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On FU(p)-spaces and p-sequential spaces

Salvador Garcia-Ferreira

Abstract. Following Kombarov we say that X is p-sequential, for p ∈ α∗, if for every non-
closed subset A of X there is f ∈ αX such that f(α) ⊆ A and f̄(p) ∈ X\A. This suggests

the following definition due to Comfort and Savchenko, independently: X is a FU(p)-
space if for every A ⊆ X and every x ∈ A− there is a function f ∈ αA such that f̄(p) = x.
It is not hard to see that p ≤ RK q (≤ RK denotes the Rudin–Keisler order) ⇔ every
p-sequential space is q-sequential ⇔ every FU(p)-space is a FU(q)-space. We generalize
the spaces Sn to construct examples of p-sequential (for p ∈ U(α)) spaces which are not
FU(p)-spaces. We slightly improve a result of Boldjiev and Malykhin by proving that every
p-sequential (Tychonoff) space is a FU(q)-space ⇔ ∀ ν < ω1 (pν ≤ RK q), for p, q ∈ ω∗;
and Sn is a FU(p)-space for p ∈ ω∗ and 1 < n < ω ⇔ every sequential space X with
σ(X) ≤ n is a FU(p)-space ⇔ ∃ {pn−2, . . . , p1} ⊆ ω∗ (pn−2 < RK · · · < RK p1 < l p);
hence, it is independent with ZFC that S3 is a FU(p)-space for all p ∈ ω∗. It is also
shown that |β(α) \ U(α)| ≤ 2α ⇔ every space X with t(X) < α is p-sequential for some
p ∈ U(α)⇔ every space X with t(X) < α is a FU(p)-space for some p ∈ U(α); if t(X) ≤ α

and |X| ≤ 2α, then ∃ p ∈ U(α) (X is a FU(p)-space).

Keywords: ultrafilter, Rudin–Froĺık order, Rudin–Keisler order, p-compact, quasi M -com-
pact, strongly M -sequential, weakly M -sequential, p-sequential, FU(p)-space, sequential,
P -point
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0. Introduction.

The concept of “p-limit” (for p ∈ ω∗) introduced by Bernstein [Be] is a very nat-
ural generalization of a convergent sequence. This notion motivates generalizations
of some topological properties defined in terms of convergent sequences. In this
paper, we study p-sequential/ity and FU(p)-spaces, for p ∈ U(α), which extend the
concepts of sequentiality and Fréchet–Urysohn spaces, respectively. In particular,
we give (in Section 2) an alternative definition of Rudin–Keisler order in terms of
p-sequential/ spaces and FU(p)-spaces, for p ∈ U(p). In Section 3, we generalize the
sequential spaces Sn(n < ω) given by Arhangel’skii and Franklin [AF], and improve
a result due to Boldjiev and Malykhin [BM].

1. Preliminaries.

All spaces mentioned here will be presumed to be completely regular Hausdorff
(Tychonoff). If A ⊆ X , the closure of A will be denoted by ClX(A) or A−. The
Stone extension of a continuous function f : X → Y is denoted by f̄ : β(X)→ β(Y ),
and the remainder of β(X) by X∗ = β(X) \ X . If A ⊆ β(X) then A∗ = A ∩ X∗.

The author is indebted to A. Dow and C. Laflamme for their comments and suggestions in
the preparation of this paper. He is pleased to thank also the group of general topology at York
University for generous hospitality and support during the spring and summer of 1990
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The Greek letter α will stand for an infinite cardinal number, and α will also denote
the discrete space whose underlying set is α. For A ⊆ α, we write Â for Clβ(α)(A).

The Rudin–Froĺık order on ω∗ is defined by p ≤ RF q, if there is an embedding
e ∈ ωω∗ such that ē(p) = q for p, q ∈ ω∗, and Rudin–Keisler order on α∗ is defined
by p ≤ RK q, if ∃ f ∈ αα(f̄ (q) = p) for p, q ∈ α∗. Notice that ≤ RF ⊆ ≤ RK. For
p, q ∈ α∗, we say p ≈ q, if there is a permutation σ of α with σ̄(p) = q; equivalently,
p ≤ RK q and q ≤ RK p. The type of p ∈ α∗ is T (p) = {q ∈ ω∗ : p ≈ q}. IfM ⊆ α∗,
we let P RK (M) = {q ∈ α∗ : ∃ p ∈ M (q ≤ RK p)}. The set of uniform ultrafilters
on α is denoted by U(α) = {p ∈ α∗ : ∀ A ∈ p(|A| = α)} and N(α) = β(α) \ U(α).
For p, q ∈ α∗, their tensor product is defined by

p ⊗ q = {A ⊆ α × α : {ξ < α : {ζ < α : (ξ, ζ) ∈ A} ∈ q} ∈ p}

(for background and historical notes on tensor products see [CN2]). For p, q ∈ α∗,
p ⊗ q is an ultrafilter on α × α which can be viewed as an ultrafilter on α via any
bijection between α and α×α. Notice that ⊗ is not an associative operation on α∗.
Nevertheless, Booth [Bo] pointed out that ⊗ induces a semigroup structure on the
set of types of α∗. Thus, if p ∈ α∗ and 1 ≤ n < ω, we let pn stand for a point
in T (p)n. In [Bo], the author also defined the power T (p)ν for ν < ω1 and p ∈ ω∗

as follows:
For each ω ≤ ν < ω1 fix an increasing sequence {ν(n)}n<ωof ordinals in ω1 so

that

(1) ω(n) = n for n < ω;
(2) if ν is a limit ordinal, then ν(n)ր ν;
(3) if ν = µ+m where µ is a limit ordinal and m < ω, then ν(n) = µ(n) +m
for n < ω. Let p ∈ ω∗ and ω ≤ ν < ω1.

Assume that T (p)µ has been defined for all µ < ν. If ν is a limit ordinal, then we

define T (p)ν = T (f̄ν(p)), where fν ∈ ωω∗ is an embedding with fν(n) ∈ T (p)ν(n)

for n < ω. If ν = µ + 1, then T (p)ν = T (p)µ ⊗ T (p). As above, pν stands for any
point in T (p)ν for p ∈ ω∗ and for ν < ω1. The basic properties of these powers are
summarized in the following lemma.

Lemma 1.1.

(1) (Blass [CN2, 16.5]) If f ∈ αT (p) is a function such that f(ξ) ∈ A∗
ξ for ξ < α

and {Aξ : ξ < α} is a partition of α, then f̄(q) ≈ p ⊗ q for q ∈ α∗.
(2) (Booth [Bo]) If ν < µ < ω1 and p ∈ ω∗, then pν < RF pµ.
(3) (S. Garcia-Ferreira [G1], [G2]) If ν < ω1 is a limit ordinal and ω ≤ µ < ν,
then p ⊗ pµ ≤ RF pν for p ∈ ω∗.

(4) (Booth [Bo]) Let ν < ω1 and p ∈ ω∗. If fν ∈ ωω∗ is an embedding such that

∀ n < ω(fν(n) ≈ pν(n)), then f̄(p) ≈ pν .

Bernstein [Be], in connection with problems on non-standard analysis, introduced
the concept of “p-limit” (x = p-limxn ⇔ for each neighborhood V of x, {n < ω :
xn ∈ V } ∈ p) and the notion of p-compactness (X is p-compact, if ∀ f ∈ ωX(f̄(p) ∈
X)) for p ∈ ω∗. Bernstein’s concepts were used by Kombarov [K1], [K2] to define
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topological properties which include, as particular cases, sequential and p-compact
spaces. Savchenko [Sa] generalized Kombarov’s concepts for arbitrary cardinals:

Definition 1.2 (Kombarov–Savchenko). Let ∅ 6=M ⊆ α∗ and X a space. Then

(1) X is quasi M -compact, if ∀ f ∈ αX ∃ p ∈ M(f̄(p) ∈ X);
(2) X is strongly M -sequential, if for every non-closed subset A of X

∃ f ∈ αX ∃ x ∈ X \ A ∀ p ∈ M(f̄(p) = x ∧ f(α) ⊆ A); and

(3) X is weakly M -sequential, if for every non-closed subset A of X

∃ f ∈ αX ∃ p ∈ M(f̄(p) ∈ X \ Af(α) ⊆ A).

If p ∈ α∗ and M = {p}, then strong M -sequentiality and weak M -sequentiality
coincide and we say p-sequential/ity.
Let ∅ 6= M ⊆ α∗, X a strongly M -sequential space and Y ⊆ X . We define

Y0 = Y, Yη+1 = {x ∈ X : ∃ f ∈ αYη ∀ p ∈ M(f̄(p) = x)}, for η < α+, and

Yη =
⋃

ξ<η Yξ if η < α+ is a limit ordinal. Notice that ClX(Y ) =
⋃

η<α+ Yη.

Denote by σM (x) the infimum of the ordinals η with the property that ClX(Y ) = Yη

for all Y ⊆ X . For M = ω∗ we simply write σ(X) : σ was first considered and
studied in [AF].
Kombarov [K2] also introduced the weakly M -compact spaces for ∅ 6= M ⊆

α∗ : X is weakly M -compact, if for each α-sequence {xξ : ξ < α} there is x ∈ X such
that for all neighborhood V of x ∃ p ∈ M({ξ < α : xξ ∈ V } ∈ p). Next, we show

that weak M -compactness coincides with quasi M−-compactness for ∅ 6=M ⊆ α∗.
We need the following result due to Kombarov [K2].

Lemma 1.3 (Kombarov). If ∅ 6= M ⊆ α∗ is compact, then a space X is weakly
M -compact, iff X is quasi M -compact.

Theorem 1.4. Let ∅ 6= M ⊆ α∗. A space X is weakly M -compact, if and only if
X is quasi M−-compact.

Proof: Clearly, every weakly M -compact space is weakly M−-compact. By
Lemma 1.3, we have that every weakly M -compact space is quasi M−-compact.
It remains to show that every quasi M−-compact space is weakly M -compact. In
fact, Let X be a quasi M−-compact space and {xξ}ξ<α an α-sequence in X . De-

fine f ∈ αX by f(ξ) = xξ for ξ < α. Then ∃ p ∈ M−(f̄(p) = x ∈ X). For
an open neighborhood V of x, we write H(V ) for {ξ < α : xξ ∈ V }. Then

f̄ −1(x) =
⋂
{H(V )ˆ : V is a neighborhood of x}. If W is a neighborhood of x,

there is q ∈ M ∩H(W )ˆ (because p ∈ M−); hence, H(W ) = {ξ < α : xξ ∈ W} ∈ q.
�

2. On p-sequential/ spaces.

In [K1], the author considered the following examples: For p ∈ α∗, the subspace
ξ(p) = α ∪ {p} of β(α) is p-sequential/; and if ∅ 6= M ⊆ α∗, the space Ξ(M) =∑

p∈M ξ(p) (the disjoint union of the spaces ξ(p) for p ∈ M) is weaklyM -sequential.
As a direct consequence of the following theorem, we obtain an alternative definition
(Corollary 2.2) of Rudin–Keisler order.
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Theorem 2.1. For M, N ⊆ α∗, the following statements are equivalent.

(1) weak M -sequentiality implies weak N -sequentiality:
(2) Ξ(M) is weakly N -sequential.
(3) M ⊆ P RK (N).

Proof: (1)⇒ (2). This is evident.
(2) ⇒ (3). By hypothesis Ξ(M) =

∑
r∈M Ξ(r) is weakly N -sequential. Fix

p ∈ M and A ∈ p. Then A is not a closed subset of ξ(p) ⊆ Ξ(M). Since Ξ(p) is
weakly N -sequential, ∃ f ∈ αA ∃q ∈ N(f̄(q) ∈ ξ(p)\A ⊆ Ξ(M)). Hence, f̄(q) = p,
that is, p ≤ RK q. Thus, M ⊆ P RK (N).
(3) ⇒ (1). Let X be a weakly M -sequential space and A a non-closed subset

of X . Then ∃f ∈ αX ∃ q ∈ M(f(α) ⊆ A ∧ f̄(q) ∈ X \ A). Choose p ∈ N
and g ∈ αα such that ḡ(p) = q. Define h = f ◦ g. Then h ∈ αX, h(α) ⊆ A and
h̄(p) = f̄(ḡ(p)) = f̄(q) ∈ X \ A. Therefore, X is weakly N -sequential. �

Corollary 2.2. For p, q ∈ α∗, the following conditions are equivalent.

(1) p ≤ RK q;
(2) every p-sequential/ space is q-sequential;
(3) ξ(p) is q-sequential; and
(4) every FU(p)-space is a FU(q)-space.

The cardinality of a p-sequential/ space can be estimated as follows:

Theorem 2.3. Let p ∈ U(α). If X is p-sequential/ and A ⊆ X , then |A−| ≤ |A|α.
In particular, we have that |X | ≤ d(X)α.

Proof: Let X be p-sequential/ and A ⊆ X . Set Ap =
⋃

η<α+ Aη . Since X is

p-sequential/, then A− = Ap for A ⊆ X . By transfinite induction, we have that

|Aη| ≤ |
⋃

ξ<η Aξ |
α ≤ (

∑
ξ<η |Aξ |

α)α ≤ |A|α for all η < α+. Thus

|A−| = |Ap| ≤
∑

η<α+

|Aη | ≤ |A|α

�

3. On FU(p)-spaces.

A very natural generalization of Fréchet–Urysohn spaces by using the Bernstein’s
notion of “p-limit” is suggested in the next definition due to Comfort [G1] and
Savchenko (see [BM]), independently.

Definition 3.1 (Comfort–Savchenko). Let ∅ 6= M ⊆ α∗. A space X is a FU(M)-
space, if for each A ⊆ X and x ∈ A−, ∃ f ∈ αA ∀ p ∈ M(f̄(p) = x).

Observe that the class of Fréchet–Urysohn spaces coincides with the class of
FU(ω∗)-spaces. For p ∈ U(α), we write FU(p)-space for FU({p})-space. In this
section, we are principally concerned with FU(p)-spaces (for p ∈ U(α)). It is evident
that every Fréchet–Urysohn space is a FU(p)-space for all p ∈ ω∗, and every FU(p)-
space is p-sequential/ for p ∈ U(α). Our first aim is to show that there is a p-
sequential/ space which is not a FU(p)-space. We slightly modify the construction
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of the sequential spaces Sn for n < ω (see [AF]). It suffices to give the generalization
of the Arens space S2, since for 2 < n < ω the definition should be clear. Indeed,
for p ∈ U(α) we define S2(p) by

(1) S2(p) = {x} ∪ {xξ : ξ < α} ∪ {xξ,ζ : ξ, ζ < α};
(2) x = p-limxξ ;
(3) xξ = p-limxξ,ζ for ξ < α;
(4) {xξ,ζ : ξ, ζ < α} is discrete;
(5) for a base of neighborhoods at x : if r = (Aξ)ξ<α is an α-sequence such that

Aξ ∈ p for ξ < α and A ∈ p, we define

V (r, A) = {x} ∪ {xξ,ζ : ξ ∈ A and ζ ∈ Aξ} ∪ {xξ : ξ ∈ A}.

It is not hard to prove that S2(p) is p-sequential/ for each p ∈ α∗. For 2 < n < ω,
we may define Sn(p) in a manner similar to the definition of Sn in [AF]. Observe
that Sn(p) ⊆ Sn+1(p) for n < ω and p ∈ U(α).
We can embed Sn(p) in β(α). In fact, fix n < ω and p ∈ U(α). For ξ1 < α let

{A(ξ1) : ξ1 < α} be a partition of α in subsets of cardinality α. For k < n and for

(ξ1, . . . , ξk) ∈
kα, let {A(ξ1, . . . , ξk+1) : ξk+1 ∈ α} be a partition of A(ξ1, . . . , ξk) in

subsets of cardinality α. For (ξ1, . . . , ξn) ∈ nα, take p(ξ1, . . . , ξn−1) ∈ A(ξ1, . . . , ξn)
∗

to be the p-limit of the α-sequence A(ξ1, . . . , ξn). Inductively, we define
p(ξ1, . . . , ξk−1) = p-lim p(ξ1, . . . , ξk), which is in A(ξ1, . . . , ξk−1)

∗, for 1 < k < ω

and (ξ1, . . . , ξk−1) ∈
k−1α. Now, we define s = p-lim p(ξ1). It is then evident that

Sn(p) is homeomorphic to {s}∪{p(ξ1, . . . , ξk) : (ξ1, . . . , ξk) ∈
kα and 0 < k < n}∪α

with the topology inherited from β(α). By Lemma 1.1 (1), p(ξ1, . . . , ξk) ∈ T (p)n−k

for 0 < k < n and for (ξ1, . . . , ξk) ∈
kα. Thus, we may assume that s = pn.

Theorem 3.2. Let p, q ∈ U(α) and 0 < n < ω. Then Sn(p) is a p-sequential/
space, and Sn(p) is a FU(q)-space, if and only if pn ≤ RK q.

Proof: The first assertion follows directly from the definition. Assume that
Sn(p) = {pn}∪{p(ξ1, . . . , ξk) : (ξ1, . . . , ξk) ∈

kα}∪α as above and Sn(p) is a FU(q)-
space. Since pn ∈ ClSn(p)(α), then there is f ∈ αα such that f̄(q) = pn, that is,

pn ≤ RK q. Conversely, suppose that pn ≤ RK q. For 0 < k < n, we let Γ0 = α
and Γk = {p(ξ1, . . . , ξk) : (ξ1, . . . , ξk) ∈

kα}. Notice that Γk is a strongly discrete

subset of U(α) and that Γk ⊆ T (p)n−k (T (p)0 = α) for 0 < k ≤ n. Let A ⊆ Sn(p)
and x ∈ A− \ A. Choose 0 < j ≤ n so that x ∈ (A ∩ Γj)

− (this is possible, since
Sn(p) = {pn} ∪

⋃
0<k≤n Γk). Let f ∈ α[A ∩ Γj ] be a bijection and let r ∈ α∗ such

that f̄(r) = x. Since Γj is a strongly discrete subset of α∗, then r ≤ RK x. By
hypothesis, we have that x ≤ RK q and so r ≤ RK q. Let g ∈ αα with ḡ(q) = r
and define h = f ◦ g. Then, h(α) ⊆ A and h̄(q) = x. �

The spaces Sn’s can be generalized for each p ∈ ω∗ and for each ν < ω1 as
follows: Assume that Sν(p) has been defined for ν < µ < ω1 and p ∈ ω∗ so
that ω ⊆ Sν(p) ⊆ β(ω). Let {An : n < ω} be a partition of ω with |An| = ω
for n < ω. Without loss of generality, we may suppose that An ⊆ Sν(n)(p) and

pν(n) ∈ Sν(n)(p) ⊆ Ân for n < ω, where {ν(n)}n<ω is the sequence of ordinals as
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in the definition of pν . By Lemma 1.1 (4), we have that pν ≈ p-lim pν(n). Thus,
we define Sν(p) = {pν} ∪

⋃
n<ω Sν(n)(p) with the subspace topology from β(ω).

It is not hard to see that Sν(p) is p-sequential/. Moreover, we have the following
theorem. Before stating it, we proved a lemma.

Lemma 3.3. Let p ∈ ω∗ and ν < ω1. If X ⊆ Sν(p) and pν ∈ X−, then there is
a discrete subset Y of ω∗ such that Y ⊆ X and pν ∈ Y −.

Proof: We proceed by transfinite induction. In the proof of Theorem 3.2, we
showed that the conclusion holds for each n < ω. Assume that the lemma is true
for all µ < ν < ω1. Let {An : n < ω} be a partition of ω in infinite subsets. We may

suppose that An ⊆ Sν(n)(p) ⊆ Ân for n < ω. Let X ⊆ Sν(p) such that pν ∈ X−\X .

Notice that if A ∈ p, Bn ∈ pν(n) and Bn ⊆ An for n < ω, then
⋃

n∈A Bn ∈ pν(n).

Hence D = {n < ω : pν(n) ∈ [Sν(n)(p) ∩ X ]−} ∈ pν . By induction hypothesis, for

each n ∈ D there is Xn ∈ Sν(n) ∩ X discrete (in ω∗) such that pν(n) ∈ X−
n . It is

then evident that Y =
⋃

n∈D Xn satisfies the conclusion of the lemma. �

Theorem 3.4. Let p, q ∈ ω∗ and ν < ω1. Then Sν(p) is a FU(q)-space, if and
only if pν ≤ RK q.

Proof: ⇒). Assume that Sν(p) is a FU(q)-space. Since ω ⊆ Sν(p), then there is
a function f ∈ ωω such that f̄(q) = pν , that is pν ≤ RK q.

⇐). We proceed by transfinite induction. Suppose that the conclusion holds
for all µ < ν < ω1. According to Theorem 3.2, we may assume that ω ≤ ν. Let
X ⊆ Sν(p). We will verify that each point x in X− is a q-limit of some sequence

in X . Indeed, if x 6= pν , then x ∈ ClSν(p)[Sν(m) ∩X ] ⊆ Âm for some m < ω. Then,

we apply the induction hypothesis, since pν(m) ≤ RK q. If x = pν , by Lemma 3.3,
there is Y ⊆ X discrete such that pν ∈ Y −. Choose a bijection f ∈ ωY and r ∈ ω∗,
for which f̄(r) = pν . Since f is an embedding, then r ≤ RF pν ≤ RK q. Let g ∈ ωω
with ḡ(q) = r and define h = f ◦ g. Then h̄(q) = pν and h(ω) ⊆ X . �

In [BM], the authors showed that every sequential (Hausdorff) space is a F -
Fréchet–Urysohn space (hence it is a FU(p)-space for some p ∈ ω∗): The proof of
their result involves infinite powers of filters. We slightly improve this result by
using the basic idea from [BM].

Theorem 3.5. Let p, q ∈ ω∗. Then every p-sequential space is a FU(q)-space, if
and only if ∀ ν < ω1 (p

ν ≤ RK q).

Proof: ⇒). This follows directly from Theorem 3.4.
⇐). Let q ∈ ω∗ satisfy ∀ ν < ω1 (p

ν ≤ RK q) and let X be a p-sequential/
space. We show that X is a FU(q)-space. Indeed, fix A ⊆ X and define A0 = A
and Aµ = {f̄(p) : f ∈ ω[

⋃
ν<µ Aν ] and f̄(p) ∈ X} for µ < ω1. It is evident

that A− =
⋃

µ<ω1
Aµ, since X is p-sequential/. We claim that A− = B, where

B = {f̄(pν) : f ∈ ωA, f̄(pν) ∈ X and ν < ω1}. Assume that
⋃

ν<µ Aν ⊆ B and

let x ∈ Aµ \
⋃

ν<µ Aν for µ < ω1. Choose f ∈ ω [
⋃

ν<µ Aν ] such that f̄(p) = x.

By induction hypothesis, for each n < ω there is νn < ω1 and gn ∈ ωA, for which
ḡn(p

νn) = f(n). Let θ = lim νn + 1. Then, by Lemma 1.2 (2), we have that
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∀ n < ω(pνn ≤ RF pθ). Let {An : n < ω} and {Bn : n < ω} be a partition of ω in

infinite sets. Without loss of generality, we may suppose that pνn ∈ B̂n for n < ω.
For each n < ω, pick rn ∈ T (pθ) ∩ Ân and hn : An → Bn such that h̄n(rn) = pνn

for n < ω. Set h =
⋃

n<ω gn ◦ hn and define e ∈ ωω∗ by e(n) = rn for n < ω. Then

h̄(e(n)) = ḡn(p
νn) = f(n) for all n < ω. Hence h̄(ē(p)) = f̄(p) = x. Let µ < ω1 be

a limit ordinal with θ < µ. By Lemma 1.1 (3), we have that p⊗ pθ ≤ RF pµ. Since

p ⊗ pθ ≈ ē(p) (by Lemma 1.1 (1)), then there is d ∈ ωω such that d̄(pµ) = ē(p).
Hence, we have that φ̄(pµ) = x, where φ = h ◦ d and so x ∈ B. Thus A− ⊆ B. By
a similar argument, we may show that B ⊆ A−. This proves our claim. It follows
that X is a FU(q)-space. �

Boldjiev and Malykhin [BM] asked whether it is consistent with ZFC that every
sequential (compact) space is a FU(p)-space for all p ∈ ω∗. Notice, from The-
orem 3.8 below, that s2 is a FU(p)-space, iff p is not a P -point. We will show
that it is independent with ZFC that every sequential space X with σ(X) < ω is
a FU(p)-space for all p ∈ ω∗. First, we give some notation.
For p, q ∈ ω∗, we say p ≤ l q, if there is f ∈ ωω such that f |A is not finite-to-one

for all A ∈ p and f̄(q) = p.

Theorem 3.6. For p ∈ ω∗ and 1 < n < ω, the following conditions are equivalent.

(1) Sn is a FU(p)-space;
(2) there is {p1, . . . , pn−2} ⊆ ω∗ (here, p0 = p) such that pn−2 is not a P -point
and pn−2 < RK · · · < RK p1 < l p;

(3) every sequential space X with σ(X) ≤ n is a FU(p)-space.

Proof: (1)⇒ (2). Let Sn = {s}∪{xk1,...,ki
: kj < ω for 1 ≤ j ≤ i ≤ n} and assume

that Sn is a FU(q)-space. Set Y = {xk1,...,kn
: k1, . . . , kn < ω}. By assumption,

there is a function f ∈ ωY such that f̄(p) = s. Without loss of generality, we may
assume that f is onto. For each sequence (k1, . . . , kn−1), let E(k1, . . . , kn−1) =
f−1({xk1,...,kn−1,k : k < ω}). By induction, for each 1 ≤ j < n − 1 and each
sequence (k1, . . . , kj) we define E(k1, . . . , kj) =

⋃
k<ω E(k1, . . . , kj , k). Notice that

f̄(E(k1, . . . , kj)
∗) = {xk1,...,kj

} for 1 ≤ j < n and for (k1, . . . , kj). For 1 ≤ j < n
and A ∈ p, we have that

(∗)
{k1 < ω : |{k2 < ω : . . . |{kj−1 : |{kj < ω : |E(k1, . . . , kj) ∩ A| = ω}|

= ω}| = ω . . . }| = ω} ∈ p.

This fact (∗) follows from the definition of the topology of Sn and f̄(p) = s. Let
f1 ∈

ωω with the fibers {E(k1, . . . , kn−1) : k1, . . . , kn−1 < ω} and let p1 = f̄1(p). If
∃ A ∈ p(f1 |A is finite-to-one), then we can find a neighborhood V of s in β(Sn) such
that V ∩ f(A) = ∅, which is a contradiction, Hence p1 < l p via f1. For j = n − 1,
by (∗), we obtain that if A ∈ p, then A hits infinitely many sets of the partition
{E(k1, . . . , kn−1) : k1, . . . , kn−1 < ω} in an infinite set; hence p is not a P -point.
In particular, for n = 2 the conclusion holds. Thus, we may suppose that n > 2.
Assume that we have defined fj ∈ ωω and pj ∈ ω∗ for 1 ≤ j < i ≤ n − 2 such that
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(1) f̄j(pj−1) = pj for 1 < j < i;
(2) pi−1 < RK · · · < RK p1 < l p; and
(3) pj is not a P -point for j < i.

Choose fi ∈
ωω with the fibers {fi−1 ◦· · ·◦ f1(E(k1, . . . , kn−i)) : k1, . . . , kn−i < ω},

and let pi = f̄i(pi−1). We claim that pi satisfies pi < RK pi−1 and pi is not

a P -point. Indeed, if A ∈ pi, then B = f−1
1 ◦ · · · ◦ f−1

i−1(A) ∈ p and, by (∗), B

meets infinitely many elements of the partition {fi ◦ · · · ◦ f1(E(k1, . . . , kn−i−1)) :
k1, . . . , kn−i−1 < ω} in an infinite set. Thus, pi is not a P -point. Moreover,
the fact (∗) also implies that fi ◦ · · · ◦ f1 |A cannot be one-to-one for A ∈ p.
Then, by Theorem 9.2 of [CN2] (see [C1]), we have that pi is not equivalent to
pi−1 = f̄i−1 ◦ · · · ◦ f̄1(p). This proves our claim. Therefore, p1, . . . , pn−1 satisfy the
conclusion.
(2) ⇒ (3). Clearly, the conclusion holds for n = 1. Assume that (3) is true

for all 0 < j < n. Let X be a sequential space with σ(X) = n and let Y ⊆ X .
Define Z = {x ∈ X : ∃ f ∈ ωY (f̄(p) = x)}. We verify that Y − = Z. In fact,
by assumption we have that Y − =

⋃
j<n Yj and Y1 ⊆ Z. If y ∈ Yk \ Yk−1 for

1 < k < n, the space Sk = {s} ∪ {xn1,...,nj : n1, . . . , nj < ω and 1 ≤ j ≤ k}

can be embedded in Y − so that s = y and {xn1,...,nk
: n1, . . . , nk < ω} ⊆ Y . By

induction hypothesis, ∃ g ∈ ωY (ḡ(p) = y), that is, y ∈ Z. We only need to show
that Yn ⊆ Z. Fix x ∈ Yn \ Yn−1and let Sn = {x} ∪ {xk1,...,kj

: k1, . . . , kj < ω and

1 ≤ j ≤ n} ⊆ Y − so that {xk1,...,kn
: k1, . . . , kn < ω} ⊆ Y . For 1 ≤ j < n − 1, let

fj ∈ ωω such that f̄j(pj−1) = pj and ∀ A ∈ p (f1 |A is not finite-to-one). We may
assume that fj is onto for 1 ≤ j < n − 1. Let {Ak1 : k1 < ω} be a partition of ω
witnessing that pn−2 is not a P -point. Define

E(k1) = f−1
1 ◦ · · · ◦ f−1

n−2(Ak1) for k1 < ω and E(k1, . . . , kj) =

= {f−1
1 ◦ · · · ◦ f−1

n−j({kj}) : kj ∈ f−1
j−1({kj−1}), kj−1 ∈ f−1

j−2({kj−2}), . . . ,

k3 ∈ f−1
2 ({k2}) and k2 ∈ Ak1} for 1 < j ≤ n − 1 and for (k1, . . . , kj).

Clearly, A = {E(k1, . . . , kj) : k1, . . . , kj < ω and 1 ≤ j ≤ n − 1} satisfies (∗) of
the proof of (1) ⇒ (2) above. Choose f ∈ ωY so that f is a bijection between
E(k1, . . . , kn−1) and {xk1,...,kn−1,k : k < ω} for each sequence (k1, . . . , kn−1). Since

A satisfies (∗), then f̄(E(k1, . . . , kj)
∗) = xk1,...,kj

for each 1 ≤ j < n and each

sequence (k1, . . . , kj). Thus f̄(p) = x; that is, x ∈ Z.
(3)⇒ (1). This is evident. �

Let MS be the Shelah’s model of ZFC in which MS |= ω∗ does not have P -
points (see [M] and [W]). It follows from 3.6 that MS |= every sequential space X
with σ(X) < ω is a FU(p)-space for all p ∈ ω∗. On the other hand, it is a direct
consequence from Theorem 3.6 and the next lemma thatMA |= ∃ p ∈ ω∗ (S3 is not
a FU(p)-space), since every RK-minimal ultrafilter is a P -point (see [C] or [CN2])
and RK-minimal points exist assuming MA ([Bo]).

Lemma 3.7. If p ∈ ω∗ is RK-minimal, then P RK (p
n) =

⋃
1≤k≤n T (pk) for each

1 ≤ n < ω.

Proof: Assume that the conclusion holds for each 1 ≤ j ≤ n. According to
Lemma 1.1 (1), pn+1 = ē(p), where e ∈ ωT (pn) is an embedding. Let q ∈ ω∗
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with q ≤ RK pn+1 and let f ∈ ωω such that f̄(pn+1) = q. By Lemma 9.4 of [C],
we may suppose that f̄ ◦ e is an embedding and f̄(e(m)) ∈ ω∗ for m < ω. By

induction hypothesis, we have that f̄(e(ω)) ⊆
⋃
1≤k≤n T (pk). This implies that

{m ⊂ ω : f̄(e(m)) ∈ T (pk)} ∈ p for some 1 ≤ k ≤ n. Then, by Lemma 1.1 (1), we

obtain that q = f̄(ē(p)) ≈ pk+1. �

For infinite ordinals ω ≤ ν < ω1, we have the following corollary.

Lemma 3.8. Let q ∈ ω∗ such that there is {pν : 1 ≤ ν ≤ θ} ⊆ ω∗, for θ < ω1,
such that ∀ 1 ≤ µ < ν ≤ θ (pµ < RF pν ≤ RK q). If X is a sequential space and
x ∈ Yθ for Y ⊆ X , then ∃ f ∈ ωY (f̄(q) = x).

Proof: Clearly, the conclusion holds for θ = 1. We proceed by transfinite induc-
tion. Assume that the lemma is true for all 1 ≤ ν < θ < ω1. We need the following
fact (for a proof see [Bo, Lemma 2.20]):

(∗)
If f, g ∈ ωω∗ are embeddings and p ∈ ω∗, then f̄(p) < RF ḡ(p), if and

only if {n < ω : f(n) < RF g(n)} ∈ p.

For every 1 < ν ≤ θ, let eν ∈ ωω∗ be an embedding such that ēν(p1) = pν . In virtue
of (∗), we may assume that ∀ 1 < µ < ν ≤ θ ∀ n < ω (eµ(n) < RF eν(n)). Let
Y ⊆ X and fix x ∈ Yθ. Without loss of generality, we may suppose that θ = ν + 1.
Then there is a sequence {xn}n<ω in Yν , for which xn → x. Let {An : n < ω} be

a partition of ω such that ∀ n < ω(eθ(n) ∈ Ân). Applying the induction hypothesis
to ν and eθ(n) for each n < ω, we have that ∀ n < ω ∃ fn : An → Y (f̄n(eθ(n)) =
xn). Let f =

⋃
n<ω fn and g ∈ ωω such that ḡ(q) = pθ. Define h = f ◦ g. Then,

h̄(q) = f̄(ḡ(q)) = f̄(pθ) = f̄(ēθ(p1)) = x. �

As an immediate consequence of Lemma 3.8 we have:

Corollary 3.9. If q ∈ ω∗ satisfies the conditions of Lemma 3.8 for θ < ω1, then
every sequential space X with σ(X) ≤ θ is a FU(q)-space.

It was pointed out in [K1] and [Sa] that every weakly M -sequential space X
satisfies t(X) ≤ α. However, the converse is not true. For instance, take M ⊆ α∗

with 2α < |M |. By Theorem 2.1, t(Ξ(M)) = α and Ξ(M) cannot be p-sequential/,
since |P RK (p)| ≤ 2

α. The next two theorems show that the opposite holds under
certain additional assumptions. We need the following result due to Comfort and
Negrepontis [CN1], [CN2].

Lemma 3.10 (Comfort–Negrepontis). If A ⊆ α∗ with |A| ≤ 2α, then there is
p ∈ U(α) such that ∀ q ∈ A(q ≤ RK p).

Theorem 3.11. For ω < α, the following conditions are equivalent.

(1) |N(α)| ≤ 2α;
(2) if X is a space and t(X) < α, then ∃ p ∈ U(α) (X is p-sequential/);
(3) if X is a space with t(X) < α, then ∃ p ∈ U(α) (X is a FU(p)-space).
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Proof: (1) ⇒ (3). Let X be a space with t(X) < α. For every x ∈ X let
Wx = {p ∈ N(α) : ∃ f ∈ γX(γ < α ∧ p ∈ U(γ) ∧ f̄(p) = x /∈ f(γ))}. It is evident
that

⋃
x∈X Wx ⊆ N(α)∗. By Lemma 3.10, ∃ p ∈ U(α) ∀ q ∈

⋃
x∈X Wx(q ≤ RK p).

We verify that X is a FU(p)-space. Indeed, let A ⊆ X and x ∈ A− \ A. Since
t(X) < α, then ∃ ω ≤ γ < α ∃ q ∈ U(γ) (f̄(q) = x). By definition, we have that
q ∈ Wx. Choose g ∈ αγ such that ḡ(p) = q and set h = f ◦ g. Then h(α) ⊆ A and
h̄(p) = x. Thus X is a FU(p)-space.
(3)⇒ (2). This is evident.
(2)⇒ (1). We consider two cases:
(a) Assume that α = γ+. We then have that t(Ξ(N(α)∗)) = γ < α. By

hypothesis, ∃ p ∈ U(α) (Ξ(N(α)∗) is p-sequential/). Hence, ∀ q ∈ N(α)∗ (ξ(q) is
p-sequential/). By Theorem 2.1, ∀ q ∈ N(α)∗ (q ≤ RK p) and so |N(α)| ≤ 2α.

(b) Assume that α is a limit cardinal. Suppose that |N(α)| > 2α. Since

|N(α)| = a<α
�
∑

γ<α 2
2γ , we have that a<α

�
∑

γ<α 2
2γ > 2α; hence ∃ γ < α(2α <

22
γ
). Set δ = γ+ < α. By applying the same argument to Ξ(N(δ)∗) as in case (a),

we have that 22
γ
≤ |N(δ)| = δ<δ

�
∑

κ<δ 2
2κ ≤ 2δ ≤ 2α, a contradiction. �

We remark that if α is a strong limit cardinal, then any of the three conditions
of Theorem 3.11 holds in ZFC, and assuming GCH, it is true for all cardinals. The
clause (1) of Theorem 3.11 does not hold for ω1 in any model M of ZFC, in which
M |= 2ω1 < 2c. Indeed, ifM is such a model of ZFC, thenM |= |N(ω1)| = 2

c > 2ω1

and t(Ξ(N(ω1)∗)) = ω, so in M the space Ξ(N(ω1)∗) cannot be p-sequential/ for
all p ∈ U(ω1) (by Theorem 2.1). If we replace t(X) < α by t(X) = α in the
clause (2) (or (3)) in Theorem 3.11, then this is not a theorem of ZFC. In fact,
Fedorčuk [F] using diamond, defined a compact separable space x with t(X) = ω
and |X | = 2c; hence X is not p-sequential/ for all p ∈ ω∗ (by Theorem 2.3). On the
other hand, Balogh [Ba] proved that PFA implies that every compact space with
countable tightness is sequential.

Theorem 3.12. If X is a space satisfying t(X) ≤ α and |X | ≤ 2α, then there is
p ∈ U(α) such that X is a FU(p)-space.

Proof: Enumerate X by {xξ : ξ < 2α}. For each ξ < 2α, define Fξ = {f ∈
αX : ∃ q ∈ α∗ (f̄(q) = xξ)}. Clearly, |Fξ | ≤ 2α for ξ < 2α. Hence, we may
enumerate Fξ by {fξ,ζ : ζ < 2α} for ξ < 2α. For each (ξ, ζ) ∈ 2α × 2α, choose

p(ξ, ζ) ∈ α∗ so that f̄ξ,ζ(p(ξ, ζ)) = xξ . Set M = {p(ξ, ζ) : (ξ, ζ) ∈ 2α × 2α}. By
Lemma 3.10, ∃ p ∈ U(α) ∀ q ∈ M(q ≤ RK p). We claim that X is a FU(p)-space.
Indeed, let A ⊆ X and fix xξ ∈ ClX (A) \ A for some ξ < 2α. Since t(X) ≤ α,
then ∃ g ∈ αA ∃ q ∈ α∗ (ḡ(q) = xξ). Hence, there is ζ < 2α with g = fξ,ζ and

f̄ξ,ζ(p(ξ, ζ)) = xξ = ḡ(q). Let f ∈ αα be a function such that f̄(p) = p(ξ, ζ) and

define h = fξ,ζ ◦ f . Then h(α) ⊆ A and h̄(p) = f̄ξ,ζ(f̄(p)) = f̄ξ,ζ(p(ξ, ζ)) = xξ ∈
X \ A. Therefore, X is a FU(p)-space. �

Arhangel’skii [A] conjectured that the cardinality of every compact homogeneous
space of countable tightness does not exceed 2ω. It follows from Theorem 3.12 that
a positive answer to Arhangel’skii’s conjecture would respond the following question
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in the affirmative: Assuming PFA, the answer is positive, as we pointed out above
(see [Ba]).

Question 3.13 (Comfort–Garcia). Is every compact homogeneous space of count-
able tightness p-sequential/ for some p ∈ ω∗?
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[F] Fedorčuk V.V., Fully closed mappings and the compatibility of some theorems of general

topology with the axioms of set-theory, Math. USSR Sbornik 28 (1976), 1–26.
[G1] Garcia-Ferreira S., Various Orderings on the Space of Ultrafilters, Doctoral Dissertation,

Wesleyan University, 1990.
[G2] Garcia-Ferreira S., Three Orderings on β(ω) \ ω, preprint.
[K1] Kombarov A.P., On a theorem of A. H. Stone, Soviet Math. Dokl. 27 (1983), 544–547.
[K2] Kombarov A.P., Compactness and sequentiality with respect to a set of ultrafilters, Moscow

Univ. Math. Bull. 40 (1985), 15–18.
[M] Mills Ch., An easier proof of the Shelah P -point independence theorem, Rapport 78, Wis-

kundig Seminarium, Free University of Amsterdam.
[Sa] Savchenko I.A., Convergence with respect to ultrafilters and the collective normality of

products, Moscow Univ. Math. Bull. 43 (1988), 45–47.
[W] Wimmers E.L., The Shelah P -point independence theorem, Israel J. Math. 43 (1982),

28–48.

Instituto de Matematicas, Universidad Nacional Autonoma de Mexico, Mexico, D.F.

04510, Mexico

(Received August 27, 1990)


		webmaster@dml.cz
	2012-04-30T12:32:13+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




