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Časopis pro p stování matematiky, roč. 99 (1974), Praha 

GENERALIZATION OF THE THEOREM ON THE ARGUMENT 
OF ALMOST PERIODIC FUNCTION 

VLADIMIR LOVICAR, Praha 

(Received September 24, 1973) 

In this paper we give a generalization of the following theorem for functions on 
connected commutative topological groups with values m commutative Banach 
algebras with unity: 

Theorem. Let x be a continuous complex valued function on real line R and let y 
be defined by: y(t) = ex(t) (t e R). Further let there exist c > 0 such that \y(t)\ = c 
for t e R. Then the function y is almost periodic iff the function x has the form 
x(t) = iat + f(t), where f is almost periodic and a is real. 

Let G be a commutative topological group. We shall denote by pt (t e G) the 
operator of translation, i.e., pt x(s) = x(t + s) (t, s e G) for any function x on G. 
The Banach space of bounded continuous functions on G with values in a Banach 
space B, equipped with the supremum norm l*^, is denoted by CS(G, B). A function 
x e CS(G, B) is called almost periodic iff the set (prx; t e G) is totally bounded in 
CS(G, B). The set of almost periodic functions on G into B, denoted by AP(G, B), 
forms a closed linear subspace of CS(G, B). There exists a unique linear mapping M 
from AP(G, B) into B, called the mean value, such that M(ptx) = M(x) (x e AP(G, B), 
t e G) and M(x) e cl coJR(x), where R(x) is the range of the function x. 

A continuous function w on G with values in B is called additive iff u(t + s) = 
= u(t) + u(s) for t,seG. 

Lemma 1. Let G be a commutative topological group and let B be a Banach space. 
Let x be a uniformly continuous function on G with values in B such that ptx — x e 
e AP(G, B)for any t e G. Then the following conditions are equivalent: 

1. x = u + y, where u is additive and y e CS(G, B). 

2. There exists c < oo and a finite set K = (tu ..., tk) c G such that 
inf inf sup \pt x(s) - ptJ x(s) - z\ = c for t e G. 
zsB j= 1 ,...,* seG 
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Moreover, if the function x satisfies the condition 1 then the additive function u 
is uniquely determined, u(t) = M(ptx — x) for t e G. 

Proof. 1 4 2: This implication is clear. 

2 -* 1: Let h be defined by h(t, s) = pt x(s) — x(s) — M(pfx — x) (t, s e G). Let 
us prove that h is bounded. Indeed, let t e G be given and let tj e K and z e B be 
such that sup \pt x(s) - ptJ x(s) - z\ <; c + 1. Then |M(prx - prjx) - z\ ^ c + 1 

seG 

and hence |ft(t, s)\ = |p, x(s) — ptJ x(s) — z + z — M(ptx — ptJx) + p0 x(s) — 
- x(s) - M(jp^x - x)| S \pt x(s) - ptJ x(s) ~ z| + |M(Ptx - ptJx) - z\ + 
+ |pf x(s) - x(s)| + \M(ptJx - x)| ^ 2(c + 1 + sup \ptJx - x ^ ) for any t,seG. 

j=l,...,k 

If we set now u(t) = M(/?,x — x), y(t) = h(f, 0) + x(0) then u is additive, x = 
= u + y and )> e CS(G, fl). 

Let finally x = u + y, where u is additive and >> e CS(G, B). Then for any t, seG 
we have (P,x - x) (s) = w(f) + (pty — y) (s) and hence pty - y e AP(G, B) and 
M(pfx — x) = u(t) + M(p,y — >̂ ). For any positive integer n we have further 

M(PW^ ~ y) = I M(pJt(pty - j;)) = n M(pty - }>), |M(pw,}; - y)\ = 2|y|G0 and 

hence M(p,y — y) = 0. 

Theorem 1. Let G be a commutative topological group and let B be a Banach 
space. Let x be a uniformly continuous function on G with values in B such that 
ptx — x 6 AP(G, B)for any t e G. Then the following conditions are equivalent: 

1. x = u + y, where u is additive and y e AP(G, B). 

2. To any s > 0 there exists a finite set K = (tu ..., tk) a G such that 
inf inf sup \pt x(s) — ptJ x(s) — z| ^ e for t e G. 
zeB >«l , . . . , l t seG 

Proof. 1 -> 2: This implication is clear. 

2 -> 1: By Lemma 1 the function x has the form x = u + y where u is additive, 
u(t) = M(ptx - x) ( re G), and y e CS(G, B). Let e > 0 be given and let K = 
= (tx, ...,tk) a G be such that inf inf sup \pt x(s) — ptJ x(s) — z\ ^ Je for any 

zeB j = l , . . . , * seG 

t e G. Let t e G be given and let tjeK,zeB be such that sup \pt x(s) - ptJ x(s) - z\ ^ 
seG 

^ ie. Then |M(p,x - ptjx) - z| = £e and hence |P,y - p , ^ = sup \pt x(s) -
seG 

- JPo *(*) - "(' ~ 0)1 = SUP \Pt 4s) - 1>*j *(«) - A + | z - w(* ~ 0)1 ^ 8' F r o m 

seG 

this it follows easily that the function y is almost periodic. 
Now we shall formulate one actually known fact from the theory of commutative 

Banach algebras. The proof is given for completness in Appendix. 

406 



Lemma 2. Let B be a commutative Banach algebra with unity e and let B0 = 
= (xeB; exp(x) = e). Then for any x, y e B0, x 4= y, it holds \x — y\ = lg 2. 
Further, to any e > 0 there exists 6(e) > 0 such that for any connected set M c B 
for which |exp (x) — e\ _ <5(e) for xeM there exists y e B0 such that \x — y\ _ e 
for xeM. 

Now we are able to formulate the main theorem which generalizes the classical 
theorem mentioned above: 

Theorem 2. Let G be a connected commutative topological group and let B be 
a commutative Banach algebra with unity e. Let x be a continuous function on G 
with values in B such that |exp ( — x(f))| _ c < oo/0r t e G. Let y denote the function 
defined by: y(t) = exp (x(t)) (teG). Then the following conditions are equivalent: 

1. yeAP(G9 B). 

2. x = xx + x2, xx being additive and yl9 x2 e AP(G9 B)9 where yt(t) = exp (xx(t)) 
for t e G. 

Proof. l - > 2 : Let e > 0 be given and let <5(e) > 0 be such as in Lemma 2. Let 
further tl9 t2e G be such that sup \y(tt + s) — y(t2 + s)\ ^ c" 1 S(e). Then 

seG 

|exp(x(fi + s) - x(t2 + s)) - e\ = |exp(-x(f2 + s)(y(tx + s) - y(t2 + s))\ _ 8(e) 
for seG. Since the set (x(f j + s) — x(f2 + s); s e G) is connected, it follows from 
Lemma 2 that there exists y e B0 such that \x(tt + s) — x(f2 + s) — }>| _ e for 
s e G . From this and from the almost periodicity of the function y it follows that the 
function x satisfies the condition 2 of Theorem 1. 

Let us show further that the function x is uniformly continuous. Let e > 0 be given 
and let er = min (e, 3 " 1 lg 2). Let U be a neighborhood of 0 e G such that \x(t) -
- x(0)| _ ex for t e U and \y(t + s) - y(s)| _ c^1 o^) for teU and s e G . By 
the above argument, for any fixed t e U there exists y e B0 such that \x(t + s) — 
- x(s) — y\ ^ et for s e G and in particular for s = 0 |x(f) — x(0) - >>| _ ej _ 
_ 3 " 1 lg 2. On the other hand, we have |x(f) - x(0)| _ 3 " 1 lg 2 and so y = 0 
by Lemma 2, i.e., the function x is uniformly continuous. 

By Theorem 1 the function x has the form x = xt + x2, where xx is additive and 
x2 e AP(G9 B). It suffices now to prove that yx e AP(G9 B)9 where yx(t) = exp (xx(t)) 
(t e G). This assertion follows immediately from the known theorems about almost 
periodic functions and from the relation: exp (xt(t)) = exp(—x t( — t)) = y-^ — t) . 
.exp(x2(-t))(teG). 

2 -> 1: This implication is clear. 

At the end we give a standard application of the preceding theorem to differential 
equations: 
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Theorem 3. Let B be a commutative Banach algebra with unity e, a e AP(R, B) 
and let x be a solution of the equation 

(1) * x'(t) = a(t) x(t) , x(0) = e. 

Then the following conditions are equivalent: 

1. xeAP (R , B). 

2. J0 a(s) ds = t M(a) + b(t), where b,ce AP(R, B), c(t) = exp (t M(a)) (t e R). 

Proof. 1 -* 2: The solution x of the equation (l) has the form: x(t) = exp (J0 a(s) . 
. ds) (t e R). Let us prove that there exists d < oo such that |exp ( — J0 a(s) ds)| g d 
for f e R. Since cl (R(x)) is compact, it suffices to prove that y is regular for y e 
G cl (R(x)). Let y e cl (R(x)) be given and let T = (tn; n e N) be such a sequence that 
y = lim x(tn). Let (sn; n eN) be a subsequence of Tsuch that lim |xx — ^ x j ^ = 0, 
lim \ax — pSna|oo = 0 for some xl9 ax eAP(R, B). It may be easily seen that the 
function xx is the solution of the equation x\(t) = a^t) x^f), xx(0) = y and hence 
Xj(t) = exp (J0 a t(s) ds) y for f e R. Because of eecl(R(xj)), the element y must 
be regular. 

Theorem 2 implies that J0 a(s) ds = w(l) + b(t) (t e R), where u is additive and 
b, c € 4P(R, B) (c(t) = exp (u(f)), t e R). It suffices to prove that u(t) = t M(a) 
(t G R). It is very well known that any additive (continuous) function on R into B has 
the form: u(t) = tz (t e R) for some z e J3. Hence we have a(t) = z + //(?) and from 
this it follows immediately that z = M(a) (because of M(b') = 0). 

Appendix. Proof of Lemma 2. Let B be a commutative Banach algebra with 
unity e. First let us mention some known properties of the exponential function exp 

in B (exp (x) = e + £ (n!)"1 xn): 
n = l 

1. The function exp is continuously Frechet differentiable and exp' (x) (y) = 
= exp (x) y for x, y e B (and hence |exp' (x)| = |exp (x)|); 

2. exp (x + y) = exp (x) exp (y) (x, y e B); 
3. |exp (x)| = e1*1 (x e B); 
4. jexp (x) - exp (j;)| = e^*'^ - 1) (x, >; e R). 

Let R0 = (x e R; exp (x) = e). B0 is obviously a nonvoid additive subgroup of B. 
For x, y e R we set 

/(*> y) = y + exp (-y) (e - exp (y)) - exp ( - j ) (exp (x) - exp (j) -

- exp(>>)(x'- y)). 

Let us note that x e B0 iff x = / ( * , y) at least for one yeB. If x e R0 then x = 
= f(x9y) for all yeB. 

408 



For r > 0 we shall denote K(x, r) = (y e B; \x - y\ ^ r). 

Let 0 ^ d < V r > 0 and let us prove that for |exp (x) — e\ ^ d and for >, Z 6 
eK(x, r) the following estimates hold: 

(2) \f(y, x)-x\£ d(l -d)'1 + (e' - l) r , 

(3) \f(y, x) - f(z, x)\ ^ (S - \)\y- z\ . 

Indeed, let |exp (x) — e\ g d < 1. Then |exp( — x)| = |(e — (e — exp(x)))_1 | ^ 
^ (1 — |exp(x) — e|)_1. Further, it holds exp (— x) (exp (>) — exp (x) — exp (x) . 
. (y — x)) = fo e xP ('(y — x) — e) dt (y — x) and from this we obtain |f(>', x) — 
- x| ^ |exp (x) - e| (1 - |exp (x) - el)"1 + J0 (e"y~*' - 1) <*' \y - x\ g 
^ d(l — d)"1 + (er — 1) r for \y — x| ^ r, which proves (2). 

For >, Z e B we have further |f(>, x) — f(Z, x)| = |g(>) — g(Z)| where g(>) = 
= fo (exP (Ky ~ x)) ~ e) dt (y — x). The function g is continuously Frechet 
differentiate and it holds g'(y) (z) = Jo (exP (Ky ~~ x)) (e + Ky ~~ x)) ~~ e) ^ z> 
which yields for > e K(x, r) the estimate |g'(>)| ^ Jo (et[y~x{ - 1) dt + 
+ J1 er|y~x|t|> - x| dt ^ er - 1. Hence for y, z eK(x, r) it is \g(y) - g(z)\ = 
= j J1 g'(z + t(> - Z)) dt (y - Z)| ^ (er - 1) |y - z\, which proves (3). 

Let x 6 B0 and r e (0, lg 2). From the estimates (2) and (3) and from the Banach 
contraction theorem we obtain that the equation y = f(y9 x) has the unique solution 
in K(x, r), namely x. From this we obtain that for x, >! e B0 and x =f= y it holds 
| x - > | = l g 2 . 

Let us denote h(r) = r — (er — 1) r. It is clear that for some r0 > 0 it is h(r) > 0 
for r 6 (0, r0> (obviously r0 < lg 2). Let e > 0 be given and let r e (0, r0> be such 
that r ^ min(e, 3 " 1 lg 2). Let us set S(e) = h(r)(l + h(r))"1. Then h(r) = (5(e) . 
. (1 - (5(e))"1 or r = 3(e) (1 - (5(e))"1 + (er - 1) r and also er - 1 < 1. Let 
M cz B be a connected set such that |exp (x) — e| ^ 3(e) for x e M. Then the esti­
mates (2), (3) and the Banach contraction theorem imply that in K(x, r) there exists 
a solution of the equation > = f(y, x), i.e., to any x e M there exists yx e B0 such 
that |x — yx\ S r ^ £• Because of the facts that the set M is connected and r ^ 3 " 1 

lg 2 it follows easily from the above that yx = y e B0 for x e M. 
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