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Časopis pro pěstování matematiky, гoč. 97 (1972), Praha 

A NOTE ON WEAKLY BOREL MEASURES 

ZDENA RIE£ANOVA, Bratislava 

(Received March 16, 1970) 

In [ l ] S. K. BERBERIAN compared several of the commonly used definitions of 
"regular measure". In Theorem 3 he proved that 

if Q is a finite measure on the weakly Borel sets of a locally compact Hausdorff 
space X, the following conditions are equivalent: 

(A) Q is inner regular, 
(B) Q is biregular, 
(C) Q is sesquiregular, 
(D) Q is outer regular, and there exists a Borel set E such that Q(X — E) == 0. 
In the present paper we show: 1. the assumption of the local compactness of X can 

be dropped, 2. the conditions (A) and (D) can be replaced by weaker ones, 3. the 
finiteness of Q can be replaced by (U, or)-finiteness. 

Let X be an arbitrary nonvoid set of elements. Let S be the tr-ring of subsets of X, 
and C and U nonempty subfamilies of S. Let \i be a measure defined on S. Measure \JL 
is said to be inner C-regular on S if 

fx(A) = sup {fi(C) : A 3 C e C} for all sets A e S, 

outer U-regular on S if 

}x(A) = inf {ii(U) : A c 17 e U} for all sets AeS, 

and (C, U)-regular on S if it is both inner C-regular and outer U-regular on $. 
Troughout the paper X denotes an arbitrary Hausdorff space, C the family of all 

compact subsets of X, D the family of all closed subsets of X and U denotes the family 
of all open subsets of X. By S(C) and 5(0) we denote the brings generated by C 
and D respectively. „ 

A measure \x on S(D) is said to be (U, a)-finite if X = \J Un9 Un e U, fi(Un) < oo 
(n-1,2,. . . ) . 

Remark 1. If ji is a cr-finite and outer U-regular measure on S(D) then \i is (U, a)-
finite. In fact, if £ e S(D) and ju(£) < oo then there exists a set U e U such that U 3 £ 
and JU(17) < oo. 
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We compare the following conditions: 

(a) j4jU) = sup {fi(D): U =? D e D} for all sets U eU and there exists a set 
Ye S(C) suclTthat n(X - Y) = 0, 

(b) n(U) = sup {ju(C) : II .o C e C} for all sets U e U, 
(c) /i is inner C-regular on S(D), 
(d) /t is sesquiregular on S(D) (i.e. \i is outer U-regular on S(D) and satisfies the 

condition (b)), 
(e) (x is (C, U)-regular on S(D), 
(f) /i is (D, U)-regular on S(D) and there exists a set Y e S(C) such that p(X — Y) = 

= 0, 
(g) 7z is outer U-regular on S(D) and there exists a set Ye S(C) such that }i(X — 7) = 

= 0, 
(h) /x(D) = inf {fi(U) : D c Ue U} for all sets DeD and there exists a set Ye 

e S(C) such that ti(X - Y) = 0. 

Theorem 1. If X is an arbitrary Hausdorff topological space and jx is a (U, a)-
finite measure on S(D), the conditions (a)—(f) are equivalent. 

Proof, (a) => (f): Let E e S(D) such that E c II0 e U, fi(U0) < oo. The formula 
H°(A) = /i(_4 o LT0) defines a finite measure on S(D). If II e U then 

p°(tf) = fx(u n I70) = sup {[t(D) :UnU0zD DeD} = 

= sup {/x°(D): CI n LI0 => D e D} = sup {fi°(D) : U 3 D e D} = ji°(tf) . 

By ([2], Theorem 8, p. 43, or example 3, p. 45) n° is (D, U)-regular on S(D). 
Hence 

/z(£) = fi°(E) = sup {fi°(D) : E z> D e D} = sup {̂ (D) : £ D D G D } 

and 

p(E) = /i°(£) = inf {fi°(U) :E c II eU} = inf {̂ (CJ n t/0) : E c UeU} = 

= inf {n(U) : E c Ue U} = /*(£) . 

Let A be an arbitrary set of S(D). From the (U, <r)-finiteness of /i it follows that 
00 

A -a U (-4 n [/„), where II„ e U, II„ c: 17,,̂ ! and ̂ ((f-,) < oo, n = 1, 2, . . . According 
n -=l 

to what was said above, AL n t/n and hence also A (see the proof of Theorem 3, [5], 
p. 220) are (D, U)-regular sets according to ft. Hence /* is (D, U)-regular on S(D). 

(f) => (e): Let £0 e S(C) such that £ 0 c C e C . Then 

fi(E0). = sup {/i(D) : £0 p D e D} » sup {j*(C) : £0 => C e C} , 

since D e D , J ) c £ 0 implies D € C. 
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Let EeS(C) be an arbitrary set. Then E = (J EnJ where £neS(C), En c £n+1, 
n = l 

En c Cn e C (n = 1, 2,...). Hence \i is inner C-regular on S(C). By ([3], Theorem 1, 
p. 135) \i is (C, U)-regular on S(D). 

It is trivial that (e) => (d) => (b) and (e) => (c) => (b). 
(b) => (a): Since C c D, it is 

\i{U) = sup {/i(D) : [ / D D e D } for all UeU. 
oo 

From the (U, (j)-finiteness of n it follows that X = (JU„Une U, /*([/„) < oo (n = 
n -=l 

= 1, 2,...). By ([3], Lemma 1, p. 136) there exist sets YneS(C) such that p{Un -

- Yn) = 0. Let Y = (J y„. Then Ye S(C) and »(X - Y) = £ fi(Urt - F„) = 0. 

Theorem 2. If X is a locally compact Hausdorff space and \i is a (U, <j)-finite 
measure on S(D), the conditions (a)—(h) are equivalent. 

Proof. It is trivial that (f) => (g) => (h). 
(h) => (e): From the (U, <r)-finiteness of \i it follows that \x(C) < oo for all CeC. 

If C e C and C c U eU, there exists an open Baire set O such^that C c: O c U. 
Hence 

fi(C) = inf {fi(U) :C czU, U open Baire set} . 

This proves the (C, U)-regularity of \i on S(C). By ([3], Theorem 1 p. 135) \i is (C, U)-
regular on S(D). 

The other implications follow from Theorem 1. 

Theorem 3. If X is an arbitrary Hausdorff topological space and \i is a finite 
measure on S(D), the conditions (a) — (h) are equivalent. 

Proof. It is trivial that (f) => (g) => (h). 
(h) => (f): By ([2], Theorem 8, p. 43, or example 3 p. 45). The other implications 

follow from Theorem 1. 
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