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Časopis pro pěstování matematiky, roč. 108 (1983), Praha 

THE INVERSE SPECTRAL RADIUS FORMULA 
AND REMOVABILITY OF SPECTRUM 

VLADIMIR MULLER, Praha 

(Received March 2, 1983) 

INTRODUCTION 

Let A be a Banach alg3bra with unit. For xeA set dt(x) = inf{||>>x||, y e A, 
\\y\\ = 1}, dr(x) = inf{||x>;[[, y e A, \\y\\ = 1}. Denote further by T,(XJ the left 
approximate point spectrum of x, TX(X) = {XeC, inf{| | j(x — x)||, y e A, \y\ = 
= 1} = 0} (see [4]). Similarly one can define the right approximate point spectrum 
Tr(x). Cbarly, dx(x) = 0 if and only if 0 e TL(X). It is well-known that da(x) c TL(X) n 
n Tr(x) and Tt(x) U Tr(x) cz a(x). 

The function dt : A -+ <0, oo) (and analogously the function dr) possesses some 
nice properties similar to the properties of the norm. Let us compare: 

1) djx) = i n f { | M | , \\y\\ = 1}, |x | | = sup ( H | , \\y\\ = }; 

2) di : A -> <0, oo) is continuous || • || : A -• <0, oo) is continuous; 

3) d^^d^.dly), \\xy\\ ig|*||.|H|. ' 
The aim of this paper is to prove the analogue of the spectral radius formula for 

the function dx: For x e A, lim d^x")17" exists and lim dx(xn)Vn = sup {^(x")17", 
n-*oo n-*oo 

neN} = inf {|/l|, X e Tt(x)} = dist {0, T,(X)}. (Compare with the spectral radius for­
mula lim||x"| | 1 /" = inf{|x r , | |1 /", neN} = sup {|A|, Xea(x)} = s u p { | 4 XeTt(x)}). 

n-*oo 

An analogous result was proved independently by Makai and Zemanek [5]. 
They used different methods. 

In Section II we apply this result to a problem of removability of spectrum in 
a commutative Banach algebra. 

Lemma 1. Let 0* be the set of all polynomials wtth complex coefficients in one 
variable x, let |* | be a pseudonorm on 0* (i.e., \p + q\ ̂  \p\ + \q\, \ocp\ = |a| . |P| 
for every p, q e&, deC) satisfying the following two conditions: 
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1) there exists a constant k > 0 such that \(x — X) p\ ^ k\p\ for every pe&* and 
keC, \k\ = 1; 

2) there exists a constant K _ 0 such that \xp\ = K|p| for every pe&. 

Then \xr\ _§ 3k"3K(l +K)n~1 (\xr~n\ + \xr+n\) for each pair of integers r, n, 
1 _S n g r. 

n-l 

Proof. Let els ..., e„be the w-th roots of [1]. Setp(e) = £ xr+j8~J[l - (jjn)2]. 
Then j=~n+l 

i n n 

xr = - £ P(ei) s i n c e _E 8i = 0 for each k=t=0, — w + l_gfc_gn — 1. 
n i = i i = i 

According to 1), 

n i=i n i=i 

Now for each e, 

(x-e) 3 p(e) = " l eft*'*-'**. 
J = - n + l 

For _/ satisfying - n + 4 ^ ; ^ n - 1 we have 

• _ - - ( - ^ _ - -
It is easy to check that c_n+3 = c„ = 0. Thus we have 

(x - e)3p(e) = x^" + 2
e^—l + ^ + . + i82___ + l + x r -„ + 2 e » + i2 j l+i + 

и 2 

+ Г " + 1 £ " + 2 -
— n2 

So 

Ml _. - fe"3 £ |(x - £ i)
3 K£.)| = - k~3n - l\xr+n+2\ + \xr+n+1\ + |x r -"+ 2 | + 

n i = 1 71 w 

+ |x r-"+1 |] g 3AT3X(1 + X)» -1[|x"+"| + |xr-"|] . 

Lemma 2. Suppose a pseudonorm |*| on & satisfies the conditions of the previous 
lemma. Fix an integer n _ 1 such that t = 6fc-3 J_(l + K) n - 1 < 1. Then 

•M _i *2"max{|3sr~"*|, |*"+2""|} for every s > 0 and r £ 2 s n . : : 
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In particular, \x2'n\ < f2*max{|l|, |x2*+,"|}. 

Proof. We shall prove Lemma 2 by induction on s. For s = 0 we have by Lemma 
1, |xr| = f/2 (|xr-"| + |xr+"|) = t max {|xr_"|, |x r+"|}. Suppose the statement of 
Lemma 2 is true for s — 1 _ 0. Then by the induction hypothesis 

|x'| = t2"1 max {Ix'-2-1"!, |x,+2*"lB|} £ 

< t2"1 max {t2"1 max {|xr"2*"|, |x'|}, t2"1 max {|x'|, |xr+2*"|}} = 

= r2*max{|xr-2*"|, |x'|, |xr+2*B|} = 

= (2'max{|xr-2'"|, |*r+2'"|} as t < 1 . 

Theorem 1. Let A be a Banach algebra with unit and let xe A. Then lim d,(x")1/'' 
exists and B"°° 

lim dl(x
n)lln = sup {d,(x")1/B nsN] = dist {0, T,(X)} . 

H->00 

Proof. As dt(x
m+n) = dt(x

m) d^x") (see property 3), it is well-known that 
lim d/(x

B)1/rt exists and equals sup {d,(xn)1/n, neN}. Further, for AeC, \X\ < dx(x) 
n-*co 

we have d,(x - X) ̂  dt(x) - \k\ > 0, i.e. k $ T,(X). SO dist {0, T,(X)} = dx(x). 
As T,(X") = {kn

9 k G Tt(x)} (see e.g. [7]) we have dist {0, T,(X)} = 
= dist {0, T^X")}17" = di(xnyin and dist {0, T,(X)} = sup {df(x

n)1/n, n e N} = c. 
It remains to prove dist {0, T,(X)} = c. We may suppose c =j= 0 and define y = x/c. 

Then sup {d/(yn)1/rt, ne/V} = 1. Suppose on the contrary dist {0, Tt(y)} > 1, i.e. 
Tj(y) does not intersect the unit circle. As the function dx is continuous there exists 
a constant fc > 0 such that \z(y — A)|| _ fc||z| for every z e A and k e C, |.A| = 1. 
Fix an « = 1 such that t = 6fc"3||>'|[ (1 + ||y | |)n_1 < 1. Since d,(y2s+ln) = 1 for 
every se/V, there exists an element aseA, \as\\ = 1 with ||asj*

2s+ln|| = 2. On the 
set & of all polynomials define a pssudonorm | • |s by |p|s = ||as P(y)||. Obviously | • |s 

satisfies all the conditions of Lemmas 1, 2 (with K = ||)*||), so 

| ay*" | = .2*max{||a.||, | | a y + , " | } £ 2f2'. 
Thus 

d.^2'") = 2f2* and dl(y
2'n)l/2'n = 21/2'"f1/". 

Hence 
lim sup dl(y

2'n)U2"' = t1!n < 1 , 
5->00 

a contradiction with the assumption lim di(ym)l/m = 1. 

II 

In this section we shall apply the previous result to a problem of removability of 
spectrum. We shall deal with commutative Banach algebras with unit. In this case 
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the functions dx and dr coincide and we shall denote d(x) = dx(x) = dr(x) as well 

as T(X) = Tj(x) = Tr(x) for every x. 

Let A be a commutative Banach algebra with unit and B its superalgebra (i.e. 

there exists a unit-preserving isometric isomorphism / : A -> B). Then T^(X) <= 

c aB(x) c aA(x). By a result of Arens [ l ] , TA(X) = f] aB(x) (the intersection is taken 

over all superalgebras B ID A). Bz>A 

A natural question is whether this intersecion is attained by a single superalgebra B, 

i.e., whether for every A and x e A there exists a superalgebra B •=> A such that 

TA(X) = aB(x). This is a problem of B. Bollobas [3] (lor related topics see also [2] 

and [6]). 
In the following we shall show that any closed disc which does not intersect T(X) 

may be removed from a(x). 

Theorem 2. Let A be a commutative Banach algebra with unit, x e A, and let 

V — {keC, U — a\ _ r} be a closed disc in the complex plane, Vn TA(X) = 0. 

Then there exists a superalgebra B => A such that Vn aB(x) = 0. 

Proof. We have r < dist {a, TA(X)} = dist {0, T^(X - a)} = lira d((x - a)n)lfn. Fix 
n-->oo 

an n e/V with d((x — a)n)lfn > r and consider the element y = (x — a)n for which 

d(y) > rn. By the construction of Arens [ l ] there exists a superalgebra B => A such 

that j i s invert ib le inBand | |y _ 1 | |B = d(y)"1 < r~n. So aB(y~l) a {XeC,\l\ < r~n} 

and aB(y) cz [XeC, \k\ > r*}9 hence aB(x) c {A e C, \X —a\ > r}, aB(x) n V = 0. 

Remark. If we replace the words "closed disc" in Theorem 2 by "open disc" 

the result remains true. It is also possible to prove this by using Theorem 1 but the 

proof is more complicated. 
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