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ON CONABILITY OF SINGLEVALUED MAPPINGS

LE VAN Hort, Praha

(Received February 27, 1981)

INTRODUCTION

The theory of conability of singlevalued mapping in the sense of J. Durdil [2]
M. Fabian [3] is developed in locally convex topological linear spaces. The main
results are Theorem 1 and 2, which give the connections between the Giteaux
conability, uniform conability and Fréchet differentiability of mappings.

1. DEFINITIONS AND NOTATIONS

We recall the definition of calibration for a family of locally convex spaces, which
was introduced by S. Yamamuro [4]. A calibration for a locally convex space E
is a set of continuous seminorms, which induces the topology in E. The set P(E) of
all continuous seminorms on E is obviously the largest calibration for E.

Let E = {E,: « €I} be an indexed family of locally convex spaces. A seminorm
map on E is a map p defined on I whose value py at o €I belongs to P(E,). We call
a set I' of semiborm maps on E a calibration for E if for each a €1, the set I'y, =
= {pg, : p € I'} is a calibration for E,. We shall also say that E is a I'-family. Through-
out this paper E denotes a family of locally convex spaces, I is a calibration for E.

For two seminorm maps p, g on E we write p < q if py < qx for all X e E. Let
pel, XeE, YeE. Put

Pxxy(%, ¥) = px(x) + py(y) forall (x,y)eX x Y.

Throughout this paper we assume that the following assumptions are satisfied:

1. Each normed space (E, | ||) belongs to E and py = || || for all peT.
2. If X€eE, YeE and {pyxy:peTl}isa calibration for X x YthenX x YeE.
3. For X eE, perl, qer there exists r € I' such that py < ry, gx < ry.

Definition 1.1. By a cone in linear space X we understand every subset C of X
such that C + 0, C & {0} and txe Cforallxe C,t 2 0.
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Definition 1.2 (J. Daneg, J. Durdil [1]). Let X € E, C be a cone in X. Put
V,(C)={xeX:3ceC, p(x — c) < ep(x)} foreach pel, £>0.

Then, of course, V,(C) is a cone again.

Definition 1.3 (M. Fabian [3]). Let X € E, Ye E. For each cone C in X x Y we
define (taking 1/0 = o0, 0/0 = 0)

p(C)x = sup {1—’3@ ((x,y) e C} -

px(x)

Definition 1.4 (S. Yamamuro [4]). Let X € E, Ye E, pe I'. We say that a map f
of X into Yis p-continuous at xo € X if for each & > 0 there exists 6(p, &) > 0 such
that

pr(f(x) — f(xo)) <& forall xeX, px(x — xo) < &(p,e).
We say that f is I'-continuous at x, if f is p-continuous at x, for all pe I'. If T is
a linear map of X into Y, then Tis p-continuous if and only if
p(T) = sup {py(Tx)} < .

px(x)=1
L,(X, Y) denotes the set of all linear p-continuous maps of X into Y. It is easy to see
that a linear map T of X into Yis I'-continuous if and only if p(T) < oo forall pe I
L;(X, Y)denotes the set of all linear I'-continuous maps of X into Y. Then L (X, Y) =
= () L,(X, Y). We note that if Te L,(X, Y)then G(T) = {(x, Tx)} isaconeinX x Y

and p(G(T))x = p(T).

Definition 1.5. Let X, Y be linear spaces. A map f of X into Y is called positive
homogeneous if f(tx) = t f(x) for all xe X and ¢ = 0.

Definition 1.6. Let X € E, YEE, Q c X, x0€Q,f: Q- Y, peI'. Amap ¢ of X
into Yis called a map of good p-approximation for f at x, if ¢ is p-continuous at 0
and for each & > 0 there exists §(p, &) > Osuch that p,(f(xo, + h) — f(xo) — @(h)) =
< e p(h) for all h e X, px(h) < &(p, £). A map ¢ is called @ map of good I'-approxi-
mation for f at x, if ¢ is a map of good p-approximation for f at x, forall pe I'.

Definition 1.7. Let X €E, YeE, Qc X, f:Q— Y. We say that f is I'-Fréchet
differentiable at x, if there exists a map ¢ € L(X, Y) such that ¢ is a map of good
I'-approximation for f at x,.

Definition 1.8 (J. Durdil [2]). Let X € E and let I be a net, {Ci}icr @ family of cones
in X. A closed cone C in X is said to be the conic limit of {Ci}ier if for each pe T’
and each ¢ > 0 there exists %(p, ¢) € I such that
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CcV,(C) and C;cV,(C) forall iel, i2x(p,e).
Notation: C =1lim C, or C; » C.

iel
Let XeE, YeE, and let C be a cone in X x Y. For each he X, h + 0, put

C(h) = {(x,y) : x = th, teR, (x, y) € C}. One can see that C = |J C(h)if (0, y)¢ C
forallyeY, y = 0. hex

Definition 1.9 (J. Durdil [2]). Let X € E, YeE, X x YeE, Q = X, peT and let
f:Q — Ybe a p-continuous map at x, € Q. For each h e X, h & 0 put

C? (f, %o, h) = {A(th, f(xo + th) — f(x0)) : 4 2 0, p(th) < r}.

We say that a cone Cin X X Yis a cone of good p-approximation for f at x, in a di-
rection h if C(h) = C and for each ¢ > 0 there exists (p, ¢, k) > 0 such that for all r,
0 < r < &(p, & h)implies C? (f, xo, ) < V,.(C) and C < V, (C? (f, xo, h)). We say
that f is I'-Gdteaux conable at x, if f is I'-continuous at x, and for each h € X,
h =% 0 there exists a closed cone C§(f, Xo, 1) in X x Ysuch that C§(f, xo, h) is a cone
of good p-approximation for f at x, in the direction k for all p e I'. Notation:

Ci(f, xo) =Hr Cy(f, xo, 1) .

Now we generalize Proposition 1.8 [3].

Proposition 1.1. Let XeE, YeE, X x YeE, peTI. Let C be a conein X x Y
such that p(C)x < K. Then we have

K+ (1+K)e
V,(C)) S ———————>— forall ¢:0<e< .
o7.4C) 1-(1-K)e / 1+K

Proof. Let (x, y) € ¥, (C). There exists (a, b) € C such that p((x, y) — (a, b)) =
= p(x — a) + p(y — b) = &(p(x) + p(y))- Further, we have

p() £ p(y = b) + p(b) = p(y — b) + K p(a) = p(y—b) + K(p(x — a) + p(x)) =
= (1 +K)(p(x — a) + p(y = b)) + K p(x) = (1 + K) &(p(x) + P()) + K p(x),
hence [1 — (1 + K) ] p(») £ [K + (1 + K) €] p(x) and rewriting it in the form

' K+ (1+K)e
T- (R

p(y) £

we can see that

K+(1+K)e
V,{C) £ ——mM~—.
p(V,.(C)) — (0K
Remark. 1. It is clear that if X € E and C is a cone in X, then
NN Vp,,(C) =C.

pell 8>0
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2. If f is I'-Giteaux conable at x,, then

Cy(f, X0 B) = N N Co(f, X h) forall heX, h=+0.

pel r>0

Proof. It is clear that for all p € I we obtain
Co (f, %0, ) = C2 (f, X0, ) if O<s<r.

Definition 1.9 implies that C3(f, Xo, h) = V, (C (f, %o, k)) for all e > 0, r > 0.
Let pe T, geTI.If p(h) = 0, then of course we have: CJ (f, xo, h) € C? (f, o, h).
Hence C§(f, xo, h) € V, (C8.(f, x0, h)) € V, (C% (f, X0, h)). If q(h) =0, then
a(f(xo + th) — f(xo)) = 0 for all teR, so f is g-continuous at x,. Hence
4(C4 (1, xo, B))x = 0 for all r > 0. Since C§(f, xo, h) S V,.(C2 (f, xo, b)) for &,
0 <& <1 and some r > 0 by Proposition 1.1, it follows that g(C4(f, xo, h)) <
< /(1 ~ ¢). This means that g(y) = 0 for all y with (th, y) € C&(f, xo, h). Hence
C4(f, xo, h) S V,,.(C .(f, X0, h)) for all ¢ > 0 and r > 0. If p(k) > 0 and g(h) > O,
then it is easy to verify that

C3 (s X0, B) = C4 (amyrpimelfs X0 1) 5
which means that

Co(f, X0, h) S V. (Cl camyrpime(fs X0s 1)) E Vol €3 (S, X0, 1)) -
Hence

Co(fixon) =N N N NV dCh S, x0s b)) ©

pel r>0 qel’ €>0

sN NC S xo0, h).

pel r>0

On the other hand, we obviousl-y have

n n C;,r(f’ Xos h) S n non,s(Cg,r(f’ Xos h)) = C(‘)(fs X0s h) .

pel r>0 pel &>

2. SOME PROPOSITIONS

LetX e E, Ye Eandlet Cbeaconein X x Y. Denote (T C(h))* = {y :(h, y)e C},
(TC(h))” ={y:(—=h, —y)eC} = —(TC(—h))*, TC(h) = {y[t : t £ 0, (th, y) e
€ C} = (TC(h))* U(TC(h))” forall he X, h + 0.

Let 4, B be p-bounded subsets of X, p € I (i.e. sup {p(x) : x € A} < o0,
sup {p(y) : y € B} < o}. Put

df4,B)=inf{t >0, ASB+1S, BS A+1S,} =

= max {sup inf p(x — y), sup inf p(y — x)},

xeA yeB yeB xeAd

where S, = {xe X : p(x) < 1}.
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Definition 2.1. Let X € E, Ye E, p e I' and let {C },.; be a family of conesin X x Y
such that (0, y) ¢ C; forall ye Y, y + O and all i e I. We say that {C;}; p-uniformly
converges to a cone Coif (0, y) ¢ Cofor y € Y, y + O0and (T Cy(h))* =+ 0,(T Co(h))* *
=+ @ forall he X and all i e I, and for each ¢ > 0 there exists % € I such that

Ci(h) = V,(Co(h)) and Co(h) € V,(Co(h)) forail i=x andall heX.

Proposition 2.1. Let X € E, YeE, X x YeE, peI. Let C, be a cone in X x Y,
{C:}icr a net of cones in X x Yand p(C))x < K, p(Co)x < K for all i. Then {C.}i;
p-uniformly converges to C, if and only if d((T Ci(h))*, (T Co(h))*) uniformly
converges to 0 on the set {heX : p(h) < 1}. In addition, if for somee > 0, ¢ < 1,
iel, heX the inclusions

Ci(h) € Vpa+0m(Co(h)) s Co(h) E Vp a1 +5(Cilh))

d((TCih)", (T Co(h))*) < & p(h)-

Proof. 1. Suppose that {C;},,; p-uniformly converges to C,. Let ¢€(0, 1) be
arbitrary. Put ¢, = ¢/(1 + K)? Choose x €I such that for all iel, i = » implies
Co(h) = V, . (Cih)) and C(h) = V,.,(Co(h)). a) If h € X is such that p(h) = O then
p(y:) = p(y) = 0 for all y;e(TCy(h))* and ye (T Co(h))*. Hence p(y; — y) =0,
which implies that d,((T C(h))*, (T Co(h))*) = 0. b) Let h € X be such that p(h) > 0.
Let b; be an arbitrary element of the set (T C,(h))*. Then there exists (th, y) € Co(h),
te R, such that p((h, b)) — (th, y)) < & (p(h) + p(bs)), |1 — ¢| p(h) + p(b; — y) <
< &(p(h) + K p(h)). Hence |1 — 1| < &(1 + K) < 1, which implies that ¢ > 0.
Then y[t € (T Co(h))* and p(b; — y[t) < p(b; — y) + p(y — y[t) < &,(1 + K p(h) +
+ (1 + K)K p(h) < &(1 + K)? p(h) = & p(h). In the same way one can verify
that for each b € (T Co(h))* there exists y; € (T C,(h))* such that p(b — y;) < ¢ p(h).
Hence d,((TC(h))*, (T Co(h))*) = & p(h).

2. Suppose that d,((TCyh))*, (T Co(h))*) <& for all heX, p(h) < 1. Then
d,((TC(h))",(TCo(h))") <& for all heX, p(h) < 1. a) If heX and p(h) =0
then for each (th, y;)e Cyh), (h, y)e Co(h) we obtain p((h, y;) — (h, ) =
= p(y; — y) = 0. Hence C(h) = V, (Co(h)) and Co(h) = V, (Ci(h)) for all £ > 0.
b) If he X and p(h) > 0, then for each (th, y)e Cy(h), t + O, for instance ¢ > 0,
it follows that b; = y[tp(h) e (TCi(h[p(h))))* and there exists b e (TCo(h/p(h)))*
such that p(b; — b) < e. Therefore p((th, tp(h) b;) — (th, tp(k) b) = tp(h) .
. p(b; — b) < etp(h) < e(p(th) + p(y)).- This shows that (th, y) € ¥, (Co(h)). Hence
C(h) = V,.(Co(h)). Similarly we have Cy(h) < V, (Cy(h)). This completes the proof
of Proposition 2.1.

hold, then

Proposition 2.2. Suppose that X,€E, Y,eE, X; x Y,€eE, i =1,2, peI. Let
Ty(T,) be a linear p-continuous mapping of X,(X,) into Y,(Y,) such that there
exist positive numbers a, B, a satisfying the inclusions a p(x) < p(Tyx) < B p(x),
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p(T2) < a. Then for every cone C in X, x Y, such that p(C)y, < b and for each e,
O<ex 1/2(b + ]), we have (T1 X Tz) (Vp,e(C)) < Vp,2¢“(ﬂ+a)(b+1)s(Tl X TZ(C))~

Proof. Let (x, y) be an arbitrary element of VM( C). Proposition 1.1 implies that
b+(B+1)e .

)= g P
Thus, there exists (u, v) € C such that p((x, y) — (4, v)) = p(x — u) + p(y — b) <
< ¢(p(x) + p(y)). Therefore

p(Ty x Ta(x, y) — Ty x Ty(u,v)) <
= (p(T0) + P(T2)) (plx = u) + p(y = b)) = &(B + a) (p(x) + P0Y)) =
€ a bt (b+ e x € a a ! p(Tyx
<.op + )(1+1_(1+b)8)p()é2(ﬂ+ )1+ 8)a (7ix) <
S 2B+ a)(L + b)a~! p(T, x Ty(x,y)).

Hence T, X Ty(x, y)€ V, Ty x T5(C)), where 4 = 2¢(f + a) (1 + b) a™*. There-
fore Ty x Ty(V,(C)) < V, AT, x T»(C)) and this completes the proof of Proposi-
tion 2.2.

Remark. If X is a normed space, Ye E, Q = X and f is a map of Q into ¥, which
is I'-Géteaux conable at x, € Q, we write C¥(f, X, h) instead of C3 (f, x,, h).

Proposition 2.3. Let XeE, YeEE, X x YeE, Q< X, pel and let f: Q> Y
be a I'-Gdteaux conable mapping at x, and p(C§(f, xo)) < K. Then for all y' e
eL(Y,R) =Y, heX, h * 0, the function f,.,(t) = <y, f(xo + th)) is conable
at 0 and

Cg(fy',h’ 0) = (Ihxy’) (Cg(f; xO, h)) )
where I, : {th : t e R} - R is the mapping defined by I,(th) = t, t€ R.

Proof. 1. If he X and p(h) = O then p(th) = O for all t € R. As f is I'-continuous
at xo, we have p(f(xo + th) — f(x,)) = 0. Moreover, p(y) < K|t| p(k) =0 for
(th, y) € C&(f, xo, h). Hence for dll y' € Y,

Sy i) = £y (0) = {f(xo + th) = f(x0), ¥'> = 0.
Then we evidently have
Ci(fyrm 0) = {(t,0) : te R} = (Ixy") (CY(f, %o, 1)) .

2. If s = p(h) >0, then it is clear that C%(f,  0)= (I,,xy') (ca (f, xo, B)).
Let ¢ > 0 be arbitrary and put .

es™! €

TAK+ )0 5 AR + ) (p0)s + 1)

&
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Choose & > 0 such that C? (f, xo, h) < V, .,(C§(f, Xo, b)) for all r&(0, 6). Therefore
C? (f, x0, 1) < (V,,,(C f, g, 1))) (k). Then for all r € (0, §[s), we have

Cify o 0) = (1) (Chrls Xos 1) € (ey') (Vel(CE(S: %05 1)) (B) -

1

Using Proposition 2.2 for « = s™%, p = 57!, a = p(y’), b = K we have

Cifyrm 0) € Vo ((Iid') (CE(f, X0, 1)) < V. ((1iey") (CE(S, %os 1)) -
On the other hand one can see that:

(1y") (CE(/; X0, 1)) S (11y") (Co sl fs X0, B)) =
= C¥f, s 0) = V,(C§(fy 4 0)) forall e>0, r>0.

Hence

Cg(fy'.h’ 0) (Ih"y ) (C (f’ X0> h))
and the proof of Proposition 2.3 is complete.

Let A = R, B = R. We write A < B if for all a € A, b € B the inequality a < b
holds. If Cis a cone in R x R, we write TC instead of TC(I).

Proposition 2.4. Suppose that f is a real continuous function on (c, d) > [a, b].
Let |CY(f, x)| < + o for all x€[a, b]. Then there exist points c} €[a, b) ¢ €
€(a, b}, i = 1,2, such that

reys,et))* <10 < royr, )+,

(res(r ) s 7O < ey, ey
Proof. We can suppose that f(a) = f (b) = 0; otherwise we can put

o) = 1) - 1O =1 ) sa)
and note that

(ress, ) = L= — 1y, -
and

(cs(s, )~ 1 (”) f (“) — (TCY(g, %))~ forall xe[a,b].

Choose ¢; €[a,b) ¢; e(a,b], i=1,2, such that f(cf) = maxf(x) = f(c3),
xe[a,b]

f(ey) = min f(x) = f(c;). Then for all r >0 we have (TCf,ci))* <0,

xe[a,b]

(TCH(f, ¢3))* 2 0, (TC(f, c1))™ = 0, (TCXf, 7)™ 2 O.
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Therefore (TCY(f, cf))* < 0, (TC4(f, c3))* 2 0, (TC¥(f, c7))” =0,
(TC§(f, c3))” 2 0.

Corollary 2.1 Let f be a real continuous function on (a, b) and |Cy(f, x)| < K
for all x € (a, b). Then '
() If(s) —f(r)l < Kls - rl for se€(a, b), re(a,b),

(i) f is differentiable almost everywhere on (a, b).

Proof. Recall that |C¥(f, x)| = sup {|y| : y € (TC}(f, x}. Then by Proposition
2.4 there exist points c,, ¢, such that

K =y o) s 1O =IO < rey(r,e) < &,

which implies that | f(s)—f (r)l < Kls - r]. Furthermore, f being Lipschitzian
on (a, b) with the constant K, f is differentiable a.e. on (a, b).

Proposition 2.5. Let Xe€E, YeE, X X YeE, Q< X, pel, let f:Q2— Y be
a I'-Gdteaux conable mapping on Q (i.e., f is I'-Gdteaux conable at every point
x€ Q). Suppose that p(C4(f,x)) < K for all xeQ. Then p(f(x,) — f(x1)) £
S Kp(x; — x;) for x,€Q, x,€9, thus [x4, %] ={(1 — )%, + tx,:0= ¢ <
sljca

Proof. Put h = x, — x,. If p(h) = 0 then p(f(x;) — f(x,)) = 0 as f is p-con-
tinuous on Q. If p(h) > 0, put g,.(t) = {f(x, + th), y’>, te(—8,1 + &), for each
y' € Y, and for some 6 > 0. By Proposition 2.3, g,.(t) is conable on (—4, 1 + J) and

Co(gy» 1) = (1wy") (C5(S: xos 1)),

where x, = x, + th. It is clear that ||C§(g,,t)|r < Kp(y’) p(h). Therefore by

Corollary 2.1 we have [<f(x; + th) — f(x,), ¥')| < K|t| p(»") p(h) < Kp(y') p(th).
Eventually, according to the Hahn-Banach Theorem we obtain

P(f(xz) - f(xl)) =p(5y‘ll)1; ll(f(xz) - f(xl)’ .V'>| = KP(xz - xl) .

Yy’

This completes the prof of Proposition 2.5.

3. MAIN THEOREMS

Definition 3.1. Let X € E, Ye E, Q < X, and let C(+) be a mapping of @ into the
set of all cones in X x Y such that C(x) (h) = 0 for all x e Q, h € X and p(C(x))x <
< oo for all pe T, x € 2. We say that C() is I'-continuous at x, if for each ¢ > 0
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and p e I' there exists 5(p, &) > 0 such that for all x € X, the relations p(x — x,) < S,
keX, p(h) £ 1, imply

C(x) (h) € V,.(Clx0) (1)) and  C(xo) (k) = V,,.(C(x) (#)-

Theorem 1. Let X€E, YeE, X x YeE, Q < X. Suppose that f:Q — Y is
I'-Gdteuax conable on Q and C¥(f, x) is I'-continuous at xo. Then f is I'-Fréchet
differentiable at x, and df(xo, h) = (TC4(f, xo, h))* (h € X).

Proof. 1. Suppose that X = Y= R, Q = (a, b).—?'x0 Let K = ||C4(f, xo)| and
let ¢>0 be an arbitrary positive number, & < 1/(1 + K). Choose & > 0
such that |x — xo| < & implies x €(a, b), C4(f, x) = VCY(f, xo)); C&(f,xo) S
< V(Ci(f,x))- It follows from Proposition 1.1 that |C4(f,x)| K, =
=(K+ (K +1)¢g)(1 — (1 + K)e). By Corollary 2.1 f is differentiable a.e. on
(xo — 8, xo + 6). Take x, € (xo — &, Xo + 6), n = 1,2, ..., such that f is differen-
tiable at x, and x, converges to x,. Then C¥(f, x,) uniformly converges to Cj(f, x,),
so C§(f, x) is I'-continuous at x,. By Proposition 2.1, d((TC§(f, x,))*, (TC4(f, xo))*)
converge to 0. It is clear that TCY(f, x,) = f'(x,), » = 1,2, .... Hence for all ye
e TCY(f, x,) we have lim |y — f'(x,)]| = 0, so that TC}(f, xo) is a singleton. Let u
be the unique point of TC§(f, x,). By Definition 1.9, C¥(f, x,) converges to C§(f, x,)
if r — 0; then by Proposition 2.1, d((TCi(f, xo))*, (TC4(f, xo))*) converge to 0. It
is clear that (f(xo + t) — f(xo))/t € TCI(f, x5) holds for all ¢, 0 < |¢| < r. Hence
hm (f(xo + ) = f(x0))[t — u| = 0, which means that f'(xo) = u.

2. Let X e E, Ye E. We shall prove that TCY(f, x,) is a singleton. Let peT,
K = p(C4(f, xo)) and let ¢ be an arbitrary positive number, ¢ < 1/(1 + K). Choose
do\Ps €) > 0 such that for all xeX, p(x — xo) < &, implies x € @ and C§(f, x) <

V,.(C3(f, X0, b)) S V, (C&(f, xo))- Then p(Cy(f, x)x S K; = (K + (K + 1) ¢)/

he
/(1 = (K + 1)&). By Proposition 2.5 it follows that p(CY(f, xo))x < K; for all
r<d Let heX, h+0, p(h) <1, y'e Y, and put g,(t) = {f(xo + th), ') for
te(—0dy, dy). It follows from Proposition 2.3 that g,. is conable on (—J,, +J,) and

C8(9y 1) = (Lney') (CE(/s %0 H)) »

where I,(th) = t,x, = x, + th. The continuity of C§(f, x) at x, implies the continuity
of C4(g,.t) at 0. By the first part of our proof g,. is differentiable at 0 and
TCY(g,, 0) = y (TC (f, xo, h)) is a singleton. Hence y'(TC}(f, xo, h)) being singleton
for an arbitrary y' e U Y, = Y', TCY(f, %o, h) is a singleton as well. Let ¢(h) be the

unique element of TC ( f, %o, h). Then evidently ¢ is a homogeneous map. Because
Ci(f, xo, h) converges to C§(f, xo, k), it' follows from Proposition 2.1 that
d,((TC(f, %o, b))%, (TCY(f, xo, h))*) converge to 0. We have (h, (f(xo + th) —
~ f(x0))[t) € Cf, %o, k) for all £, 0 < |¢| < r. Hence lim p((f(xo + th) — f(xo))[t —
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— ¢(h)) = 0, which means that f is Géteux differentiable at x, [5] and Vf(xo, h) =
= ¢(h).
3. Now we prove that ¢(h) is additive and f is I'-Fréchet differentiable at x.

Let h,,h,eX, peT and let ¢ be an arbitrary positive number ¢ < 1. As f is
Giteaux differentiable at x,, there exists J,(¢, p) > 0 such that for all 1, 0 < t.< &,
we have p(th;) < 6, for i = 1,2 and

o(hy) = %[f(xo + thy) — f(x0)] + a4,
(k) = T [f(xo + ths) = F(x0)] + 2,

olhy + hy) = %[f(xo T thy + thy) — f(xo)] + o,
where p(«;) < }e for i = 1,2, 3. Then
p(o(hy + hs) — o(hy) — o(hy)) < {Ip[f(xo + thy + thy) —

— f(xo + thy) — f(xo + thy) + f(x0)] + 3¢ <

< |17|p(f(xo + thy + thy) — f(xo + thy) — ¢(thy)) +
1

I

Choose 0 < &, < &, such that for all xe X, p(x — x,) < 6, implies C}(f, x, h) =
€ V,.4(C(f, xo, ) and CY(f, xo, ) < V, A(Cy(f, x, b)) for all heX, h+0,
where 4 = ¢/(8(1 + K)? (1 + p(hy) + p(h;))). Proposition 2.1 implies that
d,(TC(f, %, h))*, (TCY(f, x0, ))*) < e p(h)/(8(1 + p(hy) + p(hz))). For xeX,
p(x — xo) < 36,5, he X, p(h) < 16,, y'€Y,, p(y’) £ 1, put g,(s) = {f(x — sh) —
— ¢(sh), y'> for s € (—46,, 1 + 46,). It is easy to verify that

TCY(g,» 5) = Y(TCY(f x5, ) — (h)) »

+ = p(f(x0 + thy) — f(x0) — o(thy)) + %8:

where x; = x + sh. Therefore
p(C4(g, 5)) = sup {|¢] : te TCY(g,, s)} =

_ d(y'(TCi'iJ (f, x> b)), ¥'(@(h))) < 8(1 .: zgz)l)p(-il)l’(h» -
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Hence
() p(f(x + h) = f(x) = o(h)) = sup {[<f(x + k) = f(x) = o(h), | :
¢ p(h) .
8(1 + p(hy) + p(hs))
Choose 0 < 8, < 8, such that 0 < |t < 6 implies p(th,) < 5, p(th;) < 35,-
Then for all ¢, 0 < |t| < 03, we have

p(f(xo + thy + thy) — f(xo + thy) — o(thy)) £

e p(th,) < f]_tJ

= 8(1 + p(hy) + p(hy)) = 8

p(y) 1} £

and

R+ o) = (59 = ol0n) £ g S8

Hence p(o(hy + hy) — ¢(hy) — @(h;)) < ¢ for all ¢ > 0, pel. This means that
@(hy + hz) = ¢(hy) + @(h;), hence ¢ € L(X, Y). In (*) put x = x,, which shows
that f is I'-Fréchet differentiable at x, and df (xo, h) = ¢(h). This completes the proof
of Theorem 1.

IIA

Jef
2

Definition 3.2. Let X€E, YeE, X x YeE, Q< X and let f: Q> Y be I'-
Gateaux conable on Q, p(C¥(f, xo)) < co for all pe I'. We say that f is uniformly
conable at x, if for each ¢ > 0, pe I' there exist §(p, €) > 0, n(e, p) > 0 such that
for all re(0,7) and all xeX, p(x — xo) < §, the inclusion ¥, (Ci(f, x, b)) 2
2 C? (f, x, h) holds for all he X, h % 0.

Theorem 2. Let XeE, YeE, X x YeE, Qc X, xo€Q and let f:Q - Y be
I'-Gdteaux conable on Q. Then C§(f, x) is I'-continuous at x, if and only if f is
uniformly conable at x, and for each p € I' there exist constants &, > 0 and K, > 0
such that p((C4(f, x))x) < K, for all x : p(x — x,) < a,. )

Proof of necessity. Let M = p((C}(f, xo))x) and let ¢ € (0, 1/(1 + M)) be arbitrary.
As C§(f, x) is I'-continuous at x,, there exists «, > 0 such that for all x, p(x — x,) <
< a, implies C§(f, x, h) < V, (C4(/, xo, h)). By Proposition 1.1, p(C§(f, x, b)) £
SK,=(M+ (1 + M)e)J(1 — (1 + M)e) for all h e X. Hence p(C¥(f, x))x < K,
Put & = ¢2(1 + K)?. Choose &,(p, &) > 0 such that &,(p, e) < @, and that
p(x — xo) < 6, implies C§(f, x, h) < V,.(C(f, xo, h)) and CY(f, xo, h) <
S V,..(C4(f, x, h)) for all heX. By Proposition 2.1 we have d,((TC}(f, xo, h))*,
(TCY(f, x, h))*) < 3e p(h). Put n =6 =145,. Let heX, teR, t+0, p(th)<r
and x € X, p(x — X,) < 9; then (th, f(x + th) — f(x)) € C% (f, x, h). By Theorem 1,
f is TI-Fréchet differentiable at x, and df(xo, h) = TCY(f, %o, h). Hence
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p(y — df(xo, b)) £ e p(h) for all y, (th, ty) € C§(f, x, h). Put g,(s) = {f(x + sh) —
— df(xo, sh), y'> for y' € Y,, p(y') £ 1. Then

TCY(g, s) = y'(TC4(f, x,, ) — df (xo, h)),
where x, = x + sh, s [0, f].

IC5(gy s)]| = sup {|t| : e TCi(g,, 5)} =

= d(y'(TC4(f, x,, b)), y'(df (xo, h)) < = p(y)p(h)

Hence p(f(x + th) — f(x) — df(xo, h)) = sup lgy (t) — 9,0)| =(¢/2) p(th). Hence

p((th, f(x + th) — f(x)) — (th, ty)) £ p(f(x + th) flx) - df(xo, th)) +
+ p(df(xo, th) — ty) < ¢ p(th). This means that C? (f, x, h) < ¥, .C4(f, x, h), which
proves that f is uniformly conable at x,. :

Proof of sufficiency. First of all we prove the following two lemmas.
Lemma 1. Let f be a real continuous function on (a, b) and let |Cy(f, x)| £ K

for all x € (a, b). Suppose that there exist positive numbers « > 0, 5 > 0 such that
for all x € (a, b) and for all r € (0, 5) we have

d((TCy(f, x))*, (TCE(/, x))) = @, d((TCY(f, %)), (TCUS, %))7) < .
Then
8(TCY(f, x)) = max {|a; — a,| : a;, a; € TCY(f, x)} < a.
Proof of Lemma 1. Suppose that it is false. Then there exists x, € (a, b) such that

8(TCY(f, xo)) > a. Let

a, = max {a : a € TC§(f, xo)} ,

a, = min {a : a € TC(f, x,)} -
Choose aj, a; such that a, < a), < a] < a; and aj — a) > «. We know that

Ci(f, xo) € Ci(f, xo) forall r>0.
Therefore
TCY(f, xo) = TCY(f, xo) forall r>0.

Hence for each ne N there exists x, € (a, b) such that 0 < [x,, — Xo| < 1/n and
(f(x4) = f(x0))[(xs — x0) > ay. Let re(0,6) be fixed. Take x'€(a, b) such that
0 < |x" — xo| < r < 8.and (f(') — f(x0))/(x' — Xo) < a3. Suppose that x ‘> x,.
Then by Proposition 2.4 there exist points c, such that |c - xo| < 1/n and

(TCY(f, ea))* = (f(xn) — f(x0))/(xa — Xo) > a}. It is clear that
im /) = f(@) _ 1) = f(xo) _

» X —c, x' = x
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Therefore there exists ny € N such that |x' — ¢,| <, ¢, < x" and (f(x") — f(c.)) :
:(x' — ¢,) < aj for all n = n,. Then (f(x') — f (c,,o))/(x' — ¢,,) € (TCYU(f, c,,))* and
of course d((TCY/, cy,))*> (TCY(f, €))*) > a; — a3 > @, a contradiction. If
x' < xo we choose ¢, such that (TC}(f, ¢,))” > a} and in the same way as above
we show that there exists a point c,, such that d((TC4(f, c,,))~» (TCU/, ¢x,))”) > &,
a contradiction again. This completes the proof of Lemma 1.

Lemma 2. Let X€E, YEE, X X YEE,Q = X, and let f : Q - Y be a I'-Gdteaux
conable map on Q which is uniformly conable at x,, p€ I, p(CY(f, x)) < K for all
x€Q. Then for all ¢ > 0 there exists d(p,e) > 0 such that 6, (TCY(f, x, h)) =

=sup {p(y — z) : y, ze TCY(f, x, h)} < ¢ for all x with p(x — x,) < & and all
heX, p(h) £ 1.

Proof of Lemma 2. Take s > 0 such that {xe X : p(x — x,) < 25} = Q. Put
Qo = {xeX : p(x — x,) < s}. Proposition 2.5 implies p(f(x + k) — f(x)) < K p(h)
for all x€Qy, p(h) < r <s. It is clear that p(C?,(f, x, h)) < K for all xeQ,,
r <s, heX. If p(h) = 0 then according to our assumption p(y) < K p(h) for all
y € TCY(f, x, h). Hence p(y) = 0 and then 6,(TC}(f, x, h)) = 0. Now let p(h,) = 1.
Let ¢ > 0 be arbitrary. Put & = ¢/(4(K + 1)?). Choose J;, n > 0 such that
p(x — %) <8, <s, 0 <r<ny<simply C,f,x, h) < V,,(Cif, x, h)) for all
heX. Let x be an arbitrary point such that p(x — x,) < 6 = min {14, 4}. Put
g,(1) = {f(x + thy), y'> te(—25,26) for all y'eY,. By Proposition 2.3, g, is
conable and

C8(gy» 1) = (I x ¥') (C§(£, x0» ho)) »
where x, = x + th and we have |C{(g,, t)] < K p(y'). It is easy to see that
Ciays 1) = (I, x ¥') (C S, X0 o))  (In X ¥') (V.o (CE(S, x0» ho))) =
€ VpzalK + 1) (2(r) + 1) (I x ¥) (C&(, xs» ho))) =
S V, i+ 1)(CHgy» 1)), forall y :p(y) 1.

Now Proposition 2.1 implies

d((TCi(g,» )", (TCE{(g,» 1))*) = &, d((TCgy» 1)), (TCh(gy» 1)7) S 6

and, by Lemma 1, it follows that 6(TC¥(g,, 0)) < ¢ for all y' € ¥,, p(y') £ 1. For
all y, z e TCY(f, x, ho) we have

p(y —z) = Sup |<y -7,y s Sup 6(TC (9,,0) s e.
Hence 6,(TCY(f, x, h)) < ¢ for all x, p(x — Xo) <6 and all heX, p(h)=1. If
heX, 0 < p(h) <1, then TCY(f, x, ) = p(h) TC¥(f, x, h'), where h' = (1/p(h)) h.
Hence 6,(TC4(/, x, h)) < & p(h) < ¢ again. This completes the proof of Lemma 2.
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Now we return to the proof of sufficiency of Theorem 2. Let ¢ > 0 be arbitrary
and let pel, Q, = {x:p(x — xo) < a,} = Q. Then p(Ci(f,x)) <K, for all
x € Q. Choose &;, n > 0 such that max {6, 7} < 3«, and that p(x — x,) < J,
and 0 <r <pn-imply C!,(f,x,h) S (E,S(Kpﬂ)z)(co f, %, h)). Choose &, >0
such that p(x — x,) < 6, lmphes 5,(TC (/> x, h)) < ¢f5 for all heX, p(h) < 1.
Take 1, such that 0 < |fo| = r < y and put 6 = min {5, 6,5 (¢/5K,) |to|}. Then for
X1, X2 € Qo, P(X; — X,) < & we have p(f(x;) — f(x2)) S K,p(x; — x,) < (¢[5) [to]-
By Lemma 2, 6,(TCY(f, xo, h)) < & for all ¢ >0, heX, p(h) < 1. Hence

8,(TC4(f, xo, b)) = O for all p € I', which means that TC(f, Xo, h) is a singleton for
all h € X. Put o(h) = TCY(f, xo, h). Then ¢ is homogeneous. As (f(x + toh) — f(x)) :
11,€ TC? (f, x, h) for x, p(x — xo) <&, and heX, p(h) =1, there exists be
€ TCY(, x, h) such that (toh, tob) € C§(f, x, h) and p((f(x + toh) — f(x))[to — b) <
< (¢/5) p(h); in particular, p((f(xo + toh) — f(xo))/te — @(h)) < (¢/5) p(h). There-
fore, for all b’ e TCY(f, x, h), p(x — x,) < we have p(o(h) — b') < p((h) —

= (f(xo + toh) = f(xo))to + P((f(x0 + toh) = f(x0))[to — (f(x + toh) — f(x))/t0)+
+ p((f(x + toh) — f(x))[to — b) + p(b — b) < e. Then d,(TC4(f, x, h), o(h)) < &
for all h, p(h) < 1. Hence C¥(f,x,h) = V, (Ci(f, xos h)) and CY(f, xo, h) S
V,.{(C4(f, x, h)) for all he X and all x, p(x — xg) < 8. This shows that C§(f, x)
is I‘-contmuous at x, and the proof of Theorem 2 is complete.

Definition 3.3. Let X€ E, YeE, X x YeE, Q < X and, for each xe Q, let
{C.(x)}» be a sequence of cones in X x Y such that C,(x)(h) + @ for all n, all
x € Q and all h e X. We say that {C,(x)}, uniformly converges to Cq(x) on Q if for
each & > 0 and each p € T, there exists ny(e, p) such that for all ne N, n Z no(e, p),
for all x e Q and for all h € X the following inclusions hold:

(Ca(x)) (h) € V. Co(x) (B) and  Co(x) (h) = V,.{C,(x) (1)) -

Theorem 3. Let Xe€E, YeE and X x Ye E. Assume that Y is sequentially
complete. Let Q be a convex subset of X and f,:Q —» Y, neN, a family of I'-
Gdteaux conable mappings such that for each p e I there exists a constant K, > 0
with p(C§(f,, x)) S K, for all neN, xe Q. Let C4(f,, X,) uniformly converge
to Co(x) on Q and suppose that there exists a point x, € Q such that {f,(x,)} con-
verges. Then there exists a I'-Gdteaux conable mapping f:Q — Y such that
{f.} converges to f and C§(f, x) = Cy(x).

Proof. Put
&(p, m, n) = sup {dP(TC (fus X, B),  TCY(fm> x, h) : x € Q, h p(h) < 1}

for peI’, n,me N. We claim that ¢(p, m, n) converges to 0 when m, n — oo. Let
ee(0,1). Put g = ef(2(K, + 1)%. Choose noeN such that C§(f, x h)
€ V,..(Co(x, h)) and Co(x, h) < V,,(C5(f, %, b)) for all n 2 ny, x€Q, and all
heX. Proposition 2.1 implies d(TC4(f,,x,h), TCo(x, h)) < 3¢ for all xeQ,

286



heX, p(h) < 1, whence d(TC4(f,, %, h), TCY(fn x, h)) S ¢ for all xeQ, heX,
p(h) <1, n,meN, n 2 ny, m 2 n,. Hence &(p, m, n) < e. This proves our claim.

a) Let pel, xe Q. Put h = x — xo. If p(h) =0, then p(f,(x) — fu(xo)) =0
for all n € N. Therefore
p(fn(x) - fm(x)) é p(fn(x) - fn(xo)) + P(fn(xo) _fm(xo)) +
4 D0n(0) = Fu8)) S PUMFS) — fulie) -
If p(k) > O, put b, = (1/p(h)) h, then p(h,) = 1. Put g, (1) = {f(Xo + thy), y'")
for each y' € Y,, p(y’) < 1. Proposition 2.3 implies
C3(gnys 1) = (Iixy') (C§(fns Xo» b)), where x, = xo + thy.

Hence | C§(gny 1)| £ P(CY(fo X1 k1)) P(»') < K, By Corollary 2.1, g,, is
a Lipschitzian function and

195(1) = Gy ()] = A(TCH(g0- 1), TCH(m 1)) S
< p(y') d(TC4(f Xis h1), TCY(fs X2 1y)) < 2(p, m, 1)
for almost all t € [0, p(h)]. Then

) = F(0) = fuld) — Fulxa) 73] =
= lg".y'(P(h)) - gn.y’(o) - gm.y‘(p(h)) + gm,y’(o)l S

p(h)
[ lot () = oty (0] a5 o, m ) 200,
0

Therefore p(f,(x) = fu(x0) — fu(x) + fu(x0)) < &(p, m, n) p(h) p(£u(x) — fulx)) <
< p(filx0) = fu(*0)) + &(p, m, n) p(x — x,). Hence {f,(x)} is a Cauchy sequence
for each x € Q. As Y is sequentially complete, there exists f(x) = lim f,(x) for all
x € Q.

b) Let & > 0 be arbitrary. Choose ng € N such that d,(TC%(f,, x, k), TCq(x, h)) <
< (%) p(h) for all n = ny, for all xeQ and all he X. Then d(TC4(f,, x, h),
C4(fm> X, 1)) < e p(h) for n,meN, n,m 2 ny, x€ Q and he X. It is easy to see
that p(f(x) — f(Xo) = fuo(X) + fuo(X0)) < 3e p(x — x,) for all xe Q, x,€ Q. Let
x, €2, heX, h # 0 be arbitrary fixed points. Take r > 0 such that d,((TC? (f,.,

X1 1))*s (TC8(fup X1 B))*) < 32 p(h), d,((TC] (fros %15 )75 (TCE(for X1, B))7) <
< 1e p(h). Then for all t % 0, p(th) < r,

[fno(xl + th) fno(x)] € T (fno’ xl’ h)

There exist y,, € TC{,( fr» X15 h)s ¥ € TCo(x4, h) such that

(th, ty,,) € C4(fugs X15 h) > (th, ty) e Co(x,, h) and
P(faclx1 + th) = fu(x1) = tya;) < 3e p(h),
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Pty — ty) = e p(h) -
Hence p(f,,(x; + th) — fo(x1) — ty) < 3¢ p(ht)
p((th, f(xi + th) = f(x1)) = (th, 1)) = p(f (%1 + th) — f(x1) — 1y) <
< p(f(x, + th) — f(%1) = fal(X1 + th) + fu(x1)) + 38 p(h) <
< e p(th) + %e p(th) < e[p(th) + p(f(xs + th) — f(x1))] -

Hence C,(f, xy, ) € V,,(Co(%1, h)). The proof of Co(x, h) = V, (C8 (f, xy, h))
is similar. This completes the proof.
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