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AN ABSTRACT MODEL FOR COMPRESSIONS

VLASTIMIL PTAK, PAVLA VRBOVA, Praha
(Received March 28, 1986)

Summary. The authors investigate the geometry of a Hilbert space J# which contains two
subspaces & and'Z such that the algebraic sum & + % is dense in . The aim is to establish
an abstract analogon of the functional model for contractions in the theory of unitary dilations.
As a consequence, different known types of functional models can be easily derived in a unified
manner.

Keywords: Hilbert space, contraction, unitary dilation.

In the present paper we investigate the geometry of a Hilbert space 2 which
contains two subspaces & and # such that their sum & + 4 is dense in 2. The
space & may be isometrically mapped into the formal direct sum & @ % using
an isometry constructed in a fairly simple manner from the orthogonal projections
P(s/) and P(%) onto & and # respectively. (In fact, we shall describe two formally
different isometries which turn out to be equivalent.) If U is a bounded linear operator
on X for which o/ and # are reducing subspaces the isometry intertwines the restric-
tions U| o/ and U | 2 © (# n ).

The aim is, of course, to investigate, in full generality, the abstract analogon of
the situation which presents itself in the theory of unitary dilations. If T'is a completely
nonunitary contraction on a Hilbert space # and U is its minimal unitary dilation
on X, the sum of the subspaces M(¥) and M(£*) is dense in 2. Moreover, the
following relations obtain.

H=M_(L*)®H O M. (L)
=R @ ML)
= R, ® M(2).
In the present investigation we imitate the geometric configuration of the subspaces
M(£) and M(£*) as follows: given X", o/, & and U we define, as the orthocomple-
ment of certain subspaces &/, = & and B_ < %, a subspace # < A" and consider

the compression T = P(.#) U | . It turns out that the operator U on 2 may be
considered as a model for T.

It is surprising how large a portion of the geometry of unitary dilations may be
obtained in the generality considered in this paper.

252




The geometrical considerations of the first section of the present paper indicate
a way of constructing a model for contractions using similar ideas but without leaving
the framework of the space on which the contraction acts. The first investigation of
this type was undertaken by E. Durszt; in fact, the original impetus for our work
comes from an interesting lecture describing an elementary method of constructing
a functional model for contractions presented by E. Durszt at the 16th Seminar
on Functional Analysis in May 1985.

It is possible to derive the results of E. Durszt from the considerations of the first
section obtaining, at the same time, some simplifications. This forms the contents
of section two; instead of presenting the results as particular cases of the general
ideas explained in section one we prefer to give an independent exposition even at the
expense of a repetition at a certain point. We feel that this slight overlap is justified
by the brevity and simplicity of the argument.

There is yet another approach to functional models using a construction formally
quite different from the one discussed thus far; this approach is decribed in the paper
[4] of V. 1. Vasjunin. In section four we review this approach in the light of the theory
presented in section one.

1. NOTATION AND PRELIMINARY REMARKS

Given a Hilbert space o, &/ a closed subspace of # we shall denote, as usual,
by &/* the orthocomplement of o in # and by P(&/) the orthogonal projection
of # onto &. The algebra of all bounded operators on # is denoted by B(#).

In the sequel, we shall use frequently well known facts about the square root of
a nonnegative operator. To avoid repetitions in the argument we prefer to state
them now in the following form:

(1,1) Proposition. Let B and D be nonnegative operators in B(o), let A, A,, Cy,
C, be operators from B(H).
If A,B"A, = C,D"C, for n =0,1,2,... then

A1B1/2A2 = C1D1/2C2 .

In particular, AB = DA implies AB'?> = D'/?4.

There are different proofs of the existence of a nonnegative square root of a non-
negative operator. The standard argument which avoids the spectral representation
can be found, for example, in [2], Problem 95: assume 0 < A < 1 and let us define

a sequence (B,,) of nonnegative operators by the recurrence:
By=0, B,,y=31-A4+B}) for n=0,1,2,....

Then the sequence (B,) is nondecreasing, converges strongly and its limit B satisfies
A = (1 — B)%. 1t is easy to see by induction that all operators B, are polynomials
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in A. In fact, there exists a sequence (p,) of polynomials independent of A such that
the sequence p,(4) tends strongly to A*/* forall0 < 4 < 1. .

If A,B*4, = C,D*C, for k = 0 then A,p,(B) A, = C,p,(D) C, for all n 2 0 as
well. Moreover, multiplying by a suitable constant we may assume 0 < B, D £ 1.
Thus

AlBllezh = Al lim p"(B) Azh
= lim C, p,(D) C;h
= C,DV*C,h

lim Al p,'(B) Azh =
Cl lim p"(D) Czh =

1

for all he 5#.

2. A GEOMETRIC MODEL FOR COMPRESSIONS

(2,1) Suppose a Hilbert space A" and two closed subspaces o, B of A" are given
such that

St Bt =(0).

Then

1° the projection P(%) is injective on o* and
(P(B) ) =BO (BN A);

2° the range of the operator
D = (P(«4*) P(B) P(s¢*))"/? is dense in o/* and
D = D P(o4*) P(o#*) D = P(«¢*) DP(o*);

3° there exists an isometry V: s/* — & such that
VD = P(#) P(#*)
and

Vat' = B © (8 n o).

Proof. If a' € &/* then P(%) a* = 0 if and only if a* € #*. Thus P(4%) is injective
on o/*. Its range P(#) o/* is contained in & and (P(%) #/*, b) = 0 for a given
b e £ if and only if b € &. This proves the first assertion.

To prove the second assertion, we shall show that Ker D = &; this will also
prove that the range of D is dense in &/,

Since |Dx|* = (D%x, x) = |P(#) P(«#*) x|* we have Dx =0 if and only if
P(/*) x € B* so that P(/*) x € #* n B+ = (0) and this is equivalent to x € «/.

In particular, for x € o/*, we have

|x] = |P(#) x
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so that the mapping V, defined for elements of the form Da' by the formula
VoDa' = P(%) a*

is well defined and isometric. Since Do#t = D" the domain of definition of Vj is
dense in o/*; we shall denote by V the extension of V¥, by density.
Since V, is an isometry and Do/ is dense in &/ we have

Vet = (VoDt*)™ = (P(B) )" = BO (B ).

Since D annihilates o we have D = D P(s/*) so that also P(«/*) D = D. Ac-
cording to the definition of ¥, we have V,D = V,D P(/*) = P(#) P(¢*). The
proof is complete.

The assumption &/* N B+ = (0) implies that the space o/ + & is dense in X',
We intend to show now how 2" may be imbedded in the direct sum &/ @ 4.

(2,2) The mapping &: A" — o/ ® B defined by

@ = P(/) @ VP(s4Y)
is isometric and possesses the following properties:
1° ot = o @ (0)
2° @b = Qb ® (14 — Q*Q)"/* b, for be B, where Q = P(4) | B
30A =oA ®(#O (BN A)).
~ Proof. The equality ¢/ = o @ (0) as well as the inclusion Range ® = o @

@ Range V are obvious. On the other hand, an arbitrary pair a @ Va?' lies in the
range of &: indeed,

Pa+a)=0a+Pat =(a®0)+ (0@ Va') =a @ Va*.

It remains to show that V P(s/*) P(#) = (1, — 0*Q)"/? P(#). Since both V P(«£*)
and (1 — Q*Q) = (1 — P(®) P(«#)) | # are zero on o/ N A it suffices to consider
elements from % © (o n #) = (Range P(%) P(«/1))~ only. According to the
definition of ¥ we have VP(o/*) P(#) P(s£*) = VD? = P(®) P(«4*) D.

The proof will be complete if we show that

P(®) P(s') D = (1 - 0*Q)"/* P(#) P(4*).

In view of (1,1) it suffices to prove that P(#) P(s/) intertwines D? and 1 — Q*Q.
Indeed, we have

P(#8) P(s4*) D* = P(#) D* = P(%) P(«/") P(%B) P(*) =
= P(#) (1 ~ P(s£)) P(%) P(4") =
= (1 — P(#) P(/) | #) P(B) P(«£*) = (1 — Q*Q) P(%) P(sY).

The proof is complete.
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(2,3) Suppose further we are given a mapping U e B() such that both s
and B are reducing subspaces for U. Then U is unitarily equivalent to

= (U] )@ U]|a6@n ),
more precisely, U = U,
Proof. It suffices to prove that YUz = UVz for all z € &/*. We shall prove this

for elements of the form Da*, a' e o/t. If at € of* we have, using the fact that
P(s/) and P(#) commute with U and, consequently, U commutes with D

VUDa* = VDUa' = P(%#) Ua* = U P(%) a* = UVDa".

At this point we make the following further assumptions:
Suppose we are given two subspaces &/, < & and #_ < A such that
o, L #B_. Denote by # the complement

H=HOB-®AL,).
If we set o/ =4 © o, then # = o/_ @ * so that P(f)h = P(_)h
for all h e #.
Since #' = B_ ® o/, we have
Pt @ A*)P(HY)B- = P(4_ ® A)P(B_ © o) BL =
= P(s/_ + o) P(£,) BE = (0).
If we add the assumption U*#_ < #_ then UBL < B- and U# < UB: < BL.
Using this and the relation P(/_ @ o/*) P(#*) B = (0) we obtain
P(od_ @ L) P(#Y) UK = (0),
or equivalently, ‘
P(s£ ) P(#Y) U = (0) and P(o*) P(#)U# = (0).
(2,4) Let o#, = o, B_ = A be two subspaces such thatUst , = o+, U*B_ <

c B_ and B_ L o . Then the compression T of U to # = A O (- @ )
is unitarily equivalent to

T=[U*|(#0 ) @U|F0 B )]| 0.

Proof. It will be sufficient to prove that #Th = Toh for all he #.

Since o/ _ = o © o, then U*o/_ < of_ and U* P(of_) = P(of-) U* P(s4 )
so that P(o/_) U = P(s/_) U P(s£_). Since (U* | o/ _)* = P(«/_) U | #- We have
P(£_)UP(A_) = (U*| o_)* P(4-).

Using this fact, the relations P(s£_) P(#*) U# = (0), P(«£*) P(o#*) UX = (0)
and the fact that UV = VU on &/ we obtain, for h e #,

&Th = P(«/_)Th ® VP(£*) Th =
= P(o/_) P(#)Uh @ VP(o4*) P(#) Uh =
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= P(_)Uh @ VP(4*) Uh =
=P(#_)UP(Z_)h ® VU P(*) h =
=(U*|_)*P(L_)h ® UVP(L*) h = Toh.
(2,5) Suppose B_ = B. Then
O = (. ®(B O (N AB))O
©(Qb- ® (15— 0*0)'?b_, b_eR.).
Proof. Since # = (&, @B) = A5 N BL = (/. ® #*)© B_ we have
OH =O(A_DA)OPB_ = (A_-D(BO(FNB))OPAB_.

Since #_ < o _ @ #* we have P(of) B_ = o/ _ so that Q maps #_ into & _.
Using the additional hypothesis #_ < % and (2,2) we obtain the desired conclusion.
It is natural to ask whether it would be possible to find an expression of the iso-
metry @ in terms of operators acting on the space s only. This is indeed possible:
to this end we introduce two operators related to the compression of U to 4 in
a natural manner as follows.
(2,6) Define the operators

A = (P(#) P(£*)| )2,
Ax = (P() P(#8*) | #)"

and
B = (1 — A434)'2.
Then
(1) P(#)D| # = ABA,
(2 |Ah — BAk| = |P(#*) h — Dk| forall h,ke# .
(3) in particular, |BAk| = |Dk| for ke .}

Proof. Let us observe first that the inclusion #Z_ < £ implies

P(#*) P(#*) = P(#*) P(s#) P(s*).
Indeed,
P(#) P (#) P(st*) = P(#) (1 - P(B_ ® o)) P(s) =

— P(#) P(s*) — P(#) (P(@_) + P(.)) P(s#*) = P(@") P(et*).
Using this relation, we prove now, by induction, that
P(#) P(o4*) D*" P(4*) P(#) = AB*™A P(#) for n=0,1,2,....

For n = 0 the above relation follows immediately from the definition of A. The
induction is based on the following representation
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D? P(s4*) P(#) = P(s2*) (1 — P(#")) P(s/*) P(#) =
= P(s4%) P(#) — P(4*) P() P(#") P() P(s4*) P(#) =
= P(o*) P(#) (1 — A34%) P(s¢).
Now assume that our relation holds for n. Then
P(#) P(s4*) D*"D? P(4*) P(#) =
= P(#) P(st*) D> P(o*) P(#) (1 — A2A?) P(#) =
= AB*A P(#) (1 — A3A%) P(#) =
= AB™(1 — AALA) A P(#) = AB™ 24 P(K).

In order to complete the proof of (1), it suffices to apply (1,1) and to observe
that D = P(«/*) D P(«/*); this, however, is a consequence of the identity D =
= D P(s#*) proved in (2,1).

To prove (2), consider an arbitrary pair h, k € #. Then

|Ah — BAK|* = |AR|* + |BAk|* — 2 Re (4h, BAk) =
= (4%h, h) + (AB?4k, k) — 2 Re (h, ABAk) =
= (P(#*) h, h) + (D*k, k) — 2 Re (h, Dk) =
= |P(#*) h — Dk|*.
(2,7) The operator B is injective and BAS# is a dense subset of (A#)~.

Proof. Since Ker B = Ker B?> we have Bh = 0 if and only if h = AA2Ah. Since
both 4 and A, are contractions we have

W = 44341 5 4] = [P(ar) B

so that h = P(«f*)h = P(#) P(4*) h = A*h. Hence (1 — A)h= (1 + 4)~*.
.(1 = 4*) h =0, in other words h = Ah and, consequently, h = AAlh. Again,
this implies |k| < |Axh| = |P(#*) h| so that h e B*. Consequently, he B* N o+ =

To complete the proof it is sufficient to show that B maps A# into (4)".
Since B = B* the last assertion is equivalent to the inclusion B Ker 4 < Ker A.
Consider an he # such that Ah = 0. Then B*h = (1 — AA3A) h = h, or equi-
valently (1 — B?)h=0. Then (1 -=B)h=(1+B)"*(1-=B*)h=0 so that
Bh = h e Ker A.

(2,8) The restriction of @ onto 3 can be expressed as follows

®h = P(/) h @ VAh
where V is the isometry on (A#)~ defined on the dense subset BA# by the formula
VBAh = P(%B) P(s#*) h .
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Proof. Since |BAh| = IDhl for he # by (3) of Proposition (2,6) we have, for
every he A,

|BAR| = |Dh| = |VDh| = |P(#) P(«#*) h|

so that there exists an isometric mapping ¥ defined for elements of the form BAh
by the relation
VBAh = P(®) P(«¢*) h = VDh.

Since BAJ# is dense in (A.}f)‘ the mapping ¥ may be extended by density to the
whole of (A/f)“; we use the same symbol ¥ for this extension.

Let he # and Ah = lim BA k, for a suitable sequence (k,). According to (2)
of (2,6) we have P(«/*) h = lim Dk, so that

VAh = lim VBAk, = lim VDk, = VP(«/*) h
and
®h = P(of)h ® VP(4*) h = P() h @ VAh.

3. THE PARTICULAR CASE OF UNITARY DILATIONS

The results of the preceding section may be considerably sharpened if additional
information about the structure of U on the spaces & and £ is available. This is
the case when U is the unitary dilation of a contraction T.

Let Te B(s#) be a contraction and let U € B(¢) be its minimal unitary dilation
so that

T" = P(#)U"|# for n2=0
A = span U"# .

neZ

If £ and #* stand for (U — T) #)~ and (U* — T*) 5#)~ respectively then
H=.0UL UL * 0 L* 0 XL OULOU YD ....

If we denote by o/ and & the spaces o = @ U"Y, # = @ U"L* then #* N
NnBtcH. T i

Consider a vector he o/t N #*; since A+ #* is a reducing subspace for U
all vectors of the form U"h, n € Z belong to &/* N #* = . This means that T"h =
= U"h and T*"h = U*"h for all n = 0. In other words,

At B < {he#; |T"h| = |T*h| = |h| forall neZ}.

If Tis completely nonunitary, i.e. there is no nonzero  for which |T"h| = |T*"h| =
= |h| for all n = 0, then &/* N #* = (0) and we may apply the results of Section 2.
If h € o then, for n = 0,

h=UNU ~=T)h +U*U = T)Th + ... + U¥(U — T) T""'h + U*'T"} .
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_ v
Since the sums Y [U*(U — T) T"h|* = |h|* — |[T™*'k|*> < |h|* are bounded it fol-
(V]
lows that YU*"*{(U — T) T"h converges, the limit lim U*"T"h exists,
V]

P(f) h = YU (U — T) T"h
o

and

P(o/*)h = lim U*"T"h .
Analogously

P(B)h = YU (U* — T*) T*"h

0

and

P(#*) h = lim U"T*"h .
Moreover,

A*h = P(#) P(£*) h = lim T*"T"h
and

Aih = lim T"T*"h
for all h e A#.

Let us compute also P(%) P(/*) h. We have
P(B) P(¢*) h = P(B) P(#) P(4*) h + P(B) P(#*) P(st*) h =
= P(®B) A’h + P(%B) P(#*) P(/*) h.
The first summand equals
i;U"“(U* — T*) T*"4%h.

Now, let us compute the second summand. Since P(&/*) h = lim U*"T"k we shall

first decompose U*"T"h:
UT"h = T*"T"h + (U* — T*) T*""'T"h +
+ UX(U* — T*) T*""2T"h + ... + U* " Y(U* — T*) T"h.
It follows that, for n > k,
P(U* %) U*'T"h = U (U* — T*) T*"~1~*T"h =

— U*k(U* - T*) (T*n—l—an-l—k) Tk+1h
whence

P(U*".?*) P(dl) h = lim P(U*".?*) U*T'h = U*"(U * T*) A%T*+ 1),
Thus
P(d") h=A%h + ZU*"(U* - T*) A*T*+1p
0
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so that

P(®) P(#Y) P(Y) h = YU (U* — T*) AT**1h |

Adding the two summands we obtain

P(®B) P(4*) h = YU (U* — T*) T*4%h +
o
+ o0

+ YUU* — T*) A2T**'h = ¥ U~ (U* — T*) 4,h
0 - ®

where
A, = A>T" for n=>1
A, = T*"4%> for n<0,

Finally, let us make the following identification:

Jl:d—>®@ and JZ:.%—D@Q*

-0

which are defined by formulae
J(XU*(U = T)h,) = @ Dh,, J (Y U* (U* — T*)h,) = @ Dyh,.
- - - -

Here, as usual, D = (1 — T*T)"?, 9 = (Range 2)” Dy = (1 — TT*)!,>and 2 =
= (Range D,)~.
In particular,

JP(f/)h = @ DT"h forall hest,
(0]

J,VBAh = J, P(B) P(sf*) h = J,(Y, Ux"~}(U* — T*) A,h) = @ DyA4,h.
-0 -

If we set ¥V, = J,V and define ¥ by the formula
Yh = J, P(f) h @ V,Ah
then the preceding considerations yield the following
(3,1) Theorem.

(1) The mapping V, from (A#)~ into @ D, which is defined on BA# by the
formula ®

7,BAh = @ D,Ah

where
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A, = A’T" for n2>1
A, = T*A4%> for n<0
is an isometry.

(2) The mapping ¥ from # into (©2) ® ( ® 2,) defined by the formula
0 -

¥Yh = (@DT"h) © V,Ah
0
is an isometry and
YT=(ZoU)Y

where Z is the backward shift operator on (@@) U the bilateral shift operator
on ( @ 9,) defined by (U(h)2 o)s = hpy1-

4. THE CONSTRUCTION OF V. I. VASJUNIN

In this section we intend to use the general results to describe an abstract analogon
of the construction used by V. I. Vasjunin to set up a functional model for completely
nonunitary contractions.

According to Proposition (2,2) the isometry & may be expressed, for elements
b e &, in the form

@b = Qb ® (14 — Q*Q)"? b
where Q = P(f) | 4 so that 15, — Q*Q = (1 — P(%) P(«/)) | 8. If we set
W = (1 — P(®) P(s/) P(B))"/*
then 1 — W? = 0 on #* so that 1 — W= (1 + W)™* (1 — W?) is zero on B* as

well. In other words, W maps #* into itself and, consequently, WZ < 4. It follows
from the uniqueness of nonnegative square roots of nonnegative operators that

W2 | @) = W) 4.
Thus
W|% = (L - P(®) P(«/) P(@)) | B)"/* =
= ((1 — P(#) P(«0)) | B)\/
so that
®b =P(~%’)b® Wb for beA.

Now & + # is dense in X; for elements of the form a + b withae o/, be B
it follows that

®(a + b) = da + &b = (P(f)a ® 0) + (P(£) b ® Wb) =
= P(f)(a + b) @ Wb.
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5. THE DURSZT FUNCTIONAL MODEL FOR CONTRACTIONS

(5,1) Proposition. Let Te B(s#) be a contraction. Then the limit T*"T"h exists
for all he #. Denote by A the selfadjoint square root of this limit, i.e. A*h =
= lim T*"T"h. The operator A is a contraction which satisfies
1° |Ah| = lim |T"h| for all he #
2° A% = T*AT, or equivalently, |Ah| = |ATh| for all he #
3° Ker A = {he #: T"h - 0},

Ker (1 — A) = {h: |Ah| = |h|} = {he #; |T"h| = |h| for n = 0}
4° (1 — A)T"h -0 forall he #
5° |A*T"h| — |Ah| for all he #.

Proof. Since |T| < 1 the sequence |T"h| is nonincreasing for each h e # and,
accordingly, has a limit. If n > m then 1 > T*"T™ — T*"T" > 0 so that (T*"T™ —
— T*"T")'/2 < 1 as well. Given an he #, n = m, we have

I(T*me _ T*nTn) h|2 < I(T*me - T*nTn)llzlz I(T*me _ T*nTn)I/Z hlz <
< ((T*mT™ — T*"T") h, h) = |T™h| — |T"h

.

It follows that the sequence (T*"T") h is Cauchy and the limit exists.
Properties 1° and 2° follow directly from the definition of A.
If [Ah|* = |h|* then ((1 — 4%) h, k) = 0 and this is equivalent to (1 — A%) h = 0.
Then
(1—A)h=(1+A)"(1-4)h=0

as well. This proves the inclusion {he #:|Ah| = |h|} < Ker (1 — A); the other

inclusion is obvious.
To prove 4° and 5° let us consider an h € #. The operator 1 — A? is nonnegative

and
|(1 = 42 Th|* = (1 — A%) T"h, T"h) =
= (T*"T"h, h) — (T*"A*T"h, k) =
= (T*"T"h, h) — (A*h, h) > 0.
Consequently, (1 — A%) T"h = (1 — A2 (1 — A*)'2 T"h -» 0 as well. In parti-
cular |T"h| — |A*T"h| - 0; together with |T"h| — |Ah]| this yields 5°. .

(5,2) Proposition. Denote by A% the strong limit of the sequence T"T*". The
operator 1 — AA}A is nonnegative; write B for (1 — AA3A)"/*. Then
6° Ker B = Ker (1 — A)n Ker (1 — 4,) = {he #: |T"h| = [T*"h| = |h|
for n 2 0}
7° BAR < (AH)".
Moreover, if T is completely nonunitary, then Ker B = (0) so that BAS is
a dense subset in (A#)~.
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8° T*ABAT = AB*A, T*ABAT = ABA
9° |Ah — BAk| = |ATh — BAT| for all h, ke .

Proof. If Ah = A,h = h for some he # then B?h = 0 and, consequently,
Bh = 0. On the other hand, if B2h = 0 then h = AA;Ah so that |h| < |4h| < |A|
which, according to 3°, gives h = Ah. Now h = AAjh so that |h| < |A4h| < |A]
whence h = A,h as well.

The inclusion BAs# < (A%)' is equivalent to the inclusion B Ker 4 = Ker A.
If he o is such that Ah = O then B*h = (1 — AA3A) h = h, whence (1 — B) h =
=(1+B)"'(1 — B h =0. In other words, Bh = he Ker A which proves the
inclusion B Ker.A < Ker A. Moreover, if T is completely nonunitary, i.e. Ker B =
= (0), then B maps As# which is dense in (4#)~ onto a dense subset of (4#)".

For the proof of 8° it suffices, according to (1,1), to prove the relations
T*AB*AT = AB*A for n = 0. For n = 0, this relation reduces to T*A2T = A2
Suppose now that T*AB?*"AT = AB*"A. Then

T*AB*"*2AT = T*AB*B?AT = T*AB™A(1 — A{A*) T =
= T*AB™A(T — TALT*A’T) = T*AB™A(T — TAi4?) =
= T*AB™AT(1 — A%A®) = AB™A(l — AiA%) = AB™*24.
Finally, let us compute |4h — BAK| for h, ke #:
|A4h — BAK|* = |Ah|* + |BAK|* — 2 Re (4h, BAk) =
= (4%h, h) + (AB>A4k, k) — 2 Re (h, ABAK) =
= (T*A2Th, h) + (T*AB*ATk, k) — 2 Re (h, T*ABATEk) =
= |ATh|* + |[BATk|> — 2 Re (ATh, BATk) =
= |ATh — BATk|*.
Notation. As usual, denote by D = (1 — T*T)"?, D, =(1 — TT*'?, 9 =
= (Range D), 9, = (Range D,)". Denote by #; = ® 9, #, = @ 9, nad by Z
: 0 -
the backward shift operator on 5#,,

Z(ho, hl’ ...) = (h1, hz, ...) .
Further, denote by U the bilateral shift operator on #, such that, for h = (P0)2 s
(UR), = hyyy for neZ.

(5,3) Proposition. Let T be a completely nonunitary contraction.
1. The operator V; from # into 3#, defined by

V,h = ® DT"h
0
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satisfies
1° Vih|* = [n|* — |4h|?,
20 V1T= ZVI .

2. The operator V, from (A#)~ into #, defined on the dense subset BA#
of (A#) by

Vo,BAh = @ D4A,h
where

4 = AT for n=1
" |T*A4% for n<0

is an isometry and
V,bAT = UV,A .

Proof. Take an h € #. Then
Vih[? = ¥ [DT"[? = ¥ |T"h[2 — |77+ th]? =
0 0

= |h[* = lim |T"h|? = |h|* — |4h]?
and

ViTh = @ DT"**h = Z(® DT"h) = ZV, .
0 0

To show that the operator V, is well defined let us compute first the norm

o
| ® DyA,h|*. Using property 5° of (5,1) we get
-] 0 <
| ® Dyd,h|? = Y |Dy AT h|* + Y | D T*"A%h|* =
- 1 0

= S (AT H = [PTHP) + 5 (K — [P =
1 0

= (lim |[4*T"h[* — |A%h]?) + (|A2R[* — lim |[T*"*14%h) =
= |Ah|* — |A4A%h|* = (Ah, Ah) — (AA3A%h, Ah) =
= ((1 — AA4}A) Ah, Ah) = |BAR|* .
This shows that ¥, is well defined and its extension to the whole (4#)~ is an

isometry.
Further,

D A*T"1h for n>1

(VZBATh)n = {D*T*i"AzTh = D,T*""14%h for n < 0} = (UV2BAh)n .
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In other words, V,BAT = UV,BA. Now, let Ah = lim BAh,. Using property 9° we
also have ATh = lim BATh, and

The proof is complete.

(5,4) Theorem. The operator ¥: H# — H#; ® H, defined by

is an isometry and
YT=(ZoU)Y?.

References

[1] E. Durszt: Contractions as restricted shifts, Acta Sci. Math. Szeged, 48 (1985), 129—134,

[2] P. R. Halmos: A Hilbert space problem book, D. van Nostrand Comp., Princeton 1967.

[3] B. Sz.-Nagy, C. Foias: Harmonic analysis of operators on Hilbert space, Akadémiai Kiad6,
Budapest 1970.

[4] V. 1. Vasjunin: Construction of the B. Szokefalvi-Nagy - C. Foiag functional model (in
Russian), AN SSSR, Zapiski nau¢nych seminarov LOMI, tom 73, 16—23.

Souhrn

ABSTRAKTNI MODEL PRO KOMPRESE

VLASTIMIL PTAK, PAVLA VRBOVA

Vysetiuje se geometrie Hilbertova prostoru, ktery je generovan dvéma uzavienymi podporosto-
ry. Cilem préce je vybudovani abstraktni analogie funkcionalniho modelu pro kontrakce v teorii
unitarnich dilataci. Jako disledek se dostiava jednotny pfistup k odvozeni nékolika znimych
typa funkciondlnich modeld.

Pesome

ABCTPAKTHASI MOJEJIb JJIsI CXUMAIOIIUX OITEPATOPOB

VLASTIMIL PTAK, PAVLA VRBOVA

Uccnenyetca reomeTpus ruinbbepToBa NpPOCTPAHCTBA, NOPOXIEHHOTO ABYMBS 3aMKHYTHIMH
NMOANPOCTPaHCTBaMH. LIeNbio CTaThH ABNSAETCA NOCTPOEHNE aGCTPAKTHOTO aHajora QyHKUHOHAb-
HOK MOZIENHM [UIsk CXKATUA B TEOPHM YHATAPHLIX Aunatamuid. CleacTBEEM SBJISETCS €IUHBIA NOAXON
K BLIBOZly HECKOJIBKUX M3BECTHBIX THIIOB QyHKIHOHANBHBIX MOJENeH.
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