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SUBADDITIVE MEASURES AND SMALL SYSTEMS

BeLoSLAV RIECAN, Bratislava
(Received July 7, 1973)

By a subadditive measure (see e.g. [1], [2], [3]) we mean a subadditive, monotone,
non-negative real valued set-function u defined on a ring and upper semicontinuous
in Q. It can be easily proved that u is upper and lower semicontinuous in any set and
therefore also o-subadditive.

We shall assume that 4 is a subadditive measure on a g-ring &. Let A", be the family
of all sets E € & for which p(E) < 27" Then all the properties of “small systems”
(see Section 1 and also [4], [5], [6], [7], [8], [12], [14]) are satisfied. Originally,
small systems were introduced for generalizations of some properties of measures,
nevertheless, the results obtained can be applied also to any subadditive measure.

Section 1 contains, besides axioms and related results, a theorem on representation
of small systems by subadditive measures. In Section 2 we present similar results
for “subadditive integral” and “small systems” of functions. Finally, in Section 3
we produce small systems of sets from small systems of functions.

1. REPRESENTATION THEOREM

There are various systems of axioms for ‘“small systems”. The following one
corresponds with our representation theorem and it was used in the paper [8].

1.1. Axioms. Let & be a a-ring of subsets of a set X. We shall assume that to any
n=0,1,2,... a system &, = & is given in such a way that the following axioms
are satisfied:

I. 0e N, foralln.
L IfEieN (i=n+1,n+2,..)then U E;eN,

i=n+1

NI If E;e N, E;2> Eiyy (i=1,2,...) and (E; = 0 then to any n there is m
such that E,, € A, i=1
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IV.IfEcF,FeAN,,E€Y then Ee A,
V. N ey € A, for all n.

Many results in various papers were obtained by the help of the following condition
weaker than II: To any n there is a sequence {k;};2 of positive integers such that

E; e N4, (i =1,2,...) implies |J E;e 4,. On the other hand, we shall use here
i=1

a system of axioms a little stronger than the system 1.1. Of course, the systems
induced by any measure or subadditive measure fulfil also the stronger axioms
(with /'y = {E€ &; u(E) < o}, /', = {E€ &; p(E) < 27"}).

k
1.2. AxiomIT*. If E;e A, (i=1,...,k) where Y2 " <2 "and Ec &, E
k

i=1

< UE;, then Ee A,
i=1 ..

1.3. Theorem. The axiom 11* implies IV. If &'y = & then the axioms II*, III
andV imply 1. The axioms 1 -V do not imply I1*.:

Proof. Let Ec F,Fe /A ,, E€e%. Since 27" < 27" we have E € A", according
to IT*, hence IV is proved. o .

Putr;=2i(i=1,2,..). Let E;e A/, i 2 n + 1. Since

‘n+k n+k n+k -
U Ec U E and ) 272ig2 2!

i=n+1 i=n+1 i=n+1

we have according to IT*

, n+k
, U EieNppyy -
i=n+1 - .
n+k ®© ©
Put F, = U E,E= U E;— () E; Then Fe /., (k =1,2,...). On the
i=n+1 i=n+1 j=n+l . )
other hand E — F, \ 0 (k — o). According to III there is k such that
E—-F,eNipys-
-] . R
Finally (\ E; € E,;; €N 3,14 © N 3,43, hence
j=n+1

E= nEjUFkU(E-Fk)E'MZH
1

j=n+

and Il is proved. The last assertion follows from the following example.

1.4. Example. Let X = <0, 1), & the family of all Borel subsets of <0, 1), u the
Lebesgue measure. Put A, ={Ee¥; w(E)<2™"" Y}, &, ={Ee¥; uE)<
<1/3}, #, ={Ee¥; WE) < 1}, &/, = &. Then all the axioms I-V are satis-
fied but II* does not hold. Namely, E; = <0, 3> e 4,, E, = (}, 3> e A,
E=(0,4) cE,UE, 22 +272<27  but E¢ ¥,.
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1.5. Definition. A non-negative function p : & — R is said to be equivalent to a se-
quence {A ,},= of subfamilies of & if the following two conditions are satisfied:
A. To any & > O there is a positive integer n such that E € A", implies u(E) < e.
B. To any positive integer n there is &€ > 0 such that y(E) < ¢ implies E € A",

1.6. Representation theorem. Let {./V )} o be a sequence of subfamilies of a o-ring
& satisfying the axioms I1*, 11l and V. Let A", be closed under finite unions. Then
there is a subadditive measure p: % — R equivalent to the sequence {./V ho-

Proof. Define first a function ¢ : & — R in the following way. If E € ﬂ A, then

O(E) = 0, if E ¢ A", then §(E) = oo and if Ee A", — A, for some n then O(E) =
= 27" Further, put for any E€ &

k k
WE) =inf{Y &(E,); E;eS, Ec UE;, kpositive integer} .
i=1 i=1

Evidently u(E) < 6(E), hence u(E) < 27" for E € A,. p is clearly monotone, non-
negative and subadditive. We have to prove that u is upper continuous in 0.

Let E, > E,.y, p(E,) <0 (n=1,2,...), N E,=0. Since y(E;) < o there
P n=1
are F; € A, such that E; < \J F}, hence E; € A",. Therefore E, e /o (n = 1,2, ...).

j=1
Let ¢ > 0. Take n such that 27" < ¢. Then according to III there is such m that

E, € /,. Hence for sufficiently large m

WE,) < 8E)s2"<¢
and therefore
lim u(E,) = 0.

Now we prove the equivalency of u and {A4,},=o. Let &€ > 0. Take n such that
27" < e If EeA, then u(E,) £ 27" < &. Let us point out that we have not used
yet the axiom IT*.

Finally, let n be a positive integer, Put ¢ = 27", If y(E) < 27" then there are E; € A,
(i =1, ..., k) such that

k k
EcUE, Y2rm<2™.

i=1 i=1

According to II* we have E € A",,.

2. SMALL SYSTEMS OF FUNCTIONS

Such systems (analogous to systems of small sets) were studied in [9], [10], [13]
and [15]. Here we shall work with the following systems of axioms (see [9]):
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2.1. Axioms. Let .# be the family of measurable functions (with respect to a mea-
surable space (X, S)). Let {F,}:>, be a sequence of subfamilies of S satisfying the
following conditions:

i. 0e &F, foreveryn; fe F, <> —feF,.
n+r
. If fieF, fiz0(i=n,...n+7),then fie F,_,.

iii. Let fie Fo, fi 2 fis1 (i =1,2,...), lim f(x) = O for every x € X (in this case

1— 00

we write shortly f; \. 0). Then to any n there is m such that f,,€ &
iv. If fe #M,9e F, and |f| < [g|, then fe F,.

V. Fpoi1 © F, for every n.

2.2. Example. Let #, be the family of all integrable functions (with respect
to a measure p), F, = {f € F,; [|f| du < 27"}. Evidently all asumptions i—v are
satisfied.

More generally, we can construct a sequence {#,}; by the help of a function
J : F, — R with certain properties.

2.3. Definition. Let .# be the family of measurable functions, ¥, < .#. A map-
ping J : F, — R is called a subadditive integral (see also [9]) if it has the following
properties:

1. #, is anadditive group (with respect to the usual addition); J(0) = 0; J(f + g) =<
< J(f) + J(g) for all non-negative f, g.

2.1ff,ge Fo, f<g then J(f) < J(g); if fe s, geF, and |f| £ g then
feF,.

B3I f,N0, fueFo(n=1,2,..), then J(f,) N O.

2.4. Theorem. Let J be a subadditive integral. Put F, = {f e F,; J(|f|) < 27"}
Then {#,}7>., fulfils the axioms i—v. Moreover, {J by fulfils the followmg

stronger conditions ii*. If 0 £ f < Zf,-, fie#, (i=1,..,p) and Zz—n <
i=1 i=1
27" then fe Fpy ii** If fieF, f;20(i=nn+1,..)then | fieF, .

Proof. i and ii follows from 1, iii form 3, iv from 2. The property v follows im-
mediately from the definition.

P )4
If 0Sf< Zf,, fieF, (i=1,..,p), Y27 <27 then J(f) £ Y J(f) <
i=1 i=1
<Z2 "< 2"' hence f € #,.
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Before proving ii** we prove first that £, » fimplies J(f,) /‘J(f) Indeed, f, ~ f
implies f — f, \ 0, hence J(f — f,) ~ 0. But

0 I - I I(f - 1)
hence also J(f,) » J(f).

n+r n+r

Fmally, we prove i ii**, Evidently J( Z 1) < Z J(fi]) <27+t Butg = Z Ifi] ~
Ve Z | fi|, hence J(Z I£]) = hm J(g,) < 2-nHt, "Therefore also Z fie #,.

i=n

2.5. Theorem. Let {F,), be a sequence satisfying the axioms ii*, iii, iv and v.
Then there is a subadditive integral J: &, — R equivalent to the sequence {F,},> o,
i.e., such that to any ¢ > 0 there exists m such that (f € #,= J(|f|) < &) and to any
n there exists ¢ > 0 such that (J(|f]) < e = fe £,).

Proof. Put 6(f) =27"if feF, — F,_, (n=2,3,...), 3(f) =0 if feNF
Further, for f = 0 we define =1

J(f) = inf {‘_Zfll(s(fi) N - é,lfi}

and

JA) =I3(7) = I()

for any fe #,. Evidently i(f) = J(f) =2 0 for f = 0, hence 0 < J(0) < 5(0) = 0.
Also the other properties from 1 and 2 are clear for nonnegative functions. In the
general case they can be obtained by the decomposition J(f) = J(f*) — J(f 7).

Let f, \ 0, € > 0. Choose n, such that 27" < ¢ and m, such that f, € Z,.

If m > mgy, then 0 < f,, £ f,.,, hence J(f,) < J(fino) S 6(fmo) < 27™ < ¢, therefore
lim J(f,) = 0.

m-— o

Finally, we prove the equivalency of J and {? }ao- Take € > 0 and n such that
27"*1 < ¢ Let f € F,. Then according to iv also f*, f~ e #,. Therefore

JUN S IED) +I)So(f)+o(f )22 <.

On the other hand, let n be a positive integer. Put ¢ = 27"~ *. Let J(|f]) < &. Then
there are f;€ #, (i = 1, ..., p) such that

HfD S F o) < e =2

Then |f| € #,. according to ii*, f*, f~ € #,+, accordingtoivand f = f* — f " €
€ &, according to ii*.
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3. SMALL SYSTEMS OF FUNCTIONS AND SMALL SYSTEMS OF SETS

3.1. Theorem. Let {.?,,},‘f:o be a sequence of systems of measurable functions
satisfying conditions i, iii, iv, v. Then #', = {E; yg e #,}, n = 0, 1, 2, ... satisfies
conditions I, IIL, IV, V. If {F } . satisfies ii** then { N}, satisfies IL If {F ,}2 o
satisfies ii* then {A",}i-, satisfies II*, hence 11 as well.

Proof. The properties I, IV and V are evident. Prove the condition III. Let E, \, 0.
Then yg, \ 0, hence to any m there exists n such that y;_ € &,. Therefore to any m
there is n such that E, € 4,,.

Now let ii** be satlsﬁed Let E;e A (i=n,n +1,. ) Then yg, € #;, hence
sz‘ €F, 1. Buty g < z Xus,, hence xz, € #,-, and U E;e Ny_y.

i=n i=n

The implication &, satlsﬁes ii* = A/, satisfies II* is obvious.

3.2. Theorem. Let {4}, satisfy I—V. Then there is {#,}2-o such that &', =
{E xseﬁ} and {F,}2., satisfies i, ii, iv, v and iii with f, Stmple (ie. f1 =

_ZCuXE, UF e-/Vo)

Proof. For E€ & put |E| = inf{2™"; E € #,}. Further
k k
= {fs f= ‘Zlcipr E;e¥, Z‘Jcil IE;{ < 2_"} s

#, = {f; f measurable, 3f;e #,, 1, 7 |f|} .

Evidently i and v holds. First we prove iv. Let f, g be simple, g € #,, |f| <|g|.
If f =Y cite» 9 = 2 dixe, E; disjoint, then |¢;| < |d|, hence Yled |Ei| = Y)di| |E| =
< 27" since ge &,. It follows fe %, Now let f,g be arbitrary, measurable,

7 \fls i 7 |9, i€ Z, (i =1,2,...). Put h; = min(f;, g;). Then |h| < |g,
hence h; € #,. Since h; 7 |f| we getfeﬂ"
Let fieZ(i=n,...n+7r),f = ,xE,, Z |l |E{|] < 27%. Then
n+r n+r ki n+r ki n+r
Xfi=Y Yessr L Xl [E s X270 <27,
i=n i=n j=1 i=n j=1 i=n
n+r

hence ) fie #
If fieF (i=nn+1,..,n+7), then there ‘are fje #, such that f/ ~ |f}.
nt+r n+r n+r

But Zf, /Z|f| (j = ), hence ZIf,Ie.“/,, , and also Zf,ef?,, .- Hence

the condltlon ii is proved.
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Let £, . O, f, be simple. Put M = max f;. Let f1 =.;Can- Take & such that
e) |Fi < 2 mt
i=1

Further put E, = {x; f,(x) = ¢}. Then E, o E,4; (n = 1,2, ..)y NE, = 0. Since

n=1

E, = U F,and f, is simple, E, € A", for all n. Choose k such that 2* > 2™*'M. Then
i=1
there is n such that E, € A,. We get

Jo = fodp—p, + fudg, < exp + Mg, = 8.;)(;{ + Myg, -

Put g = ¢ xr, + Myg,. Then

i=1

iaw +MIE |2 4+ M2 <27,
i=1

hence g € #,, and therefore f, € &#,,. Hence to any m there is n such that f, e &#,,.
The condition iii is proved.

If Ee A, then |E| < 27" hence yy € #, c &,
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