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Gasopis pro pdstovéni matematiky a fysiky, rot. 72 (1947)

On H-closed extensions of topological spaces.
By Miroslav Katétov, Praha.
(Received March 18th, 1947.)

_ Like many other notions in General Topology, the H -closed

. spaces are due to Alexandroff and Urysohn [1]!). In their paper
they stated two problems concerning H-closed spaces: (1) i is a space
every closed subspace of which is H-closed necessarily compact ?
(i2) may any Hausdorff space P be imbedded as a dense subset in
a H-closed space R? A step towards the solution of (w) was made
by Tychonoff [2] showing that P may be imbedded in a H-closed
space R (without being, in general, necessarily dense in R). In his
important paper [3] M. H. Stone solved both (¢) and (i¢) and
showed moreover that there exists a H-closed space B D P which
is a strict extension (loc. cit., definition 14) of P and has the same
character (i. e. the minimal power of an open base) as P. Another
notion introduced by Stone in connection with his algebraic con-
siderations is the semiregularity which is less restrictive than re-
. gularity but simplifies the theory of H-closed extensions conside-
rably. In his paper M. H. Stone uses an elaborate algebraic theory.
A part of his results was proved in a similar but more direct way
by Fomin [4].

In his paper [2] A. Tychonoff showed that any completely
regular space may be imbedded in a compact space (as a matter
of fact, he showed more, namely that there exists an universal
compact space of character X for any infinite cardinal ®). A  further
important result is due to E. Cech [5] who proved that any comple- -
tely regular space P possesses a compact extension?)-8P such that -

P = BP and that every bounded continuous real function on P
may be extended to a continuous real function on SP; the space
BP is uniquely determined by these properties. Later on, H. Wall-
man [6] proved that every topological space P may be '‘imbedded

1) The numbers in brackets refer to the list at the end of this m N
3) If P is a subspace ofaagaceR:)P thenwesaythatPnst
.mRorthatRma.nemmon
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as a dense set in a compact space wP. The space wP is a Hausdorff
space if and only if P is normal; in this case wP = SP. The space
wP- possesses the same homology theory as P.

The question arises whether a H-closed extension of a similar
- kind exists for Hausdorff spaces. This problem is solved in the
author’s paper [7]. Every Hausdorff space P possesses a H-closed
extension TP such that (?)P = tP; (¢i).every mapping f of P into
a Hausdorff space S such that f(P) =S may be extended to a
mapping of a subspace P’ C 7P onto S. The space 7P is uniquely
determined by the properties (¢) and (:3).

The extensions SP, wP, tP have been so far characterized
either by their ,,construction‘‘ (e. g. the ,ideal* points of wP
-correspond to certain collections — the so called maximal basic
sets — of closed subsets of P) or by certain properties of mappings
of P, viz. by possibility of their continuous extending. This cannot
be considered as a wholly satisfactory descriptive characterization
of the extensions P, wP, tP. Such a characterization for wP was
not given till recently by Cech and Novak [8]. The space wP is
characterized by P being imbedded in wP both combinatoriall Y,

which means that [ [ F; = 0 whenever F; are relatively closed
1 .

. : n .
in Pand[[F; =0, and regularly, which means that every

1
closed set @ C P may be represented as intersection of a family
of sets ¥, FC P. ;

In the present paper I intend to give an analogous descriptive
characterization of the space TP and three other types of H-closed
extension which are obtained by imposing different conditions
concerning relative semiregularity. - ' ‘

In§ 1 of the present paper semiregularity of a point relatively
-to a set is defined and examined. It is shown that M. H. Stone’s
strict extension and E. Cech’s regular imbedding are equivalent
notions and may be both expressed in terms of relative semiregu-
larity. Certain modifications (we call them SR-modifications) are
considered, transforming a given Hausdorff space into a space
satisfying appropriate relative semiregularity conditions. A modi-
fication of this' kind occurs implicitly already in the author’s
paper [7].

. In § 2 hypercombinatorial and paracombinatorial imbedding
are examined which are closely related to Cech’s combinatorial
imbedding. Whereas however there is a difference between n-com-
binatorial (» = 2, 3, ...), combinatorial and combinatorial in the
strong sense imbedding (Cech and Novik [8]), the analogous no-

’
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tions coincide for hypercombinatorial and paracombinatorial im-
bedding as shown in (2,1) and (2,4).

In §3 a descriptive characterization of the extensions 7P,

7P, oP, o'P is given. The space tP occurs already in [7]. The

spaces aP and ¢'P may be obtained as Fomin’s [4] spaces a(P) by
taking for the basic collection {G} the family of all open sets for
oP and the family of all regularly open sets for o’P.

There remain several unsolved problems.

1. I do not know what conditions a space P must satisfy in
order that it might be imbedded combinatorially in a H-closed
space. If such an extension exists it need not be unique. Example:
Let P, be the space of all pairs of ordinals (&, %), £ < wy, 7 < oy,
(&, ) #+ (wy, w,) With the usual topology. The set wP,;— P, contains
exactly two points and by cancelling any of them a H-closed
space is obtained. The two spaces are not topologically equivalent
but P, is combinatorially imbedded in either of them. — It seems
probable that an extension of this kind is possible and unique if
and only if P is normal (in that case it coincides, of course, with
wP).

2. It is perhaps of some interest to examine the conditions
under.which several of the spaces TP, v'P, ¢P, ¢’ P, P, BP coincide.
It is known only that wP = SP if and only if P is normal. The
conditions for the other equivalences should be far more restrictive.

3. If completely regular spaces P, and P, satisfy the first
" countability axiom, then P, = BP, implies P, = P, (= denotes
topological equivalence here). It could be of some interest to
find sufficiently broad conditions under which a similar implica-
tion holds for P and the other H-closed extensions.

3 )

All spaces considered are Hausdorff spaces even if it is not
" explicitly stated. The signs =~ and <= denote logical 1mphcat10n
and equivalence.

Definitions. Let P be a space, M C P. A set G C P is said
to be regularly open (Kuratowski [9]) if @ = Int G?) and is said
to be regularly open relatively to M if @ = Int (G 4+ MG). .-

A point z € P is called semiregular relatively to M 'if whenever
G is open and x € G there exists an open set H such that z € H C
CcInt (H + MH)CG.

If every point z ¢ P is semiregular relatively to M then P
+ is said to be semiregular relatively to M. If-a point z ¢ P is semi-
regular relatively to P, then it is called simply semzregular I

3) Int A is the interior of the set A i. e. the set P P—'A.
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every point z € P is semiregular, then the space P is said to be
semiregular. This definition is evidently equivalent with M. H.
Stone’s [3] definition of semiregularity.

(1.1) If G; (1 =1, ... n) are requlaily open relatively to M,
n .

then [ [ Gi is s0 as well.
1

Proof. Denoting [ | G; by H we have H + MH C I:I(Gi +
1
+ M@,;), whence Int (H + MH) C Int [ [ (& + MG;) =] [Int (G; +
, 1 1

n
+ M) =I11 Gi=H.

Clearly: ~ :

(1.2) For any open G C P the set Int (G + MG) is regularly
open relatively to M.

(1.3) A point x € P is semiregular relatively to M if and only if
it possesses fundamentel meighborhoods which are regularly .open
relatively to M. ) .

Proof. If z is semiregular relatively to M, then for any open
G, z € G, there exists an open H such that x e H C H, = Int (H +
+ MH)C Q. By (1.2) H, is regularly open relatively to M. The
other half of the lemma is obvious. .

Definitions. I.et P be a space, @ C P. @ is said to be regu-
larly imbedded [8] in P if for any closed set F' C P and every z e P —
— F there exists 4 C Q such that F C A C P — z. P is said to be
a strict extension [3] of Q if @ = P and for any open @ C P and

levery z « G there exists an open neighborhood H of z such that
Int (H + A) C G whenever 4 is nowhere dense and 4Q = 0.

(1.4) Let S be dense in P. S is regularly imbedded in P if and
only if P is semiregular relatively to P — 8.

Proof. I. Let P be semiregular relatively to M = P — S and
let F C P be closed, z e P— F. Then there exists an open set G
such that ze@, F. Int (@ +- MG) = 0. Setting 4 =P — (G +
+ M) =8—@G)+ (M —@G) we have FC A CP —z. Since
M—GCP—G=8—@G we have 4 =8 — G. Hence the im-
" bedding 8 C P is regular. II. Let S be regularly imbedded in P
‘and let H C P be open, z ¢ H. There exists a set 4 C 8 such that
P—H=FCACP—x. Setting G =P—A4A, M=P—8 we
have H D P — 4 = Int (P — 84) = Int (@ + M) = Int [G +
+ MG 4 (M — @)] = Int (@ + MG) which proves the theorem.

©+ .20



(1.5) Let Q C P, Q = P. P'is a strict extension of Q if and only.
if P s semiregular relatively to P — Q.

Proof. The implication: strict extension = relative semiregu-
larity follows at once from the above definition of strict extension
by setting A = (H — H) (P — Q). Let P be semiregular relatively
to P—¢@ and let G be open, z < G. There exists an open set H
such that x e H C Int [H 4+ (H — @)] C G. Now let A C P be now-
here dense, AQ = 0. Then Int (H + A) C Int (H + AH)C Int [H +
+ (H — Q)] C G. Hence P is a strict extension of Q.

(1.4) and (1.5) 1mply _

(1.6) Let SC P, S = P. P is a strict extension of S if and only
if 8 is reqularly zmbedded in P.

Definition. Let P be a space, "QC P, M C P. Let ® denote
the family of all open sets G C P such that every x € QG possesses
a neighborhood H C @ which is regularly open relatively to M.
The space P’ which is obtained by choosing & as an open base

" will be called the SR-modification of the space P on the set Q rela-
tively to M. _ _

Since for open sets G and H GH =0=-Int Q. Int H =0
and by (1.1) G,¢®, G, ¢ & = G,G, ¢« G, any SR-modification of
a Hausdorff space is a Hausdortf space again. If P’ is a SR-modi-
fication of P, then the identical transformation P — P’ is a mapping.

We may consider any set 4 C P either as a subset of P or as
a subset of P’. If A is closed, open, ... if considered as a subset
of P (or P') we shall say, for convenience, that 4 is closed, open, ..
in P (or in P’).

(1.7) Let P be a space, @ C P, M C Pand denote by P’ the SR-mod;i-
fication of P on Q relatively to M. Then (i) if G is open in P, then G
has the same closure both in P and in P’; (ii) if G 1s regularly open
in P relatively to M, then it is open in P, (iii) ¢f G is open tn P’ and
regularly open in P relatively to a set M 1, then G 1is regularly open
relatively to M, in the space P’ as well.

Proof. For any A C P denote by A, A*, Int A, Int* A4 the
closure and the interior of 4 in P and in P’ respectively. Then
clearly @ C G*; if z ¢ P — @, we have HG@ = 0, where H = P — @,
hence H@ which implies, _by the’ definition of SR modlflcatlon
x ¢ P— G*. Hence G* = G.

If @ = Int (G + GM), then by (1.2) and by the deflmtlon of
SR-modification G is open in P’. If @ = Int (@ + GM,) and G is
open in P’, then G@QC Int* (G + G*M,) = Int* (G + GM,) C

C Int (G + GM 1) = @, hence @ is regula.rly open in P’ relatively
to M,.
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(l 7) and (1.3) imply

(1.8) Let P’ be the SR-modification of P on @ relatively to M
Then every point x € Q is semiregular in P’ relatively to M.

(1.5), (i) implies :

(L.9) Let P’ be a SR-modification of P. A set @ C P is regularly
open in P’ if and only if it is regularly open in P. If a point x € P
i8 semiregular in P then it is so in P’ as well.

(1.10) If a subsrace @ C P is semiregular, then its topology
‘remains unchanged under an arbitrary SE-modification.of P.

Proof. Let HC @ be a relative neighborhood of a point
ze@ in Q. Since @ is semiregular there exists a set G C @ such

that 2 ¢« @ C H and @ is regularly open in @. Let G, be open in P, -

@ = QG, and denote Int @, by G,. We have ¢ — Q — Q — QG —

=Q.(P— Q P—@)=Q.(P—P—@G o) = @G, which proves the
theorem since (1.2) and (1.5) imply that Gl is openin P’, P’ denoting
an arbitrary SRE-modification of P.

(L11) Let QC P, M C P. The topology of both Py = P — Q
and P, = P — M remains unchanged by the SR-modzfzcatw'n of P
on Q relatively to M. '

Proof. If G is open in P, then.-by (1.2) and (1.5) H = Int (G +
+ GM) is open in P’, P’ denoting the SR-modification of P on
Q relatively to M, and HP, = @GP, which proves the theorem for
P,. For P,, it follows 1mmedlately from the definition of SR-
modification.

§2.

~ Definitions. Let @ be a dense subspace of a space P. Then
@ is said to be

(i) combinatorially imbedded [8] in P if whenever FiC Q are
relatively closed in @,

”
HF,:O»HI—',;:O (n=23,...);
1 1

(i) Mbimtorially imbedded in P in the strong sense [8] if
whenever F,, F, are relatively closed in  we have
-F lF = -F 1F 2

(i) hypercombmatonally imbedded in P if whenever F;C @
are relatively closed in @ we have

HF{ nowhere dense in @ = HF_;=I_IF¢ (n =2, é, S
1 . 1 1

~
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(1v) pamcombmatomally zmbedded in P if for any relatlvely
open sets G; C @ we have

HG _o:>1"[G.cQ (n=2,3...).

(2.1) Let Q be dense in P. Q is hypercombmatormlly tmbedded,
in P if and only if one of the following equivalent conditions holds:
(i) whenever F,, F, are relatwely closed subsets of @ and F,F,

is nowhere dense in Q we have F,F, = F\Fy; .
(ii) o FiC Q are relatively closed in Q, then

TIF — 1_IG‘

where G Lenotes the relative interior of F; in Q@ (n =1,2,3,...).
Proof, If (i) holds and z ¢ F,F, — @, then setting 4; = F,
— GG, we have ze¢ (GG, — Q)+ (4,4, — Q) which implies
z e .Gy, — Q since 4,4, — @ = 0, A; being nowhere dense. Hence
(ii) holds for n = 2. Now let (ii) be true for n = 2,3, ... m and

let F,¢e=12,... m-+ l) be relatively closed in @. Then l—[ﬁ, —

—Q = n G — @ and settmg ®=0Q H G.,, I' = relative interior of

m+1

@ in Q we havel‘[ﬂ Q= D = Q,TIF, Q=BFp1—Q=
= IGp1 — Q. Smce the sets G; are regularly open in @, so is

HG. by (1.1), therefore I' = HG;, hence I_IF —Q=1CGps —
m+l .
— Q= I_l Gi— Q. This ylelds by mductlon the implication (i) = (ii)
which proves the theorem since ev1dently (u) = hypercombina--
torial imbedding = (i).
The following obvious lemma is useful sometimes.
(2.2) Whenever G;C R are open in R we have.

HInt Gi = Int HG. Intl—[Gg

Proof. We have only to.prove these equahtles for n = 2,
Evidently Int GG, = Int G, Int G,. Denoting this set by H we |
have - H D Int G,G,, G\G, = Glc;;2 3 HQ, = H@, D H; hence
Int G,G, D H, H = GG;. o

’



(2.3) Hypercombinatorial imbedding is - both pamcombinatoﬁal
and combinatorial in the strong sense.
Proof. Let Q be hypercombmatonally imbedded in P. Let

" Gi (=1, ... n) be relatively open in @, 1—[ G, = 0. Denoting QG;
1

n n n n
by A; we have n@ = []4i =]]4:c @ since by (2.2) [] 4; is
nowhere dense iri Q. Henlce the in;bedding Q CPis paraco;nbina-
torial. Now let F;, F, be relatively closed in @ and denote by H;
the relative interior of F;. Then by (2.1) F,F, — Q = H,H, H —Q,
hence F,F, = F,F, which proves the theorem.
(2.4) Let Q be dense in P. Q is paracombinatorially imbedded in

P if and only if one of the following conditions holds: -
(i) whenever @y, G, are relatively open in @ and G1G, = 0 we
have GIG,, C@;

(ii) for any choice of relatively open G; C @ we have

I:I@}—UG.-CQ (n=23,...).

Proof. Let the implication (*) n Gi=0=> I_[ G; C @ hold for -
n = 2, ... m. Then we have, for arbltrary relatlvely open G, cCQ,

m
HG;_A)=0 where A=1‘Ia,-, whence ]—IGi—HG¢=
1 1 1

=[]G—4Ac HG —ACQ. ¥ H;CQ are relatively open,
‘1 .
m+1 m+1

HH =0, thenl’]ﬂ.c(ﬂﬂ HH,)+1‘[H, H,11C Q, hence

(‘) holds for » = m + 1. This ylelds by induction, (i) = (ii)
which proves the theorem, since clearly (ii) = paracombinatorial
imbedding = (i).

(2.5) A paracombinatorial zmbeddmg Q C P 18 hypercombina-
torial if and only if every relatively closed set F C Q which 18 nowhere
dense in Q is closed in P. v

Proof. We have only to prove that the condltlon is sufficient.
Let F,, F, be relatively closed in ¢, F,F; nowhere dense in @.
Denoting the relative interior of F; by G; we have G,G; =0,
Fi—q= (F;— Gi—Q)+ (i —Q) = G;:—Q, hence F,Fy—
—Q= '@,G, — Q = 0 which 1mphes by. (2 1) that the imbedding
is hypercombmatonal '

- *
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The followmg theorems (2. 6) (2.7), (2.8) are well known; (2.6) |
is due to Alexandroff and Urysohn [1], (2.7) and (2.8) are glven
in [7]. .
Definition. A Hausdorff space P is called H-closed if P is
closed in any Hausdorff space in which it is imbedded.

(2.6) A Hausdorff space P is H-closed. if and only if every open
n

covering {G'} contains a finite subcollection {Gy} such that D G; = P.
1

Proof. Let P be H-closed and let {G} be an open covering.
Let R=P + % .and let the point « possess fundamental nelgh-

borhoods P — Z Gi + «. Then R is a Hausdorff space, P is imbedded

in R, therefore closed. Hence there exist G; such that P —Z G; = 0.

If P is not H-closed, there exists a Hausdorff spaée ROP
such that P is not closed in R. Let x ¢ P — P. The family {G}
of all G = P — H where H is a neighborhood of « in R is an open
covering of P. For arbltrary Gie {G}, Gi=P—H (i= 1 . m),

we have G;C R — H,, ZG@C R — nH,, P—ZG D P. HH,#O

since l_l'I:It is a neighborhood of «.

(2 7) If P is H-closed and G C P is open, then Q= G 18 H-closed.
Proof. Let {H} be an open covering of the space P,. Then

the collection consxstmg of the set P—@Q and of all P—Q — H
is an open covering of P, hence there exist H; (1 = 1, n) such

'ohaA;ZI1 +P—Q=P, where [=P—Q— Hl, thereforeZF.

ST = Q. Since I'Q = H; we obtain

HM3
’11'

n . n . . .
z o] ZF G = GZI1 " = G = Q which proves the theorem.’
1

(2. 8) Ifa H -closed space P is contmuously mapped on a Haus-
dorff space R, then R is H-closed.

Proof. Denote by f a mappmg of P onto B. Let {@} be an
open covermg of R. Then {{~(@)} is an open covermg of P, hence -

there exist G. such tha.t ? f“(G‘) = P, whence 2 G; = R. Therefore
by (2.8) R is closed.” = :

25 -




(2.9) If a collection {G} of open subsets of a H-closed space
R has the finite intersection property (i.e. | [ G; + 0 for any choice
A oL

of G; € {G}), then the intersection of all G is non-empty.

Proof. If IIG were empty, then the collection {R — G}
would be an open covering of R, hence by (2.6) there would exist

G; such that Z R— G, = R, whence n G; = 0 which is not possible.

1

(2.10) Let P be H-closed and let f be a 1 — 1 mapping of P onto

a Hausdorff space R. Then G C P is regularly open if and only if
f(@G) C R is regularly open. .
"~ Proof. Denote f(@) by H. The set f(&) is closed by (2.7) and
(2.8); hence f(@) = H, R— H = (P — G) and since (P — @) is
closed by (2.7) and (2.8) we have R—H = f(P — @), therefore
Int H = f (Int G) which proves the lemma.

(2.11) Let Q be paracombinatorially imbedded in a H-closed
space P. Let f be a 1 — 1 mapping of P onto R. Then the imbedding
H®Q) C R is paracombinatorial.

Proof. Let H,, H, be relatively open in § = (@), H,H, =0
and denote f~)(H;) by Gi. If fa) =beH,— S8, then a e G, —@Q
(cf. the proof of 2.10), hence a L e P— @y, beR—f(G,). Since
f(@y) is closed we have be R— H,, therefore H,H,C S which
proves the lemma.

~ Example 1. @ denotes the plane; 4, B, C denote the set of
all (z, y) € @ such-that ¥y > 0, y = 0, y < 0 respectively. P, = w@
is Wallman’s [6] compact space. The imbedding @ C P, is combi-
natorial in the strong sense [8], but is not paracombinatorial since
A and C are relatively open in @, AC = 0, but AC —@Q DB —
—B & 0.

(2.12) If a normal space Q is pamcombmatonall y tmbedded in
P, then the imbedding is combinatorial.

Proof. If F; C Q are relatively closed in @ and n F;=0, then
1

A _ n
there exist?) relatively open sets G; C @ such that G; D F;, I—[ =0,
: 1

hence ]—[G.C Q, I_[F.CQ, I—[F, HF = 0.

Example 2. Denote by I the dlscrete space of natural num-
bers. Choose a point a e B 1 — I, BI denoting Cech’s [5] compact

4) Thls is a well known property of normal spaces.
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space. P, is the set BI with the topology defined in the following
way: the points n € I areisolated; the fundamental neighborhoods
of a are the same as in BI; any point x € I — I — a possesses
fundamental neighborhoods GI + z, G being a neighborhood of
z in BI. Denote P,—a by Q._Whenever G; are open in @ and
a € G,G, we bave a € @I, a € G,I, hence G,G,I + 0. Therefore the
imbedding @ C P, is paracombinatorial. _

Now choose for every infinite A C I a point z(4d)e 4 — A4,
z(A4) #* a, and denote by F the set of all 2(4). Then F is closed in
@, a ¢ F (since a clearly belongs to the closure of ¥ in fI) and the
power of F' does not exceed the power ¢ of the family of all subsets
of I. Now & =Q —1I1—F is closed in @ and for any infinite
A CI we have AP + 0 since (Pospiiil [10]) A has the power 2°.
Hence a « @, a ¢ F® which implies that the imbedding @ C P, is
not combinatorial, not even 2-combinatorial [8].

Example 3. Choose again a point a e B — I. The space P,
consists of the points Zun, Zm, 2 (m, n=1, 2, ...). The points z,a
are isolated; every point x,, possesses fundamental neighborhoods
U e consisting of xz, and all Zua, 7 € G, G running over all neigh-
borhoods of @ in gI. The point z possesses fundamental neighbor-
hoods Uyg,; consisting of z and of the points x,, and zn, such that
n € G, m € Gy, where {Gi} runs over all sequences of neighborhoods
of a in BI. It is easy to show that P; is regular, hence, being coun-
table, normal.

Denote P; —z by Q. If F C Q is relatively closed, z € F, then
- denoting by F* the set of all z, € F we have easily z ¢ F'*.
Since the imbedding of the set A of all z, in 4 + z is clearly
combinatorial, this proves that the imbedding @ C P; is combi-
natorial.

Now let Gl, G, be openin @, z€ G1G2 Then QG,G, + 0 (since
the lmbeddlng is combmatonal), hence either there exists a Zmn €
€ @,G; which implies Zp, € G,@,, G1G, + 0, or there exists a Zm e
€ G,G, which implies again G,G, + 0 since, for a given m, the
imbedding of the set B, of all &y, in B, + Tm is clearly paracom-
binatorial. Therefore the imbedding @ C P; is paracombinatorial.

The set 4 is relatively closed and nowhere dense in @, z ¢ A — A
Hence @ is not hypercombmatorlally imbedded in P,.

§3.

(3.1) Any Hausdorff space P may be hypercombinationally im-
bedded in a H-closed space R = tP such that P is open in vP and
the subspace ©P — P is discrete. This imbedding is essentially unique,
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i. e. if a space R, D P possesses the same properties, then there exists
a topological transformation of R onto R, which is identity on P.

- If P 18 paracombinatorially imbedded in a Hausdorff space S,
then there exists a 1 — 1 mapping f of a set T C =P, T D P, onto
S such that f(x) = x for x € P; if S is H-closed, then T = tP.

Proof. I. Suppose that P is not H-closed since otherwise the
theorem is trivial. A collection Q of open sets A C P will be called
an «-collection if (i) AeA = A4 = 0; (i) 4, eU, 4,eA=> 4,4,¢U;
(iii) the intersection of all A, 4eQ, is void. A maximal

«-collection will be called a f-collection. By Zorn’s theorem every
" a-collection is contained in a S-collection.

The space 7P = R consists of the points r—B each of them
corresponding to a f-collection B and of all z ¢ P. Fundamental
neighborhoods of the points z € P in R are their neighborhoods in
P. Every tg possesses fundamental neighborhoods B + tq, where
- Be®B. Clearly R is a Hausdorff space, P is open in R and the
subspace R — P is discrete. '

Now let & be an open covering of R and denote by Q the

collection of the sets P—Z Gi, G;e®. A is no x-collection since

1
otherwise there would exist a S-collection B D A and we would

have the implications Ge® = P—GeA = 13¢ P —CG =

= R — @ C R — G which is impossible. Evidently 2l possesses the
properties (ii) and (iii) of an x-collection; hence 2 does not possess
the property (i), i. e. 0 which proves by (2.6) that R is
H-closed.

Let F1 and F be relatively closed subsets of P and let tge€
e F,F,. Then P — F;non ¢ BV (i = 1, 2) and since BV is a maximal
x-collection. there exists -a set B;e CB such that B;(P — F;) = 0.
Hence B;C F;, BB, ¢ B, 0 + B,B,C F,F,, therefore F,F, is not
nowhere dense. This proves by (2.1) that the imbedding P C R
is hypercombinatorial.

II. Now let P be paracombinatorially imbedded in a space
8. For every y e S— P denote by B(y) the collection of all open

" A C P such that y e A. The intersection of all PA, 4 ¢ B(y), is
void. If A, e Bly), AyeBly), then ye A A4, hence by (2.4)
yeA A, A4, e B(y). Therefore B(y) is an «-collection. If BC P

is relatively open and A ¢ B(y) = BA + 0, then clearlv y e B,
whence B € B(y). Hence B(y) is a f- -collection.

For any y ¢ 8 — P we set 7, = g and denote by T the set
consisting of the points 7, and of allz e P. Clearly y + ¥’ = 7, + 74
We set f(xy) = y and f(x) = z for z ¢ P; thus f is a 1 —1 trans-
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formation, f(T) . If @ is an open neighborhood of a point
yeS—P, then ye GP GP ¢ B(y), GP + 1, is a nelghborhood of
ay = [~y ) in R. If @ is an open neighborhood (in S) of a
x € P, then f{~1(@) D GP and GP is a neighborhood of z in R..
/ is a continuous mapping.

If S is H-closed, let x = v ¢ R — P. Denote by C the inter-
section of closures (in S) of all B B. Then by (2.7) and (2.9)

C % 0 since S is H-closed. If y € C, then B e¢ B = y ¢ B, whence
B C B(y), therefore B = V(y) since VY is a f-collection. This
implies # = «,, whence T' = R.

ITI. Let P be hypercombmatona,lly, hence by (2.3) para-
combinatorially, imbedded in a H-closed space R, such that P is
open in R, and R, — P is discrete. There exists, by II., a 1 —1
mapping f of R onto R, such that f(x) =z for z ¢ P. Let 2 =t ¢
€ R— P;then Be B =y = f(2) € f(B) = B. The imbedding P C R,
being hypercombinatorial, B € B = y non ¢ P — B; hence R, —
— (P — B) is a neighborhood of y for any B e ®B. Since R, — P
is discrete, y + P is a neighborhood of y, hence so is (y + P) [R, —

— (P—B)]=y + B =f(z+ B). Therefore f is a topologlcal trans-
formation. This completes the proof.

Remark. It is immediately seen from the first part of this

proof that 7P is identical with the H-closed extension described
in [7], 2.1.
T (3.2) Any Hausdorff space P may be fparacombmatomally m-
bedded in a H-closed space v’ P such that P is open in t'P and every
point x € TP — P is semiregular. The imbedding P C t'P is essen-
tially unique, and the SR -modification of TP on the set TP — P may
be taken as v'P.

Proof. Denote-by t'P = R the SR-modification -of TP on
the. set 7P — P. Then by (1.11) P is imbedded in R. By (2.11)
the imbedding is paracombinatorial and by (1.8) every 2 ¢ R — P
is semiregular. R is H-closed by (2.8).

If a space R, C P possesses the above propertles then by
(3.1) there exists a 1 — 1 mapping f of R onto R, such that f(z) = =
for 2 € P. Both in R, and in R the family consisting of all open
sets contained in P and of all regularly open sets is an open base,
since P is open and every point of its complement is semlregular
This implies by (2.10) that f is a topological transformation, i. e.
the imbedding P C R is essentially unique. :

(3.3) Any Hausdorff space P may be imbedded both regularly
and hypercombinatorially in a H-closed space oP. This imbedding is
essentially. unique, and the SR- modmcatwn of =P relatwely totP—P
may be taken as oP.
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Proof. Denote by oP = R the SR-modification of 7P rela-
tively to 7P — P. Then by (1.11) P is imbed led in R; the imbedding
is regular by (1.8) and (1.4) and paracombinatorial by (2.11); R is
H-closed by (2.8). If F C P is closed, then @ = 7P — F is open
in TP and, for any z € @, the set H = QP +} z is open in 7P and
H 4 (H P)cq, H denotmg the closure of H in tP, hence G
is open in R. Therefore F is closed in R. This 1mphes by (2.5) that
the imbedding P C R is hypercombinatorial.

Now let P be both regularly and hypercombinatorially im-
bedded in a H-closed space R,. By (3.1) there exists a 1 — 1 map-
ping f of TP onto R, such that f(x) = z for x ¢ P. Since the imbedding-
P C R is regular, the family ® consisting of all R— P — G, G C P
relatively open, is an open base of R. Since the imbedding P C R
is hypercombinatorial, R — P — @ = G + (G — P). Similarly, the
family &, consisting of all sets R, — F = G + (@ — P), where
F=P—G@, @isopen in P, and @, F denote the closures of G, F

in R,, is an open base of R,. Now it is easily seen that {(& =@
for any relatively open G C P (since the closure of @ in -rP is

H-closed it must be equal both to @ and f—1(@)). Therefore we have
the equivalence H e ® < f(H)e ®,. Hence f is a topological
transformation.

(3.4) Any Hausdorff space P may be both regularly and para-
. combinatorially imbedded in a H-closed space o’P such that every

point x € o'P — P is semiregular. The imbedding is essentially uni-
que and the SR-modification of tv'P relatively to v'P — P may be
taken as o'P.

Proof. Denote by ¢'P = R the SR-modification of t'P rela-
tively to ©"P — P. Then by (1.11) P is imbedded in R and the
imbedding is paracombinatorial by (2.11) and regular by (1.8) and
(1.4). The points x ¢ R — P are semiregular by (1.8). R is H-closed
by (2.8).

Now let P be both regularly and paracombinatorially imbedded
in R, and let every point 'z ¢ R, — P be semiregular. By (3.1)
there exists a 1 — 1 mapping f of R onto R,. For every relatively

closed set F C P the set F — F.(F denoting the closure in R)
consists of all points.y e R — P such that GF + 0 for any regu-
larly open @ C R containing y. Since the same holds for E, we have

by (2.10) f(F)=F, where F is relatively closed in P and F denotes
closure in R,. Since P.is regularly imbedded both in R and R, we

have f(A) = A for any A C R Hence f is a topological trans-
formation.

(8.5) Any semzregular Hausdorff space P may be paracombinato-



fially imbedded in a semiregular H-closed space R. The imbedding
18 essentially unique and we may set B = o'P.

_ Proof. Let B be the SR-modification of 7P on =P relatlvely

to 7P. Then by (1.10) P is imbedded in R and the imbedding is
. paracombinatorial by (2.11). R is H-closed by (2.8) and semi-
regular by (1.8). Hence by (1.4) P is regularly imbedded in R.
This implies by (3.4) the topological equlvalence R = ¢'P and the
essential uniqueness of R.
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*

O H-uzavienych obalech topologickych p.ostori.
(Obsah ptede§lého ¢lanku.)

Necht P je AHF-prostor. Rikdme, %e bod z ¢ P je poloregu-
ldrnt, kdy% ke kazdému okoli H bodu z existuje oteviens mnoZina

@ takovs, %e xe G C Int G C H.

Necht QCP. Rika,me Ze mnozina Q je reguldrné . vnofena do
P, kdy% kazd4 uzaviend mnoZina F C P je prinikem nekterych

mno¥in tvaru 4, A C Q.
Rikédme, e mnoZina Q je hyperkombinatoricky vno'Fena do P,
kdyz Q P a pro 11bovolné uzavrené v  mnoziny F; C @ platf:

jeli ]_IF, Hdkd h Q, pak 1‘IF _»I'[F

Rikame, Ze mnoZina @ ]e parakombinatoricky vnofena dq P,

-
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kdy? @ = P a pro libovolné oteviené v @ mnoﬁny G.- C @ plati:
” L
I:IGi =0= I:[GiC Q.
Nazyva.me AHF-prostor P H-uzavfenym, je-li P mnozZina

uzaviend v libovolném AHF- prostoru R, do n&hoZ je prostor .
P vnoten.

Hlavnim vysledkem prace jsou tyto véty:

Katdy A HF-prostor P lze hyperkombinatoricky vnofit (a to v pod-
staté 7eclmym zpusobem) do H-uzavfeného prostoru TP takového, %e
mnoéina P je oteviend v TP a viechny body prostoru TP — P jsou
isolované (v TP — P).

KaZdy AH F-prostor P lze parakombinatoricky vnofit (a to v pod
staté jedinym zpasobem) do H-uzavieného prostoru ©'P takového, %e
mnofina P je oteviend v v'P o kaZdy bod x € v'P — P je poloreguldmi.

Kaidy AHF-prostor P lze hyperkombinatoricky a reguldrné
vnofit (a to v podstaté jedinym zpisobem) do H-uzavieného prostoru oP.

Kazdy AHF-prostor P lze parakombinatoricky a reguldrné vnofit
(@ to v podstaté jedinym zpisobem) do H-uzavieného prostoru o' P

“takového, Ze kaidy bod x € 6'P — P je poloreguldrni.
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