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ON GRAPHS WITH RESTRICTED LINK GRAPHS
AND THE CHROMATIC NUMBER AT MOST 3

HALINA BIELAK, Lublin
(Received October 15, 1985)

Summary. The j-link graph of a vertex x in a graph G is the subgraph of G induced by the
vertices at distance j from x in G. The paper deals with some problems concerning the estima-
tion of the chromatic number of G in terms of the chromatic numbers of its link graphs, The
questions of Szamkolowicz are answered and a certain class of graphs with the chromatic
number at most 3 and j-link graphs of a special type is described.
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Let G = (V(G), E(G)) be a graph with the vertex set ¥(G) and the edge set E(G).
The distance between two vertices x and y in G is the number of edges in a shortest
path connecting x and y in G. The eccentricity of a vertex x in G is the distance
between x and a farthest vertex from x in G. The radius r(G) is the minimum ec-
centricity of the vertices in G. Let j be a natural number and x a vertex of G. The
J-link of x in G, denoted by Lj(x), is the subgraph of G induced by the vertices at
distance j from x. Szamkotowicz [1, 2] looked for estimates of the chromatic number
of a graph in terms of the chromatic numbers of its j-link graphs. In this paper we
continue his study.

Let x(G) be the chromatic number of G.

Let N(x) be the set of natural numbers j for which there exists a j-link of x in G.
Let A" be a class of graphs. By %(o¢") de wenote the class of graphs whose every
vertex x has a j-link belonging to 2 for every j € N(x). Let 4", be a class of graphs
whose components are complete graphs with one or two vertices. Let £, be the sub-
class of o, containing graphs whose components are complete graphs K,. L.
Szamkotowicz [1] posed

Conjecture 1. x(G) < 3 for every G e 9(A',).
Let ¢’ be the subclass of 9(o¢";) such that for every G € ¢’ there exists a vertex
x whose j-link graphs belong to o, for j € N(x). L. Szamkotowicz [2] proved

Theorem 1. ¥(G) < 3 for Ge &'
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The following question has been proposed in [2]: Is it possible to enlarge the class
%("y) in Conjecture 1 to the class ¥(;), where ' is the class containing graphs
whose components are K, K, or K ,,t = 2?Itis known that 2"; cannot be replaced
by the class o, containing graphs whose components are K, K,, P; or P,. A simple
counterexample is that of the complement of a cycle with 7 vertices, where the 1-link
is P, and the 2-link is K, for every its vertex, and the chromatic number of the graph
equals 4. Moreover, the underlying graph shows that we cannot replace %"y by &4
even if we restrict our considerations to planar graphs from %(",). Table 1 lists
the j-link graphs of the graph given in Figure 1.

NV

4

Fig. 1. (G) = 2, x(G) = 4, and Lj(x) € X, for every vertex x of G and j € N(x).

Table 1. The j-link graphs of vertices of the graph G shown in Figure 1, forj= 1, 2, 3, 4.

x 1 2,13 3,12 4,11 5, 10 6,9 7,8
L) 2K, UP, K, U2K, Py P, P, P, P,
Ly 3K, K, UP, 2K, 2K, 2K, UK, K,UP, K, U2K,
Ly(®) K, K, UK, P, 2k, K, UK, P,
Ly(x) K, K,

Let us consider the graph H given in Figure 2.

Fig. 2
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It is easy to see that L/(x) e o5, x € V(H), j € N(x). Moreover, if K, , is a com-
ponent of some L;(x) in H then t = 2. However, y(H) = 4. Since H contains a sub-
graph homeomorphic to the second graph of Kuratowski, i.e. Kj 3, it is not planar.
In fact, H is the smallest graph with this property. Thus, in general, the class %",
cannot be replaced by o '; in Conjecture 1. Hence we have another question: is this
possible for planar graphs? We present a partial solution of this problem. Let %"
be a class of graphs which are planar, have radius not greater than 2, and the 1-link
and 2-link graphs of their vertices belong to 5.

Theorem 2. x(G) < 3 for every G 9",

To prove the theorem we have to do some preliminary remarks. Let a planar
embedding of a graph G be given. Let us assume that G has a subgraph presented
in Figure 3. We will denote such a graph by H(x; v, q; w, 1).

Fig. 3. H(x; v, g; w, 0).

Let Hy, = H(x; Wo, Lo Wo 1, t_l), and assume that there is H; $ H, in G such that
H, = H(x;wy, ty; wo, to). Note that w, ¢, ¢ {w_,,t_,}, or else G contains a sub-
graph homeomorphic to K, ;. Further, if there is H # H,, H' + H, and H' =
= H(x; w, t; wo, to), then there is a subgraph in G homeomorphic to K 5 (it con-
tains the vertices x, wo, t, and w_,, w;, w). Therefore, there are at most two subgraphs
H, and H{ having a common edge {w,, #o} in L,(x). We can assume, without loss of
generality, that H, is contained in the interior face of the triangle induced by the
vertices x, wg, to. Similarly there is at most one subgraph H_; = H(x; W_istoqs
W_,, t_,) having an edge {w_y, t_,} in common with H,, and we can assume that
H _ is contained in the interior face of the triangle induced by the vertices x, w_,, t_;.
Repeating this consideration for w;, t;,, i = +1, +2, ..., we obtain a finite sequence
of subgraphs H; = H(x; w;, t;; w;_1, t;_) such that H, is contained in the interior
face of the triangle induced by x, w;_, t;_, for i > 0, and of the triangle induced
by X, Wiy, ti4y for i < —1, and the edge {w_,,t_,} is contained in the exterior
face of the triangle induced by x, wy, t,.

Proof of Theorem 2. Let x be a vertex of eccentricity at most 2 in G. We define
a special colouring of Ll(x-) and the vertex x in Algorithm A. This partial colouring
leads to a proper colouring of all vertices of the graph G with at most 3 colours of the
set {0, 1, 2}.
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Algorithm A
colour (x) := 0;
FOR every isolated vertex y of L,(x) DO colour (y) := 2;
FOR every star S in L,(x) DO
colour (s) := 2; {for the vertex s of degree t > 1 in S}
colour (p) := 1; {for every vertex p of degree 1 in S}
WHILE there is K, in L,(x) which has not been coloured DO
{Let wy, o be the vertices of K, }.
colour (to) := 1;
coluur (wo) := 2;
Find the sequence H; = H(x;w;, t; w;_y, t;—;) such that H, =
= H(x; wo, tos oy, t_1), i =0, +1, +2,....
{The sequence may be empty.}
FOR every w; and t; of the sequence DO
colour (t;) := 1;
colour (w;) := 2;

If the eccentricity of x equals 2 we have to colour the vertices of the components
of L,(x). Evidently, we can colour with 0 and 1 such components whose vertices
are adjacent to isolated vertices in Ly(x). Let us proceed to the colouring of the other
components. Let F be a component of L,(x) which has not been coloured yet. One
of the two underlying cases has to appear.

Case 1. There is a vertex y of F adjacent to a vertex w of a star S in Ll(x). Let z
be a neighbour of y in F.

Case 1.1. Let w be the center of F. Note that, if z has a neighbour belonging to S,
then all other vertices of L,(x) adjacent to z or y are isolated in L,(x). We colour F
as follows. If z is adjacent to w then if y is the center of F then colour (y):= 1,
else colour (y) := 0. In both cases colour (z) := 1-colour (y) and we colour the re-
maining vertices of F with 0. Assume that z is not adjacent to w. If z is the center
of F then colour (z) := 0 and colour (u) := 1 for the other vertices of F, else colour
(y) := 1 and colour (u) := 0 for ue V(F) — {y}. Assume that no neighbour of y
in F is adjacent to a vertex of S. Let v be a vertex of L,(x) adjacent to the vertex z.
If v is adjacent to y then one can see that every vertex different from w of L,(x) and
adjacent to y or z is isolated in Ll(x). In the opposite case C5 or P, is contained
in L,(p) for some vertex p of S, or P, is contained in the 2-link of a neighbour of v.
Therefore we can properly colour the center of F with 1 and other vertices of F
with 0. Assume that y is not adjacent to any neighbour of its adjacent vertices.
If there is a vertex g in L,(x) adjacent to y, ¢ # w, then it is adjacent to v, or else P,

is contained in L,(v) or in L,(w). Further, v is the unique vertex of L,(x) adjacent
" to z,and either w or w and g are the only vertices of Ll(x) adjacent to y. Hence, if zis
the center of F we can colour it with the colour of g and the other vertices of F with
0. If y is the center of F then the other vertices of F are adjacent to v, or else P, is
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contained in L,(v) orL,(w). Hence, we can colour y with 0 and the other vertices of F
with the colour of g. Consider the case when w is the unique neighbour of y belonging
to L,(x). It is easy to see that if y is the center of F, then one can colour it with 1
and the other vertices of F with 0. Assume that z is the center of F. If every vertex
belonging to L,(x) and adjacent to z is isolated in L;(x) then we can colour z with 1
and the other vertices of F with 0. If there is g adjacent to v in L(x) then there is
no other vertexin L(x) adjacent to z, or else L,(w) contains either C; or P,. Hence
we can colour z with the colour of g and the other vertices of F with 0.

Case 1.2. Let w be not the center of S, i.e., w is a vertex of degree 1 in S. Evidently,
no vertex of F is adjacent to the center of any star in L,(x), or else we have Case 1.1.
If z has a neighbour in S then all vertices L,(x) adjacent to y or z belong to S, or
else P, is contained in L,(v) for some vertex v adjacent to z or y and belonging to
L,(x) but not belonging to S, or Cj; is contained in the 2-link of the center of S.
Thus, we can colour the center of F with 2 and the other vertices of F with 0. In the
opposite case, i.e., if no neighbour of y in F has a neighbour in S, then every neighbour
of any vertex adjacent to y in F is isolated in L,(x), or else either C; or P, is contained
in the 2-link of some vertex of S. It is clear that we can colour all vertices adjacent
to y in F with the colour 1 and the other vertices of F with 0.

Case 2. There is a vertex y of F adjacent to a vertex w of a certain K,, called K
below, in Ly(x). Let z be a neighbour of y in F. Let ¢ be the vertex of K, t & w.

Case 2.1. Let z have a neighbour in K. If not vertex of any component in L;(x)
different from K is incident to y or z then one can colour F with at most 3 colours
of the set {0, 1, 2}. Assume that there is a vertex v, v + w, in L,(x) which is adjacent
to y. If z is adjacent to w then every neighbour of y in F is adjacent to the unique
vertex w in Ly(x), or else L,(t) contains C; or P,, or L,(z) contains P,. Therefore,
we can colour y with 0, z with the colour of ¢, and the other vertices of F with the
colour which has been assigned to the vertex of degree 1 in F. Assume now that z
is adjacent to t, and no neighbour of y in F is adjacent to w. If v defined above is
adjacent to z then every neighbour of y or z belonging to Ll(x) but not belonging
to K isisolated in L,(x), or else C; or P, is contained in the 2-link of ¢ or w or other ver-
tex of L;(x). Moreover, all the other vertices of F have isolated neighbours in Ly(x).
Hence, we can colour z with 0 because we can assume without loss of generality that
the vertex w is coloured with 2, and the other vertices of F with 1. Assume that v is not
adjacent to z. If z has a neighbour g belonging to L,(x), g =+ ¢, then g and v induce
K,, or else L,(v) contains P,. Moreover, v and w are the unique neighbours of y, and
t and ¢ are the unique neighbours of z in L,(x). Since Algorithm A assigns the same
colour to v and w, say 2, and the colour 1 to tand g, we can colour y with 1, z with 2
and the other vertices with 0. Now assume that ¢ is the unique neighbour of z belonging
to Ly(x). If z is the center of F then we colour it with the colour of w, and the other
vertices with 0. If y is the center of F then no neighbour of y in F is adjacent to w
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or v, or else L,(z) contains P,. If every vertex of F different from y is adjacent to ¢,
then we can colour y with 0 and the other vertices of F with the colour of w. In the
opposite case, there is a neighbour u of y in F adjacent to q of Ly(x), g + v, w, .
Further, g is adjacent to v, or else L,(q) contains P,. Evidently, every vertex of F
has its neighbours in {w, v, t, g} among the vertices of L,(x). Therefore, we can
colour y with 0 and the other vertices of F with the colour of w, or v.

Case 2.2. Let no neighbour of y in F have a neighbour in K. Let us assume that v
is the neighbour of z in L,(x). If v is not isolated in L,(x) then v is the unique neighbour
of z belonging to L,(x), or else L,(w) contains C; or P,. This implies that w is the
unique neighbour of y in L,(x), or else L,(v) contains C; or P,. Hence, we can colour y
with the colour of t and the other vertices of F with 0. Assume that all neighbours of z
belonging to L,(x) are isolated in L,(x). Then we can colour y with 0, z with 1, and
the other vertices of F with 0 if z is the center of F, and with 1 in the opposite case.

Finally, every vertex isolated in L,(x) can be coloured with 0. This completes the
proof.

We know no example of a planar graph G belonging to @(f 3) whose radius is
greater than 2 and whose chromatic number is greater than 3. Let 95(#"3) be the
subclass of planar graphs of the class 4(;).

Conjecture 2. x(G) < 3 for every G € 9p(A'5).
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Souhrn

O GRAFECH SE SPECIALNIMI SPOJOVYMI GRAFY
S CHROMATICKYM CIiSLEM ROVNYM NEJVYSE TREM

HALINA BIELAK

J-spojovy graf vrcholu x v grafu G je podgraf grafu G indukovany vrcholy, které maji vzdale-
nost od x v G rovnu J. Clanek se zabyva odhady chromatického &isla grafu G pomoci chromatic-
kych ¢&isel jeho spojovych grafii. Je ddna odpov&d na otdzky L. Szamkolowicze a popsina jista
tfida grafti s chromatickym &islem nejvy3e 3 a spojové grafy specidlniho typu.
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Pe3rome

T'PA®BI CO CIIELHUAJIBHBIMU JINHKOBLIMU I'PA®AMU
1 XPOMATHYECKUM YHMCJIOM HEITPEBBIIMAIOIIMM 3

HALINA BIELAK

Tlo onpenenenuso ,,j — MMHKOBBIA rpad** Bepumusl x rpada G — 3710 noarpad B G MHAyLMPO-
BaHHBI BEPIUMHAMM, PACCTOSIHHE KOTOPBIX IO X PaBHO /. B cTaThe M3y4YaroTCs OLEHKH XpOMaTH4eC-
Koro yucna rpada G Ipd NOMOIMM XPOMAaTHYECKHX YMCEJI €ro JIMHKOBBIX rpados, naércs oTBeT
Ha sonpocs! JI. IllaMKo0BHYA M OMMCHIBAETCS HEKOTOPHBI Kinace rpadoB ¢ JIMHKOBBIMM rpadaMy
CIENUaIbHOTO THIA B XPOMATHYECKUM UYMCJIOM HENPBLILAIOIEM 3.
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Sktodowskiej 1, Lublin, Poland.

231




		webmaster@dml.cz
	2012-05-12T16:21:26+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




