘g — 4p,)'2.

Let S, = S; U Sy and let K = (¢, 0, 0) be a critical point of (2.8). Denote by L(K)
the matrix of the linear part of (2.8), computed at K. The characteristic equation
of L(K) is
(3.1 P —al? —ad—ay=0,

where |ao| = |v|, ay = (us + &) Q4(& ), ay = £Q,(&. p). If e S, then the vector
field (2.8) has one critical point K = (&, 0, 0), where £ = —3p,. If € S,, then the
matrix L(F) (L(G)) has the characteristic equation of the form (3.1), where ¢ =
=& (E=¢)and ag=v>0(ap = —v <0).

First assume p € S;. Then the matrix L(K) has zero as an eigenvalue. Obviously,
it is of multiplicity 2 if and only if, in addition to the identity u3 — 4u, = 0 defining
the set S,, the following holds:

H(p,, H3) = (us — ‘5‘#2) Qn(_%ﬂb #)=0, p*+0.

Since Q,(0,0) = w, =% 0, the last identity is satisfied in a sufficiently small neigh-
bourhood of the origin only if p3 = n(u;) = $u,. If x(¢) = (4¢3, t, n(t)) and Wis a neigh-
bourhood of the origin in R, then x(W) is a one-dimensional smooth sutmanifold
of S,. For peZ,(K) = y(W)\ {0}, the matrix L(K) has zero as an eigenvalue of
multiplicity 2 and the third eigenvalue is A3 = —3u,Q,(—4u,, p)- The matrix L(K)
has zero as an eigenvalue of multiplicity 1 and a couple of pure imaginary eigenvalues
ifand only ifay = 0,a, = 0,a, <0,i.e. uyy =0, y; =0, y30, < 0. Denote Z,, =
={up, =0, p; =0, pyw, <0}.
We have proved the following lemma.

Lemma 8. There exist one-dimensional smooth submanifolds Z, and Z,, of S,
such that the following holds:
(1) Z, is the set of all peU (U is a neighbourhood of the origin) for which the
matrix L(K) has eigenvalues: 1, = 1, = 0,23 % 0, wheresign 2; = —sign p,0,;
(2) Z,, is the set of all ue U for which the matrix has one zero eigenvalue and
a couple of pure imaginary eigenvalues

(3) Z,NZ, = {0}, Z;.NZ,, = {0}.

Now assume u € S,. By means of the substitution z + 1a, for A in the characteristic
equation (3.1) of the matrix L(K) we obtain

(3.2) z3 +3pz+29=0,

11




where

(3'3) p= --%(al + %ag)a q = —%(ao + ’_li,‘alaz + '22_7‘03).

Fig. 1.

The discriminant of the equation (3.2)is D = D(u) = g® + p>. Let us introduce new
coordinates on S, via the mapping

(34) ooy = ag = (4 — 4uy)'?,
QF: V2 = 4y = "%(Hz - (H% - 4.”1)1/2) Qz(ép #) s
vy = ay = [#y — 3wz — (13 — 42:)"H)] Qi(&1s 1) -

Obviously, ¢y is a smooth diffeomorphism on S,, but it is not C* on S, and

(3.5) S, = 0K(Sy) = 006(S12) = {v = (vy, v, v3): vy = 0} .
In these coordinates the characteristic equation of L(F) is
(3-6) 2B = vt —v;h—v, =0.

The discriminant of this equation is Dy = Dg(v) = p* + ¢?, where
(3-7) p= —%(Va + %v%), q= _%(‘ﬁ + dvpvs + %Vg) .
Denote Dy = {v: Dg(v) = 0}, 25 = {v: Dg(v) > 0}, 27 = {v: D&(v) < 0}.
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Lemma 9. If ve D7 (D; 25), then the equation (3.1) has three distinct real
roots (two distinct real roots; one real and a couple of complex roots).
Zr=FrVF", where F*E = {viv; = FX(v,,v;3), v; + 3 20},

2
(3.8) F*(v3,v3) = —4(vovs + 3v3) £ N (vs + Jv2)¥2.
v

The functions F*, F~ are smooth on P§ = {v:v; + }» > 0}, but only C! on
Py = {v:ivy + v} = 0}. F*(v,.0) = 5(—v3 & |v,|?) and therefore F*(v,,0) =0
for v, 2 0, F*(v,,0) = —55v3 > 0 for v; < 0, F7(v,,0) = —5v3 < 0 for v, > 0.
F~(v5,0) = 0 for v, < 0. Since

OF%(v,, v3) } 1 5
- \E TS = —1y i — (v + lv 1/2 ,
o, v, \/3( 3+ 33)
we have
0F*(v,, 0
v,

13



and therefore

+ (v, 0
M=O for v, 20, a_F_gvz,_)=0 for v, £0,
aV3 6V3 ]
azFi(vz, 0) - 1
ov? T 20wy '
Moreover, it is obvious that F*(vy, v3) = F~(v,, v3) if and only if v3 = —1v2. The

above properties of the function F*, F~ enable us to sketch the picture of the set 2
(Fig. 2). Since ¢¢(S;) = 5, = {v: v; > 0}, we are interested in the restriction of 7,
Dy, Dy to this set only.

Obviously Z, = ¢x(Z,) = {v: vi = 0, v; = 0} and Z,, =0{Z,) ={viv; =0,
vy < 0}.

Now we are interested in such v€2¢ for which the equation (3.6) has a couple
of pure imaginary roots. For ve 2y there is one real root 4, = u + v + }v, and
a couple of complex ones A, ; = $v; — 3(u + v) + i(\/3/2) (u — v), where u =
= (=g + (Dp)'"?)'3, v=(—q — (Dr)"'?)"”, ¢, D¢ are as above. This implies
that Rel,; =0 if and only if velr={veDr : Hyv(, v5 v3) = 0}, where
H(vy, v2, v3) = 2v;, — 3((—q + (D2)YH)'? + (—q — (Dg)V*)*"). For any +§ < 0
we have Hg(0,0,v3) = 0. The function Hp is C! in a neighbourhood of the point
(0,0,v3) and OHLO, 0, v3)/dv, = 3[v3. Therefore there is a C'-function v, =
= h(v,, v;) defined in a neighbourhood ¥ of (0, v3) such that h(0,v3) = 0 and
Hy(h(v2, v3), v, v3) = 0 in V. Moreover, 0h(0,v§)/dv, = —V§ > 0 and hence the
function h(v,, v3) increases near the point v, = 0. We have

O0H, _ 0q
=F _ _(D 172 _ A (D 1/2 +
ov, (Dr) ( 6v1( r)

1 0Dy i}
- D 1/2 __ 3/2 _
> _6v1 ) (D) q)

- ﬁ (DF)I/Z + 1 a&
ovy 2 ov,

) (@)1 + 0y

= — D) (D)7 = 0 + (D)2 + @) + 0 for ved; .

Therefore the set I is a two-dimensional C*-manifold defined not only locally near
the set Z,.. We can express the set I\ {v: v; == v3 = 0, v, > 0} as the graph of a
C'-function v, = h(v,, v3), v3 <0, v, 2 0. Since H{(0, v5, 0) = 0, 0H (0, v,, 0)/dv; + 0

for any v, > 0, the uniqueness of the implicit function implies that lim 7i(v,, v3) = 0.
v3—=0

Defining h(v,, 0) = 0, we obtain that I, is the graph of a function v; = h(v,, v3)
defined for all v, 2 0, v3 < 0, whichis C* on {v: v, > 0, vy < 0}. The boundary
of the set Ipis {v:v; = 0,v, =0,v; S0} U {v:v; =0, v; =0, v, = 0}.

Since for v € 9 the equation (3.6) has one root of multiplicity two, it has no com-
plex root and therefore the surface I does not intersect the surface Zp.
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We prove that
. 0h(v,, vy)
a = lim ————( 2 %3)
v3—=0 "3

<0 forany v, >0

sufficiently small. We have

Oh(vy,vs) _ (51@(/:’)) <aHF(h'))“,

dvs Ovs ov,

where h' = (h(vy, v3), v;, v3)) and OH[ov; = —(Dg)~ Y% (—0q[dv; ((Df)"/? —
= q)'” + (D) + q)'7°) = H((DF)'"* + 9)** = ((D)"/? = q)*"°)). Using the
above formulae for 9Hy/dv, and 0H[dv; we obtain

o = —2lim (= G002 2h ) (o4 g — (01 - ).
v3=0 0v;
Since h(v;,0) = 0, Dg(0, v,,0) = 0,
- (-u). oy,
33 0vs
we obtain that « = —4v, < 0 for v, > 0. This together with the fact that the set
Ir N 9 is empty implies that I looks like in Fig. 2.
New let us consider the critical point G = (£,, 0, 0). Similarly to the case of the
critical point F, we introduce new coordinates via the mapping
(3.9) #y = —(uz — 4p)"?,
Q¢: %3 = —%(Hz + (#; - 4#1)1/2 Qz(fz, ﬂ) )
K3y = U3 — %(#z + (I‘%A— 4#1)1/2) Qn(fZa #) .
The mapping gg is a smooth diffeomorphism on S, and
(3.10) 1 = 06(S1) = 006(S12) = {% = (%;, #2, 3) : %, = 0},
= He3(x) — %1) = ¢4(x),
951: Uy = ¢z(’€) )
H3 = (93(%) ’

where the functions @, @ satisfy the identities %, = —3(@,(%) + #,) Q,(—$(02() +
+y), 9(%), %3 = [93(%) — $(92() + #1)] Q1(—H(@2(%) + 1), 0(%)), ¢ = (@1, 02,
@3)- Since 04(0) = wy * 0, 0,(0) = w, + 0, the existence of the functions @z, ¢3 €
€ C* follows from the implicit function theorem. From these identities we obtain

000 _ _y 00:0) _ _ 2 900 _
0%y ’ 6x2 (07} ’ axS

003(0) _ o d0s(0) _ _ 1 des(0) _ 1
5%1 : ’ 6%2 w2 ’ 6%3 wl
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and therefore

(3.11) Uy =

2
(—xl - x, — %+ hz(x)>,

W,

-

- 2
0 't Hy = =%y — — %y + hy(%),
)

1 1
py = — — %y + — %3 + hy(x),
W, Wy

where hy(x), ha(x) = o(|%|)
Hence we obtain

vl = —%1,
H=gpo0g": v, = “2+h2(%),
vy = %3+ hy(x),

where h,, iy = of||x||). Since H(0, %,, %3) = (0, 5, %5), we have h(x) = x, H(x),
i = 1, 2. The inverse mapping H ™! has the same form as H, i.e.

%l = _vl,
H—l: %2= V2+v1H2(v),
%3 = vy + vy Hy(v),

where H(v) = O(||v|), i = 1, 2. Therefore the characteristic equation of the matrix
L(G) has the form

(3.12) 22— (v + v Hy(v)) A2 = (vs + vy H3(v)) A + v, = 0.

The discriminant of this equation is D = Dg(v) = p* + ¢*, where p = p(v) =
= pH')) §=40)=gHT'()) b= —3xs + 143), 9= =30 + x5 +
+ 2%3). Let D = {v: Dg(v) = 0}, 2¢ = {v: Dg(v) > 0}, 95 = {v: Dg(v) < 0}.

In the x-coordinates we have the same bifurcation diagram as we have obtained
for the critical point F in the v-coordinates. In order to obtain the bifurcation diagram
not only for F and G separately, but also for F and G as a couple, we need to sketch
the bifurcation diagram for G also in the v-coordinates.

From the form of the mapping H it follows that H maps the x5-axis onto the v;-
axis onto the v;-axis, the x%,-axis onto the v,-axis and the »,-axis is mapped by H
onto a curve, which has its tangent at the origin close to the v;-axis.

The discriminant surface 9 has the form 2; = H* U H™, with H* = {v: v, =
= F*(v;, v3), vy 2 0}, where F*(v,, v;) is the solution of the implicit equation

vi + F*(vy + v H(v5,v3), v3 + viH3(vz, v3)) = 0.

16



From this equation, the uniqueness of its solutions and from the properties of the
functions F*, F~ mentioned above it follows that the functions F*, F~ have the
following properties:

F*(v;,0)=0for v; 20, F*(v;,0)<0 forv, <0,
F~(v,0)>0tor v, >0, F7(v,,0)=0 for v, £ 0,

. aL(—VZ,O):O for Vzgor QF—(VZ—’O)<O for V2<0,
Ovy vy

T2 00 for vy>0, T 20 g oy, 20,
5V3 aV3

28+ 25—
(va,())<0 for v, >0 and a—F‘—(‘;z’—o)>0
av3 0v3
for v, < 0. The properties of the functions F*, F~ are the same as for the functions
—F* and —F ", respectively. From these properties we obtain that the surface 9
looks like in Fig. 3.

. 4
F-(-
S [
1 G
%
4
d
/7
v
/
9 /
G / Z
/’ 1c
!
I
F— 1\ \)1
1\\
1 \
| \\
| AN
[ S~
I ~<
| P4
3 S~ | o7
\\\ I < -
S~o Iz
~—e_ e
S adal
I
I
Z+
2
Y
Fig. 3.
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Now we are interested in such v e 2 for which the characteristic equation of the
matrix L{G) has a couple of pure imaginary eigenvalues. For ve 2 the equation
(3.12) has one real root f; = U + V + {x, and a couple of complex ones f, 3 =
=4x, — WU + V) £i(32)(U = V), where %, = v, + v Hy(v), U= (-G +
+ (Dg)'*)3, V = (§ — (Dg)'/?)*3. This implies that Re f, 3 = 0 if and only if
velg = {ve Dg: Hg(vy, v2, vy) = 0}, where Hg(vy, vy, v3) = 2%, — 3((—q +
+(D6)'"*)"? + (=q + (Dg)"*)'%). For any V3 <0 we have Hg(0,0,3) = 0.
The function Hg is C!' in a neighbourhood of the point (0, 0, v3), and
dH (0, 0,3)/0v, = —v§ =+ 0. Therefore there isa C'-function vy = k(v,, v;)defined in
a neigbourhood of the point (0,'v3) such that k(0, v3) = 0and Hg(k(v,, v3), v, v3) = 0
in this ncighbourhood. Moreover, from the implicit equation we have 0k(0,v3)/dv, =
= v} < 0 for v§ < 0. Similarly to the case of the set I, it is possible to extend the
tunction v, = k(v,, v;) to a function k defined on the set {v:v, <0, v; <0} so
that ke C* on {v: v, £ 0, v; < 0}, k(v,,0) = 0 for v, < 0, k(0, v;) = O for v; < 0

and I; = graph k. Moreover,

lim k(v v3)

<0 forany v,<0.
v3—=0 aVJ

Similarly to the case of the set I, it is possible to show that the surface I; does not
intersect the surface 2;. We have shown that I; looks like in Fig. 3.

For v, € §, there is only one critical point K, for which the matrix L(K) has the
eigenvalues 4, = 0,4, 3 = }(v, + (v3 + 4v3)"/%. The sets Z,, Z,, = § (see Lemma 8)

ZZ
D3
V3
D
5 5
3
z D,
21y
| V2
Fig. 4.
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and R = {ve §;: v} + 4v; = 0] divide the set S, into the following components:
D, ={veS,;: P(v;,v3) =V} + 4v; <0, v, <0},
D,={veS;: ¥>0,v,<0,v;<0}, Dy={veS:vy>0},
Dy={ve8;:¥>0,v,>0,v3<0}, Ds={veS;:¥ <0, v, >0}
(see Fig. 4).
We have the following list of signs of eigenvalues of the matrix L(K):
2, =0 forall ve §; and
Di:Rely 3 <0, Dyii,; <0, A3<0, D34, >0, 1;<0,
Dy, >0, 23>0, Ds:Redy;>0,
Z7:2; =0, A3 <0, ZF:d3=0, 4,>0, Z,:1,; = tio,
o+ 0, where Z, = Z3 UZ;,Z5 ={veZ,:v,>0},Z; ={veZ,: v, <0}.

Let us introduce the following notations: 2, = 95 N 95, 9, = 2; N 9g,
Dy =Dr 0 D§; IF (1) (IF(Ig)) is the set of all ve 27(2¢) for which the matrix
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L(F) (L(G)) has a couple of complex eigenvalues with positive (negative) real parts,
L =lfnl;, L=Italf, Iy=I;nlt, Jy=1,09,,
J,=1,n9,, J3=1,n2,, Ki=1,n92,, K;=1,n9,,"
Ky=1,n2,,

Ay =9, Dgn{v:ivy, <0, v; <0},
Ay =D D {v:iv, <0, v3 >0},
Ay =9 nDen{v:iv; <0, v3 >0},
By =9ynlg, B, =9¢nI; (seeFig.5).

If the matrix L(F) (L(G)) has only real eigenvalues, then we denote them by 4y, 45,
A3 (B1s B2y B3)- If ve 27(2¢), then the matrix L(F) (L(G)) has one real and a couple
of complex eigenvalues. Let us denote the real eigenvalue by 1,(8;) and the complex
one by A(). Then det L(F) = A,|4|> = v; > 0, det I(G) = B;|B|* = —v; < 0 and
therefore 4, > 0, B3 < 0. Since 4, + 2 Re A = v, and B3 + 2 Re B = v, + v, H,(v)
we obtain that Re A < 0 for v, < 0 and Re f > 0 for v, > 0, v, sufficiently small.
These properties of the eigenvalues together with the list of signs of eigenvalues of
the matrix L(K) for v e S enable us to deduce the following list of signs of eigenvalues
for v; > 0:

I,: ReA<0, 4,>0, Ref<0, By <O,

I,: ReA>0, A,>0, Ref>0, B,<0,

I,: ReAx<0, 4,>0, Ref>0, B;<0,

D:2 <0, A,>0, i3<0, $,>0, B,>0, B3;<0,
D,:Re i< 0, 4,>0, B, >0, B,>0, B3<0,

Dy <0, A4,>0, A3<0, Ref>0, B3<0,

Jii Ay, <0, 4,>0, 23<0, Rrf<0, B3<0,

Jy: 4, <0, A,>0, 1;<0, B, <0, B,<0, B;<0,
J3: ReA<0, 4,>0, B, <0, B, <0, B3<0,
Ki:4, >0, A,>0, 4;>0, Ref>0, f;<0,
Ky;: A, >0, 4,>0, 43>0, B,>0, B,>0, B;<0,
K;: ReA>0, A, >0, B,>0, B,>0, B3<0,

Ai: Ay =23<0, A,>0, B, =B,<0, p3<0,

Ayi Ay =23<0, A4,>0, B, =6,<0, p3<0,

As: Ay =23>0, A,>0, B, =4,>0, B;<0,

Byt A4y =43 <0, 4,>0, f3=xio, w+0, f;<0,
Byt A, 3= &4iy, y#*0, 4,>0, B, =4,>0, B;<0.
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4. BIFURCATIONS

In this section we study the bifurcations of the family (2.8). Although we have
obtained a relatively simple bifurcation diagram for the critical points, the bifurca-
tion diagram for the corresponding eigenvalues indicates that the bifurcations of the
phase portraits are complicated.

For p° € Z, we have (u3)? — 4p = 0,243 — p3 = 0. The point K = (—1u3, 0, 0)
is the unique critical point of the vector field v,o (we denote by v, the vector field
corresponding to the parameter p). Let &; = &,(u), i = 1, 2, be the roots of the equa-
tion y2 + p,y + py = 0 such that &(u°) = —3u3 (we assume peS; U S,). If
y1 — & = Xy, ¥, = X5, y3 = X3, then the family (2.8) becomes

(4.1) %= %Xz,
X3 = X3,
X3 = x3(x; + & — &) + 13X, 04(xy, ) + Ex20,(xy, 1) +
+ X%, 0, (x4, 1) + Eix305(xy, 1) + x1x305(x15 1) +
+ x,%303(x3, 1) + x30,(x, 1) + x58,(x, p),
where the functions Q,, (ﬁj have the same properties as the functions Q;, @; from (2.8).
The family (4.1) has two critical points K; = (0,0,0) and K, = (&, 0, 0), where

& = &, — &;. The matrix of the linearization at K, is L(K,) = A(u) = (a,;), where

i =dy3=1,a3; =& —¢&,,a3, = (#3 + 51) Q1(0; H), azz = 6162(0, #) and the
other entries are equal to zero. For u®e Z, also a3; = a3, =0 and a3 =y =
= _%ﬂ(z)Qz(O, 0, ”g’ 0) If

-y 1-9y1 —y Tyl 72
c=( 0 —y1), then Cc*=( 0 -y iyt
0 01 0 0 1

and using the change of coordinates u = Cx we obtain

(4.2) u, 010\ [u, uy Fo(u, 1)
dz = 0 O 0 uZ + Bo(ll) u2 + Fo(u, ﬂ) )
iy 00y \us Us Fo(u, ll)

where Fo(u, p) = f(C™'u, u), f is the nonlinear part of the right-hand side of the
third equation of (4.1), Bo(s°) =0, Fo(u, u°) = Azgou + Aozotis + Agoi +
+ Ayyotigtiy + Aros¥auy + Aoyyuyus + of|ul|?). By [6, Theorem 2.2] (see also
[4], [11] the parametrized central manifold can be expressed as the graph of a func-
tion uy = h(u1, U, 1) defined locally, in a neighbourhood of the point (0,0, u°)
for which

0 0
h(0,0, u%) = ah((;,uo, w) - ah(‘;uo’.’.‘_) =0.
1 2
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Therefore the reduction of the family (4.2) to the central manifold has the form

i\ _ (0 1\ [u, uy\ + (F(u, p)
6 (@)= (o) () () (o),
where B(u°) = 0, F(u, u°) = Ayooti + Aysotyuz + Aozous + o(u]?), Az00 = v72
Ayo= =271 (r™ " = 972 + v7204(0, 1°).
Let us restrict the set of parameters to a neighbourhood U(u°) = P(n°) of the
point u° where P(u°) is a two-dimensional surface crossing the set Z, transversally

at p°. Using Bogdanov’s method (see [3]) it is possible to rewrite the family (4.3)
in suitable coordinates on U(x°), ¢ = ¢(r), v = 5(u), e(1°) = 0, 5(0) = 0 to the form

(4.4) ) Uy = Uy,
1..)2 = 81 + azvl + g(U’ l:) >

where g(v, 0) = (Qv, v) + o([|v[|*), Q@ = (gi;) is a symmetric matrix with g, # O.
By [3: Lemma 2] g1, = {42 - gils where gy =772 gy, = =271yt - ?7?) +
+ 772Q4(0, u°). Therefore sign q,, = —sign pJw, for pj sufficiently small.

Denote by v, (v;") the family (4.4) with g,, > 0 (q;, < 0). We remark that it is
possible to transform the family v, to the same form with q,, > 0 by using the
change of coordinates x, = —x,, t > —t. The complete bifurcation diagram for
the family v, is described in [1, 3].

Now it is convenient to use the v-coordinales (see (3.4)). Since v, = —3(u, — v,) .
. Q&1 1), we have that g;, > 0(gy2 < 0) for v° = (0, v3, 0) € Z3(Z;). This means
that the bifurcations near v° € Z3(Z7) correspond to the bifurcations of the family
v, (v;)-

3
b4 1
v K
1 4 0 1
SG 3
2
'6 5
Fig. 6.
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Assume v° € Z; . For the family v, there exists a curve R (see [3]), on which a stable
focus bifurcates into a stable closed orbit and the focus becomes unstable. By the
bifurcation diagram shown in Fig. 5, this Hopf bifurcation may occur only near

%
1
4
Y K
1 Y °o
3 2
%
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the point G. For v € I;(I5) the matrix L(G) has one real eigenvalue f; < 0and a couple
of complex eigenvalues B, f with Re f < 0 (Re B > 0). This means that if the para-
meter goes in the direction I, — I, crossing the surface I transversally, then the
stable focus G bifurcates into a stable closed orbit and the focus becomes unstable.
This determines the orientation of Bogdanov’s bifurcation cycle. By [3] there must
be a curve P in U(u°) n1I; with the end-point at v such that if the parameter v
approaches this curve, the period of the closed orbit tends to infinity, i.e. the closed
orbit bifurcates into a homoclinic orbit. This implies that for the family (2.8) (in the
v-coordinates) there is a surface S¢ = I3 N 2, such that if the parameter v approaches
this surface, the period of the closed orbit, arising on I, tends to infinity. Since for
a parameter from the set Z,, the corresponding central manifold is three-dimen-
sional, the two-dimensional central manifold corresponding to a parameter from the
set Z; is destroyed if the parameter passes out of a neighbourhood of the set Z;.
Therefore the global properties of the surface S; cannot be found by the methods
of plane vector fields and so it is difficult to find them. We know the form of S
near Z, .

If v° € Z5, then by the bifurcation diagram, the Hopf bifurcation may occur near
the point F only. For the family v, there exists a curve, on which an unstable focus
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bifurcates into an unstable closed orbit. For v € K;3(I;), the matrix L(F) has one real
eigenvalue 4, > 0and a couple of complex eigenvalues 4, A with Re 1 > 0(Re A < 0).
This means that if the parameter v goes in the direction K; — I5, crossing the surface
I transversally, an unstable focus bifurcates into an unstable closed orbit and this
determines the orientation of Bogdanov’s cycle. Similarly as above, Bogdanov’s
results imply that there must be a surface Sy = I3 N 2, on which the closed orbit
arising on I bifurcates into a homoclinic orbit. The problem of global properties
of S, remains open.

From the above considerations we conclude that in a neighbourhood of v’ e Z,
the bifurcation diagram and the bifurcations look like in Figures 6—9.

We have described the bifurcations near the set Z,. For the results bifurcations
near the set Z,, we refer to the papers [5], [7- 10]. The problem how the phase
portraits appearing for the parameter from a neighbourhood of Z, may bifurcate
into different phase portraits corresponding to the values of the parameters from
a neighbourhood of the set Z,, remains open.

The author would like to thank P. Brunovsky for many comments and remarks
which contributed to the clarity of exposition of this paper.
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