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A NOTE ON WEAKLY BOREL MEASURES

ZDENA RIECANOVA, Bratislava
(Received March 16, 1970)

In [1] S. K. BERBERIAN compared several of the commonly used definitions of
“regular measure”. In Theorem 3 he proved that

if o is a finite measure on the weakly Borel sets of a locally compact Hausdorff
space X, the following conditions are equivalent:

(A) ¢ is inner regular,

(B) ¢ is biregular,

(C) ¢ is sesquiregular,

(D) ¢ is outer regular, and there exists a Borel set E such that o(X — E) =

In the present paper we show: 1. the assumption of the local compactness of X can
be dropped, 2. the conditions (A) and (D) can be replaced by weaker ones, 3. the
finiteness of ¢ can be replaced by (U, o)-finiteness.

Let X be an arbitrary nonvoid set of elements. Let S be the o-ring of subsets of X,
and C and U nonempty subfamilies of S. Let u be a measure defined on S. Measure u
is said to be inner C-regular on S if

p(A) = sup {4(C): 4 > CeC} forallsets AeS,
outer U-regular on § if
w(A) = inf {u(U): A = Ue U} forallsets A€S,

and (C, U)-regular on § if it is both inner C-regular and outer U-regular on S.
Troughout the paper X denotes an arbitrary Hausdorff space, C the family of all
compact subsets of X, D the family of all closed subsets of X and U denotes the family
of all open subsets of X. By S(C) and $(D) we denote the o-rings generated by Cc
and D respectively.
A measure p on (D) is said to be (U, o)-finite if X = U U, U,eU, y(U) <o
(n=12..)

Remark 1. If 4 is a o-finite and outer U-regular measure on (D) then y is (U 0)-
finite. In fact, if E € S(D) and 4(E) < oo then there existsa set U € Usuch that U > E
and p(U) < oo.
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We compare the following conditions:

(@) H(U) = sup {y(D): U > De D} for all sets Ue U and there exists a set
Ye S(C) suchthat u(X — Y) = 0,

(b) u(U) = sup {4(C): U o Ce C} forall sets Ue U,

(¢) uis inner C-regular on S(D),

(d) p is sesquiregular on S(D) (ie. u is outer U-regular on S(D) and satisfies the
condition (b)),

(¢) pis(C, U)regular on S(D),
(f ) nis(D, U)-regular on $(D) and there ex1sts aset Y e §(C) such that y(X — Y) =
=0,

(8) pis outer U—regular on S(D) and there exists a set Y € §(C) such that u(X Y)
=0,
~ (b) @(D) = inf {4(U) : D = Ue U} for all sets De D and there exists a set Ye
€ S(C) such that u(X — Y) = 0.

Theorem 1. If X is an arbitrary Hausdorff topological space and u is a (U, o)-
finite measure on S(D), the conditions (a)—(f) are equivalent.

Proof. (a) = (f): Let E € S(D) such that E « Uy e U, p(U,) < o0. The formula
#°(A) = p(A N U,) defines a finite measure on $(D). If U € U then

p°(U) = (U A Uo) = sup {u(D) : U n Up> De D} =
= sup {uo(D) :UnUy> DeD} <sup {MO(D) :U>DeD} £ #O(U)'

By ([2], Theorem 8, p. 43, or example 3, p. 45) u° is (D, U)-regular on (D).
Hence

M(E) = p®(E) = sup {u%(D) : E > De D} = sup {§(D) : E o D e D}
and
ME) = p%(E) = inf {p°(U):Ec Ue U} =inf (WU NUp):Ec Ue U} 2
2 inf {y(U) :E c Ue U} 2 u(E). ,
Let A be an arbltrary set of S(D). From the (U, o)-finiteness of u it follows that
A= U(AnU)whereU eU,U, c U,;,and p(U,) < o0, n = 1,2,... According

to what was said above, A n U, and hence also A (see the proof of Theorem 3, [5],
p. 220) are (D, U)-regular sets according to u. Hence  is (D, U)-regular on S(D).
(f) (¢): Let E, € §(C) such that Eo < CeC. Then

ﬂ(Eo)-F' sup {u(D) : Eq > DeD} = sup {u(C) : E, CeC},
since De D, D < E, implies D € C.
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Let E € S(C) be an arbitrary set. Then E = | E,, where E,€S(C), E, c E,,,,
n=1
E,< C,eC(n =1,2,...). Hence u is inner C-regular on S(C). By ([3], Theorem 1,
p. 135) pis (C, U)-regular on S(D).
It is trivial that (e) = (d) = (b) and (e) = (c) = (b).
(b) = (a): Since C = D, it is

u(U) = sup {y(D): U > DeD} forall UeU.

From the (U, o)-finiteness of u it follows that X = U U, U,eU, u(U,) < 0 (n =
= ...). By ([3], Lemma 1, p. 136) there exist sets Y, € $(C) such that [.l.(U -
- Y,,) =0 LetY = U Y,. Then Ye S(C) and p(X — Y) < Z wU, -Y,) =

n=1 n=1

Theorem 2. If X is a locally compact Hausdorff space and j is a (U o)-finite
measure on S(D), the conditions (a)—(h) are equivalent.
Proof. It is trivial that (f) = (g) = (h).

(h) = (¢): From the (U, o)-finiteness of y it follows that p(C) < oo for all Ce C.
If Ce C and C = U e U, there exists an open Baire set O such“that C < 0 = U.
Hence

#(C) = inf {y(U) : C = U, U open Baire set} .
This proves the (C, U)-regularity of x on $(C). By ([3], Theorem 1 p. 135) p is (C, U)-

regular on S(D).
The other implications follow from Theorem 1.

Theorem 3. If X is an arbitrary Hausdorff topological space and u is a finite
measure on S(D), the conditions (a)—(h) are equivalent.
Proof. It is trivial that (f) = (g) = (h).

(h) = (f): By ([2], Theorem 8, p. 43, or example 3 p. 45). The other implications
follow from Theorem 1.
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