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Casopis pro péstovini matematiky, rot. 104 (1979), Praha

ON OSCILLATION OF SOLUTIONS OF DIFFERENTIAL
INEQUALITIES WITH RETARDED ARGUMENT

PavoL MARUSIAK, Zilina

(Received March 23, 1977)

We consider the following differential inequality

1) {[r(®) Y= PO + 1 W), y[A(O]} sen y[h()] < 0, n = 2,

where
(2 r:[0, 0) - (0,0); h:[0,)—>R;
f:[0, ) x R* > R are continuous functions ,
(3) h(t) <t, limh(t)=c0 for t— o0,
4 yf(t,x,y) >0 for (¢, x y)e[0, ) x R*, xy>0;

lf(t: X1s )’1)| = If(t, X325 J’z)‘ for lel = lx2| > l}’xl = IY2| s X%, >0,
Y1y >0, x99, >0.
Denote by W the set of all solutions y(f) of the differential inequality (1), which
exist on a ray [#o, ] < [0, o) and satisfy
sup {ly(s)] 52t >0

for every 1€ [t,, ).
A solution y() € Wis said to be oscillatory if the set of zeros of y(f) is not bounded
from the right. Otherwise the solution y(t) € W is said to be nonoscillatory.

Definition 1. We shall say the that the inequality (1) has the property 4 if every
solution y(t) € W is oscillatory for n even, while for n odd is either oscillatory or
y2() (i=0,1,...,n — 2) and r(t) y*~*)(t) tend monotonically to zero as t — .

Definition 2. Let me {0, 1,...,n — 1}. We shall say that the inequality (1) has

the property A, if every solution y(t)€ W is either oscillatory or y(1) (i=m,
m + 1,...,n — 2) and r(f) y=1)(¢) tend monotonically to zero as ¢ - co.
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The oscillatory properties of solutions of differential equations of the n-th order
with the term [r(t) y"V(t)] (n = 2, n 2 2, r(t) > 0) are studied, for example,
in [1,2,4,7,9-12]. In this paper we shall prove sufficient conditions for the ine-
quality (1) to have either the property 4 or A,.

Finally, with the help of the inequality (1) we shall prove a sufficient condmon for
the equation (7) to have the property 4, me {0, 1, ..., n — 1}. Our results generalize
some of those in the papers [1—3, 6, 9, 12].

Let us denote

Hi) = max {r(s) : f2 S s < 1},

b(t) = ;((—g, bo = inf {b(t) : t = o},

t xk
Rk(t)=J X dx, k=01,...n—2, Te[0, ),

r 1(x)

Ry(t, u) = J-(x—“)d k=0,1,...,n—-2, ust,

- r[A(9)] e s
= i {Hs):h() s <1}’ H(t)_h(t) for k(1) >0.

Let me{0,1,...,n — 1}, t, €[0, ). Put

D = {(t, X1, Y1» --os Xy Yn) € [0, 0) x R*™" 1ty < h(1),
(n=m = 1)! (by \"7I*1 X; (n—m+1)! by m=j+1
(n =) (2 t) = Xme1 (n =) (2 h(t))

< i , J=1L2...,m+1), XpiYme1 >0, x,y;€R,
ym+l

A

IIA

(i=m+2,..,n)}.

Lemma 1. Let y(t), ..., "~ 1)(t) be continuous functions of constant sign in the
interval [to, ) < [0, ). If

(5) YO )y R@) =0, W) +0 for 12103

(5) yO YO 20 for t21,

where the function r satisfies (2), then there exists an integer k e {0,1,...,n — 1},
n + k odd, such that

(6) YOy 20 (i=0,1,...,k), t=1,

) () Yy 20 (i=k+1,...,n=1), t21t,
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(8) |y“’(t)| > L; b(1) t"““‘ly('"”(t)| , where ke{1,2,...,n—1},
—n2
L= 2 (i=01,...k—=1), t=2""k,,
(n—1i-1)

(9) b,(k)(,)l > pkt b(zn—k—lt) Iy(n—l)(zn—k—lt)l , 12,

J—i 4j=i
(10) ! (5’22> f a2 s ity 2@ (G=01,..,k, i=0,1,..,j),
t=2t.
Proof. Under the assumption (5), assertions (6) and (7) follow from Kiguradze’s

lemma 14.2 in [5]. Further, we may suppose, without loss of generality, that y(f) > 0
fort = t,.

(a) Let k = n — 1. Then (6) implies
Y1) 20, i=12..,n—-1, t=t,.

Using Taylor’s theorem, the last inequality, and the monotonicity of [r(t) y®~1(¢)],
we get

o ="y TR [ ey E=

/2 1 - 2)'

I,/z Y= 1(s) (1= 92 o B YO0 (1 (_.)” .

(n—i=2 " (n—i-1)\2
(i=01..,n=2), t=2,.

(|

From (11), we obtain (8) for k = n — 1.
The inequality (9) for k = n — 1 is evident.

(b) Let ke{0,1,...,n — 3} and let n + k be an odd integer. Then, in view of
Lemma 1 in [8], we get

(12) Y1) 2 L3 ye=3(r), 12 277 * 2,
_ 92— (n-2)*
L1=(——'-3—);, (i=0,1,...,k-1),
n—i-3)!
and
(13) y(k)(t) > k3 y(n-3)(2n—k—3t) , =1,

With the help of (7) and (5), we get

t
(14) —y=D(1]2) 2 -f YoO(s) ds 2 ; b(t) Yo 0(), 12 2.
t/2
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For t 2 4t,, using (6), (7) and (14), we obtain

15) a-3 (1 s jo-n (LY _ je-» (s _ 1 e-a (L >—tibt (- 1)(y
(15) Yy 22) 2V () -V () 2 - TP (5) 25 MO0

The inequalities (15), (12) and (13) imply (8) and (9).

If ke {0, 1, ..., n — 3}, then the inequality (10) follows from Kiguradze’s lemma
in [5]. It remains to prove (10) for k = n — 1.

Let k = n — 1. Using (6) we can show that

Yo 2 -;-y(""i'l)(%), (i=1,2..,n-2), t22,.

Utilizing the last inequality and (6), we can easily verify the correctness of the
following relation

16) (L +i)ye20(s) — f '/2 [i Y= i=D(s) — %es y("“"(s):l ds 2

2 2

2 (1= bo) y™™279(r) + %ty"’“““(t) - %Q[y"’““”(t) - £y‘""""(i)] 2

> %ﬂty("“'”(t), (i=12..,n-2), t22,.

Fori=n-2,

1) yo-a() 2 20 gy 2 2

?° ty" (1), 1221

follows from (11).
Further, (16) and (17) imply

(1 + 1) y=2-0(1) 2 -b.22 YD), 22, (i=0,1,.0n—2).

For k = n — 1, (10) follows from the last inequality.

This completes the proof of Lemma 1.
Lemma 1 is an extension of Lemma 2 in [9].

Lemma 2. Lez (2)—(4) hold.
(2) I
(18) — =,

then conditions (5) and (5') are satisfied for every nonoscillatory solution y(f) e W

of (1).
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(b) If
(19) J ) (7(17) j ;l fGs, ¢, 0)| ds) dt = o

for every ¢ % 0and T 2 0, then conditions (5) and (5') hold for every nonoscillatory
solution y(t) € W of (1) such that lim y(¢) =+ O.
t—

Proof. We assume, without loss of generality, that y(rf) > 0 for t 2 t,. Then, in
view of (3), there exists t; = t, such that y[h(t)] > O for ¢ > t,. From (1), with
regard to (4), we obtain

(20) [r(8) Yo~ 0(0)] < —1(t, »(0), y[H()]) <O for t=1t,.

(a) 1f (18) holds, then using the same method as in Lemma 1 in [9], we get
y* (1) > 0 for t 2 t,.

(b) Via contradiction we prove that y®*~")(¢) > 0 for ¢t = ¢,. We suppose that for
some t, 2 t; we have y®~)(t,) < 0. Then (20) implies y*~(f) < 0 for t = t,.
If lim y(t) > O, then there exist ¢ > O and t; > 1, such that y(t) Z eand y[h(f)] =

t—* o

2 ¢ hold for every ¢t = t5. Thus (20), under the assumption (4), yields

[r(®) y* D)) = —f(t,e,e) <0 for t>1,.

Integrating the last inequality from T (T 2 t,) to t and using »™~1(f) < 0 for
t = t, we have

Yo 1(f) < Iltj Jif(s, g &) ds.

Integrating the last relation from T to t, with regard to (19) we get lim y®~2)(t) =
= — oo which contradicts the positivity of y(¢) for t = t,. 1=
The proof of Lemma 2 is complete.

Theorem 1. Let r, h, f be functions satisfying conditions (2), (3): (4). Let K, 2,
be constants (K >0, 0<a<1, > 0) and g:[0, ©) - [K, ®) a continuous
Sfunction such that

1) |£(t: a(9) x, 9(8) )] = [a(OT* |£(t, x, )|
holds for every t = 0 and |y| =0, le = 4.
(a) If (18) and

(22) f £t £7710) 1, £F[AA] (MY )] di =
hold, then the inequality (1) has the property A.
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(b) When (19) and (22) hold, then the inequality (1) has the property A,.

Proof. Let y(t)e W be a nonoscillatory solution of (1) such that hrn y(t) + 0.
We assume, without loss of generality, that

(23) lim y(f) > 0.

=

Then, in view of (3), we can choose #, such that y[h(t)] > O for every ¢ = #,. Then (1),
with regard to (4), implies [r(f) y*~1(f)]' < O for t 2 f,. If any of the conditions
(18) and (19) is satisfied, Lemma 2 implies y~*)(t) > Ofor t = #,. Then by Lemma 1,
there exists t, = f, such that the inequalities (6)—(9) hold for t = t,.

Integrating (1) from ¢ (¢ = t,) to oo, we get

@) o> )y 2 j " (s, W), M) ds for 12 1o,
and then, in view of the monotonicity of r(f) y*~')(), we have
@8) DO TN 2 [ o oD a5 for 12120

I Let ke {1,2,...,n — 1}. Then we obtain by (8) fori = 0
(29) W1) = Lo b(t) =1 y=1(e), 122"y =1,
(25) y[h(9] 2 Lo b[A(©)] (W(e))"~* y*~P[A(1)] for t21;,
where L, = 27"|(n — 1)! and t, is chosen such that
h(t) 2 max {t,, t;} for t2t;.

Let us denote
a(i) = rf(s, (&) STHE]) ds -

From (25) or (25’), with regard to (24) or (24'), we get, respectively,

(26) W) 2 Ly~ ()"t @(t) for t21t,,
(26 y[h(0)] = Lo F [R())] (A(2))""* &(t) for t2t;.

Because k 2 1, there exists 8 > 0 such that ¥(t) = y[h(t)] 2 6 for t = t;. Then,
in view of the monotonicity of the function f, (26), (26’) and (21) we have

@) £ ) 7 FARE] (YY) S
< £t 90 {Lo @D}, YIH(H] {Lo 2} ™) =
= {L, &(2)} " f(t, y(¢), y[h()]) for t=1t,.
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By integrating (27) from ¢, to t, (t; < t,) we have
(29)
j 6,70 £ L] (R a5 2 [( j 15, ¥(6), Y[ ds) ]

From (28), in view of (24), we obtain

-rof(t, FrU) et FRA()] (h()) ) dE < oo,

which contradicts (22).
II. Let k = 0 (n is an odd integer). Then (9) with k = 0 implies in view of (23)

(29) ¥(1) = My b(2) =2 y®=D(f) for t=2",,

where

M, = inf { y(t) } 2-=1)* 5 o .

t=to y(zl "t)

Further, using an analogous method as in the case I, we get a contradiction with (22).

If (18) holds and ke {1,2,...,n — 1}, then, with regard to (6), (36) is fulfilled.
In all other cases (i.e. either (18) holds and k = 0 or (19) holds and k€ {0, 1, ...
...,n — 1}) we have to assume that (23) holds. But, as shown above, this leads to
a contradiction with (22). Then lim y(f) = 0 for every nonoscillatory solution y(t)

t— o0
€ W. Hence it follows that lim y(f) = 0(i = 0, 1, ..., n — 2) and lim r() y*~ 1)) =
t—* @

=0 )

The proof of Theorem 1 is completé.

Lemma 3. Let the assumptions of Lemma 1 be fulfilled. Let b, > 0 and let
h :[0, ) = R be a function such that (3) holds. Then there exists T = 2t, such
that, for t = T, we have

(30) Y] = Cole) (HE@)™* |y[a(0)]], where C = (2[bo)~* .

Proof. The case h(t) = t for t > 2t, is trivial. Consider ¢ such that t > h(t) = 2t,.
Without loss of generality, we assume that y(f) > O for t = t,. Then, with regard
to (3), (5)—(7), there exists ¢, = t, such that for t > ¢, we have h(t) = t,, and either

(@) y[(] 20 (i=0,1,....,n = 1), (r[A()] y* "V [A(#)]) < 0 or
(®) YO[R®] 20 (i=0,1,....k ke{0,1,....n — 3}, n + k is odd) and
y**O[h(r)] < 0.
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Consider the case (a). Applying Taylor’s theorem and (5) we get

(31) () sng Y [h(0] (t — h(t)' + rlh(6)] vy~ VLa(R)] (* (¢ = 52 ds <
Ti=o il (n—2) )

< oy LN )y

Because of the assumptions of Lemma 1, (10) implies
(32) (bo/2)! (h(2))' yP[H(t)] < K(k — 1)...(k — i + 1) y[h(1)]
(i=0,1,..,k), h(t)=2t,.
Usirig (31) and (32) we get

(bof2" 50) 5 o) THOT S, ( - ‘) (‘_;E’;(_‘)) _
t

= o(1) y[H(1)] <@)"'1 for h(1) = 21, .
From the last inequality we get
1) £ Co(t) y[h())] (H(D))*™ for t= T2 2¢,

where C 2 (2/b,)"~! and T'is chosen so that h(t) = 2t, fort 2 T.

(b) Applying Taylor’s theorem and the fact that y**[h()] < 0 for h(f) = 1,

we have
0]

k—i
yLh(e i
) = %, 2O iy
Next, using the same method as in the case (a) we get

$0) < AT (HOF < C o) yIHOT (HEP ™" for h(s) = 2t .

This completes the proof
Lemma 3 is an extension of Lemma 4 obtained by GRIMMER in [3].

Theorem 2. Suppose that (2)—(4) are satisfied and, in addition, suppose that
(@) () =2 ro>0 for t 20 and b, > 0;

(ii) there exist a positive continuous function ¢,(t) and positive nondecreasing
continuous functions ¢(t), 9 (), Y(t) for t 2 a such that ¢(t) = ¢,(1) (1),

(33) J‘m—dt—<oo;

a (1)
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(iii) forx =2 y = a, t = b > 0, and for every constants «, B, y (where0 < 2 < 1,
B > 1, y > 0) we have

im in Y(ax) f(2, x, y) f(t, v, 7)
B e ) (O ) = kel YT
(a) If (18) holds and
- [f el
¥(#"™") oa(el?) (H(D)" 1)
then inequality (1) has the property A.
(b) If (19) and (35) hold, then inequality (1) has the property A,.

Proof. Let y(t) € W be a nonoscillatory solution of (1) such that hm y(t) + 0.
We assume, without loss of generality, that

v

b

(36) lim y(r) > 0.
y= o
Further, exactly as in the proof of Theorem 2 we prove that the conditions of
Lemma 1 and Lemma 2 are satisfied and the inequalities (5)—(9) and (24) hold.

L Let ke{1,2,...,n — 1}. By virtue of (5)—(7) and the assumption r(f) =
= ry > 0, itis easy to show that there exist constants &, 7 (0 <a&£1,7>0)andt, =
= t, such that

(37) gyttt y[h(®)] =27 for t=t,.
In view of Lemma 3, the monotonicity of the function y, (4), (34) and (37) we get
- 00D W)
o(x(1)) ¥("™") @a(¥(1)
S0, f(1,7,7)

@2(C o(8) (HOY ™' y[A(O]) —  w(e™") @a(e(9) (H(1)" ™)
for t=zT, =2t
I, Ifke{2,3,..",n — 1}, then (8) and the fact that b(f) = b, > 0 imply

(39) W) Z Ly bot" 2y V(1) for t = 2't,
Let k = 1 and lim (z) % 0. Then (9), with regard to b(t) = b, > 0, yields
t—> 00

(40) Wt) 2 Libgt" 2 y*=1(1) for t=1¢,,

where
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Put B = min {L,b,, L,b,}. Using (24), (39) and (40) we get
) )z B Er(T)z J °° £(5, y(s), y[(s)]) ds -

With regard to (38) and the monotonicity of y and ¢, after multiplying the last
inequality by {¢(y(f))} ~*, we obtain

H) o g 77 [ S5 K9 M) 4 o
1) () =" r(t)f o) B
f(s, 7, %)

6) Jo W) @alels) (Hs)) 1)

for t2= T2 max{T,, 2"} .

In view of (33), after integrating (41) from Ttot(t > T) we get

o [T Rsls. D679 .
J 200) dBf W) oalels) (HOP )

which contradicts (35).
I,. Let k = 1 and lim y(f) = 0. Integrating (24) from ¢ (t = t,) to oo we obtain

t— 0

—y (g 2 j o5 1) £, 3(5), YT ds

Repeating this procedure n — 3 times, we get
n ° R,,_3(S, l)
(42) (=13 2 (—n-3—),f(s, ¥(s), y[h(s)]) ds for ¢=t,.
t - .

Multiplying (42) by {¢(y(t))} ~*, using the monotonicity of the functions y, ¢, (38),
and the fact that n is even (n + kis odd), we obtain

B U n=3(5 1) f(s, (), Y[A(s)]) 4
) G2l e

d ® ,,_3(S, t)f(S, Ys ’Y) or > .
- 3)J VY el EGyH T T

Integrating (43) from T to ¢ (t = T) and using (33) we get a contradiction with (35).

IL Letk = 0(nis an odd number). In view of (36), (3) and (7), there exist constants
6,8(0 <o <1,&>0)and ty = t, such that

cyt)s e, Y]z yt)ze for t=t,.

v
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By virtue of the monotonicity of ¥, ¢,, f, the last inequality and (30) we have

., V(o () 20/ YW St Y0, oA 5
) 100 2 W e

Kf(tas) for t=1t,,

=
V(") ea(e(r) (H(H)™Y) -

where

= Y(ea) @,( = = inf A
K = y(z0) 92(Co) » Co C rz1; {y[h(‘)]}

It is obvious that (42) holds also for k = 0. Then (42) with n odd, in view of (44),
implies

n-'3(s’ t)f(s & 8) d fOI' t > t

_y()_( - 3)'j Y(s"™") ea(els) (H(s))"™") -

Integrating the last inequality from T( >1,) to co we get

R,_5(s, T) f(s, &, &)
5 J, ) oalels) () &

HWT) > ¥(T) = y() 2 o

which contradicts (35).

If (18) holds and ke {1,2,...,n — 1}, then, with regard to (6), (36) is fulfilled.
In all other cases (i.e. either (18) holds and k = 0 or (19) holds and k€ {0, 1, ...,
n — 1}) we have to assume that (36) holds. But, as shown above, this leads to a contra-
diction with (35). Then lim y(f) = 0 for every nonoscillatory solution y(t)e W.

t— o0

Hence it follows that lim y(f) =0 (i =0, 1, ..., n — 2) and lim r(¢) "~ (1) = 0.
t— o t—

The proof of Theorem 2 is complete.

Remark. If ://(t) = 1, it is evident from the proof that Theorem 2 holds without '
the assumption r(t) = r, > 0.

In the case that n = 2, r(f) = 1, we get Theorem 2.9 in [6].

Further, consider the following equation

(r) {r()) =2} + F(t, (0), y[ho(0)], -, Y7 2(8), y*~P[ha- ()] = O,
n2,

where
45) r:[0,0)—>(0,0), h:[0,00)>R (i=0,1,...,n~-1),

F:D(= [0, ) x R*) > R are continuous functions ;
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(46) t2hft) for t=0 and lmh(t)=00 (i=0,1,...,n—1);
t— o
(47) Vi F(t Xy, Y1y eer X yu) > 0 for (8, X4, ¥4, ... X, ¥,) €D
and x;y, > 0.

The next theorem follows directly from Theorem 1 and Theorem 2.

Theorem 3. Let equation (r) fulfil conditions (45)—(47), and in addition, let there
exist a function f which satisfies (2), (4) and

|F(t, xls yla LR xn: yn)| 2 If(t9 xl: yl)'

for evety point (t, X;, ¥y, ..., Xp V) € D). If inequality (1) has either the property A
or A, then equation (r) has the same property.

Corollary. Let the function h satisfy conditions (2), (3). Let p be a continuous
function and v, o real numbers such that p:[0, ©) - (0, ©), v=0, 0 > 1. If

©
f (=D ()17 p(i) dt = a ,
then the equation
Y1) + () [y Y[R sen y[()] =0, n =2
has the property A.

Proof. If we put F(t, Xy, Vg5 -.0r Xn ¥n) = D) |x1|" |y1|" sgn y;, Y(x) =1,
@1(x) = |x|", @2(y) = |y|’, then the assertion follows from Theorem 3 and Theorem 2.

Theorem 4. Let me {1,2,...,n — 1} and let the conditions (18), (45)—(47),
b, > 0 be fulfilled. Further, we suppose:

(@) (1) < {min [ho(2), hy(2), ..., Bm-1(£)]; t = O};
(b) there exists a function f which satisfies (2), (4), and

(48) lF(t> X15 Y15 +-0s Xns Yn)| g lf(t’ Xm+1> Ym+ l)l

for every point (t, Xy, y, ..., Xy ¥u) € D'D;

to

(c) the following inequality

(49) {[r(®) y* =01 + £(t, 9(1), y[ha()])} sen y{ha()] < 0

has the property A.
Then equation (r) has the property A,,.
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Proof. Let y(f) € W be a nonoscillatory solution of (r) such that

lim inf y™(¢t) = C > 0

t— o

(the case lim sup y™(t) = C < 0 is treated similarly).

t— o

From (49), in view of (46), we get
(50) y») >0, yh()]>0 (i=0,1,...,m) for t=1,>0.

Thus, with regard to (50), (47) and (18), it is obvious that the assumptions of
Lemma 1 and Lemma 2 are fulfilled and therefore (5)—(10) hold, where m < ke
€{0,1,...,n — 1}, n + kis odd. By (10) and the assumption (a), it is easy to prove
that the following inequalities

(n = m — 1! /bt\"~I* Uy
G o (3 > (1)

_ _ m—-j+1 G=-D[] .
Pl CTA0) B C O MR

IIA

b

(n—jr \2 YL hn(1)]
hold.
Evidently, u(t) = y™)(r) satisfies
(52) lim inf u(f) = C > 0
t— o0

and, for t 2 t,, u(f) is a solution of the following equation
(53) () u™™ " D()] +
+ G(t, u(t), u[h(1)], ..., u® ™™= I(e), u*=m=Y[h,_,()]) = 0,

where

(1) y[ho(1)]
G(t, X1 Viseoos Xp—ms Yn-m) = F | 1, Xi» yann
( 1 V1 y ) ( .v('"’(t) 1 y"’"[h,,,(t)] 1

YO0y Oy (0)]
Ty T y™[h(1)]

In view of the last relation, (47), (48) and (51) we get

yl’ X15 Y15 o005 Xn—ms yn—m) .

(54) Y1 G(t’ X1s Yisooos Xn—m> yn—m) >0 >

(55) |G(t’ X15 Y15 ooes Xp—ms yn—m)l g If(t’ X1s yl)‘ fOl‘ X1V1 >0 >
x, y;€R (i=1,2,..,n—m).
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By (c), the inequality (49) has the property A. Thus, with regard to (54), (55) and
Theorem 3, the equation (53) has the same property. This leads to a contradiction
with (52). Hence the equation (r) has the property 4,, me {1,2,...,n — 1}.
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