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SOME FORMULAS THAT ENUMERATE CERTAIN PARTITIONS
AND GRAPHS

RoGEerR C. GRIMSON, Chapel Hill
(Received May 16, 1975)

Let p(2n + 1, k) denote the number of paftitions of 2n + 1 into k parts, each part
not exceeding n. Letting [x] be the greatest integer <x, MICHAL BuZko [1] showed

that
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Bugko also showed how this function, D,is useful in counting cycles in certain graphs;
this is described in the second section of [1].
The purpose of this paper is to exhibit further propertles of p; in particular, we
evaluate the two above sums and some more general similar sums.
Let b and m be positive integers such that b < m and let g be defined so that gb

m gqb~1
is as large as possible and yet gb — 1 < m. Then Y f(k) =) f(k) + s where
k=0 k=0

s=f(qb)+f(qb+1)+...+f(m) if gp—1<mand s=0if gbh—1=m.
Thus s is a “residual” sum containing only a few terms. Also, we observe that
q-1 b-1

Z f (k) = Z Y f(k + jb). Hence, if x is a positive real number, if a is a positive
0k=0
mteger and if f(k) = [(x + ak)[b] then
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But is is known [2] that if (a, b) = 1, then bil[(x + ak)b] =Ha - 1)(b - 1) +
k=0

+ [x]- Substituting for the inner sum of the right side of (1) and simplifying, (1)
becomes

@ 3 [x+ak]==i(abq2—(a+b— 1)q)+ a[x] +5, (ab)=1.

k=0 b
Note that p(2n + 1, 3) may be given by
[(n—1)/3] _ -
)] n +1,3) = Y [n +1 3[(n2 1)/3] + 3k].
k=0 »

Since n + 1 — 3[(n — 1)/3] 2 0, we may apply (2). In this case, we want to select
an integer ¢ which makes 2q — 1 as large as possible, constrained by 2q — 1 <
< [(n — 1)/3]. That is, we want the largest value of q for which ¢ < 4[(n — 1)/3] +
+ 4 = #[(n + 2)/3]. Hence,

L)

Now, according to the definition of the residual sum s, we have in our case the fol-
lowing two possibilities: s = f(2q) + ... + f([(» — 1)/3]) if 2¢ — 1 < [(n — 1)/3];
s =0if 2¢ — 1 = [(n — 1)/3]. Note that g can be selected so that s contains no
terms or only one term, depending on whether [(n — 1)[3] is odd or even, respectively.
~ [(n — 1)/3] is odd if and only if n = 0 or —1 or —2 (mod 6). If [(n — 1)/3] is even,
then s is simply the last term in the sum (3). Therefore,

0 if n=0 or —1 or —2(mod6)

¢) 5= n— 1") n+1 .
fll— = otherwise .
3 2
Applying (2) to (3), using (4) and (5), and simplifying, we have the formula
2 -—
pon +1,3) =3 |22 P (L2 2] g 5|2 1)+
2L 3 |1 L2l 3 3

0 if n=0, —1 or -2 (mod6)

+
[n ; 1] otherwise .

Next we find some formulas for p(2n + 1, 4).
In general,
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]D(k; Ayyene a,)v,

=k§o[n—k

where D(k; a4, ..., a,) is a denumerant, i.e., the number of partitions of k into the

parts a,, ..., a,. As a special case we have

‘ n — ai — j n— k% e Fn— k(K
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It can be shown (see [3], for example) that

(7) ol A [ | —(b3+b—n—1 21

k=o| b 2|b b ] b b

Now we study the sum
" [n - K[k
_kgo | b :”:a] ’

LipscHITZ [4] gave the useful definition

1; x=21
®) ‘p(x)‘{o- 0<x<1,

2

which allows for the following representation of the greatest integer function:

Hipo)
r=x e (o) 2o ()

Now, P(kfia) = 1 whenever kfia 2 1, i.e., when i < [k/a]. Since k < n, an upper
bound for i is [n/a]. Similarly, ®[(n — k)/jb] = 1 when j < [(n — k)/b] so that an
upper bound for jis [(n — 1)/b]. Therefore,
(o) (7))
1 ia jb

n o Infa) L= 1] 7 p n—k\ [meia-nm

r-3 3 e (Do (") =L 2
k=1i=1 j=1 ia jb =1 i=1 &

But kjia 2 1if k 2 ia; also (n — k)jb21ifk <n — jb. Using (8) we find that

[n/a] [(n—1)/b]

) T=%Y Y Y 1.
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The inner sum exists if and only if ia < n — jb, i.e., if and only if

Jj = [(n —ia)b]  (Casel)
or, the same thing, .
. i < [(n - jb)la] (Case2).

Regarding case 1, (9) may be expressed by

[n/a) min{[(n—1)/b,[(n~ ia)/b]} '
(n+1-jb—ia)=
i=1 . j=1 .

[n/a) [(n— ia)/b] v ‘
=Y Y (@+1-jb—ia)=

i=1 ji=1

[n/a] ) s
=Z n —ia n+1—ia——b-n ia+b -
=t b J\ 2 b /

In the second case, we have a similar argument; thus we have a pair of formulas for
our sum:

el my — a7/ b[n—ia+ b
10 T= in +1—ia——| ———1),
(9 55 )

[(n=1)/b] - C )
T= Y [" ’b](n+1—jb—-‘3[——" ’b“’]).
i=1 a . 2 a

Using (6) and (7) with a = 3,5 = ¢ = 2, we get

I N e . e | I
GIE1-CR) B

D
~ With a little manipulation a simpler expression can be found for D:

()]

We may replace tﬁe upper bound inCn - 2, by n because the two additional terms
are zero. Then applying (10) and simplifying, we obtain the curious sum

B0 EP)
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Now we use the following property of the greatest integer function: If @ and b are

positive integers then
_[_4a]_fla/b] if a|b,
b [a/b] +1 if akb.

Then, on cosidering two cases depending on whether 3i — n is even or odd we find

n—3iP n—3i(n - 3i
3i'=‘n?;nod2)[ 2 ] 3i—152n(mod2)[ 2 ]([ 2 ] )
1<isn/3 15ign/3
n — 3i\? fn—3i—1 n—3-1
= )+ : +1]).
3i5n(zmod2) ( 2 ) 3i—1'='zn(mod2) ( 2 ) <( 2 ) )
15isn/3

15isn/3

Using the following four formulas,

[(m+1)/2] [m/2]
(n even) Y f)= Y fei-1); Y =¥ f2i,
3i—1=n(mod2) i=1 3i=n(mod2) i=1
15ism 15ism
[m/2] [(n+1)/2]
(n 0dd) Y f) =X f@2i); fiy="% f@i-1),
SR =1 sy =t

and applying some elementary summation methods we arrive at an evaluation of C.
We shall leave out these remaining details but the result is as follows:
If we substitute (12) into (11) and define

S 1| e H el

X =in?4 — 3nd(A + 1) + 344 + 1) (24 + 1) +
+4n+2)(n+4)B—3n+3)BB+1)+3B(B+1)(2B + 1),

Y=3n+3’B-3%n+3)BB+1)+3BB+1)(2B+1)+

+Hn+1)(n—-1)A4—3n4(4 + 1) + 344 + 1) (24 + 1),
then

p2n+1,4)= Y
z
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Formula (14) is not as formidable as its appearance may suggest; it is particularly
applicable for large values of n while the more elegant formula (13) is suitable for
smaller values of n, say n < 30. Note the close relation between X and Y. Also
observe that

_ 0 if [n/3] iseven,
B_A+{1 if [n/3] isodd.
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