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ON GRAPHS WITH RESTRICTED LINK GRAPHS 
AND THE CHROMATIC NUMBER AT MOST 3 

HALINA BIELAK, Lublin 

(Received October 15, 1985) 

Summary. The/-link graph of a vertex * in a graph G is the subgraph of G induced by the 
vertices at distance / from x in G. The paper deals with some problems concerning the estima­
tion of the chromatic number of G in terms of the chromatic numbers of its link graphs. The 
questions of Szamkolowicz are answered and a certain class of graphs with the chromatic 
number at most 3 and/-link graphs of a special type is described. 
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Let G = (V(G), E(G)) be a graph with the vertex set V(G) and the edge set E(G). 
The distance between two vertices x and y in G is the number of edges in a shortest 
path connecting x and y in G. The eccentricity of a vertex x in G is the distance 
between x and a farthest vertex from x in G. The radius r(G) is the minimum ec­
centricity of the vertices in G. Let j be a natural number and x a vertex of G. The 
j-link of x in G, denoted by Lj(x), is the subgraph of G induced by the vertices at 
distance j from x. Szamkolowicz [1, 2] looked for estimates of the chromatic number 
of a graph in terms of the chromatic numbers of its j-link graphs. In this paper we 
continue his study. 

Let x(G) be the chromatic number of G. 
Let N(x) be the set of natural numbers j for which there exists a j-link of x in G. 

Let X be a class of graphs. By <š(X) de wenote the class of graphs whose every 
vertex x has a j-link belonging to J f for every j e N(x). Let Xx be a class of graphs 
whose components are complete graphs with one or two vertices. Let X2 be the sub­
class of X i containing graphs whose components are complete graphs K2. L. 
Szamkolowicz [1] posed 

Conjecture 1. /(G) = 3 for every G e ^(Xt). 

Let <$' be the subclass of ^(Xt) such that for every Ge^' there exists a vertex 
x whose j-link graphs belong to X2 forj e2V(x). L. Szamkolowicz [2] proved 

Theorem 1. x(G) Ú 3 for G e <&'. 
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The following question has been proposed in [2]: Is it possible to enlarge the class 
^(jf t) in Conjecture 1 to the class g($f3), where X-$ is the class containing graphs 
whose components areK\, K2 or Klff, t = 2? It is known that Xx cannot be replaced 
by the class C/C± containing graphs whose components are KUK2, P3 or P4. A simple 
counterexample is that of the complement of a cycle with 7 vertices, where the 1-link 
is P4 and the 2-link is K2 for every its vertex, and the chromatic number of the graph 
equals 4. Moreover, the underlying graph shows that we cannot replace X± by X± 
even if we restrict our considerations to planar graphs from ^(X 4 ). Table 1 lists 
the/-link graphs of the graph given in Figure 1. 

6: 

Fig. 1. r(G) = 2, /(G) = 4, and Lj(x) e Jf4 for every vertex x of G and/6 N(x). 

Table 1. The/-link graphs of vertices of the graph G shown in Figure 1, for/ -= 1,2, 3, 4. 

X 1 2,13 3,12 4,11 5, 10 6,9 7,8 

W 2Kt U Р 4 KІ KJ 2K2 ^з Pл PA P* Pз 

L2(x) зк2 
ҚKJP^ 2K2 2K2 2Kt U K2 K2VP3 

Kt U 2K2 

L3(x) K2 K^ KJK2 P3 
2K2 Kt кj K2 P* 

LA(x) K2 к, 

Let us consider the graph H given in Figure 2. 

'H 

Fig.2 
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It is easy to see that Lj(x) e Jf 3, x e V(H), j eN(x). Moreover, if K1>f is a com­
ponent of some Lj(x) in H then t = 2. However, /(H) = 4. Since H contains a sub­
graph homeomorphic to the second graph of Kuratowski, i.e. K3,3, it is not planar. 
In fact, H is the smallest graph with this property. Thus, in general, the class Jfx 

cannot be replaced by X3 in Conjecture 1. Hence we have another question: is this 
possible for planar graphs? We present a partial solution of this problem. Let <&" 
be a class of graphs which are planar, have radius not greater than 2, and the 1-link 
and 2-link graphs of their vertices belong to J f 3. 

Theorem 2. x(G) g" 3 for every G e <S". 
To prove the theorem we have to do some preliminary remarks. Let a planar 

embedding of a graph G be given. Let us assume that G has a subgraph presented 
in Figure 3. We will denote such a graph by H(x; v, q; w, t). 

Fig. 3. H(x; v, q\ w9 t). 

Let H0 = H(x; W0, t0; w_ l9 t_t), and assume that there is Hx + H0 in G such that 
Ht = H(x; wi9 tx; w0, t0). Note that wl9 tt $ {w_1? r _ J , or else G contains a sub­
graph homeomorphic to K3j3. Further, if there is H' 4= H0, H' =# Ht and H' = 
= H(x; W, t; w0, t0), then there is a subgraph in G homeomorphic to K33 (it con­
tains the vertices x, w0, t0 and w^u wl5 w). Therefore, there are at most two subgraphs 
H0 and Hx having a common edge {w0, t0} in Lx(x). We can assume, without loss of 
generality, that Ht is contained in the interior face of the triangle induced by the 
vertices x, w0, t0. Similarly there is at most one subgraph H_t = H(x;w-.l9 t^u 

w_2, t-2) having an edge {w_1? t_x} in common with H0, and we can assume that 
H _ t is contained in the interior face of the triangle induced by the vertices x, w_ l9 f_ t. 
Repeating this consideration for wh th i = + 1 , ± 2 , . . . , we obtain a finite sequence 
of subgraphs Ht = H(x; wh th wt_l91^^ such that H{ is contained in the interior 
face of the triangle induced by x, wt-.l9 f;_i f° r ' > 0, and of the triangle induced 
by x,wi+i, ti+l for i < —1, and the edge {w_l9 f ^} is contained in the exterior 
face of the triangle induced by x, w0, t0. 

Proof of Theorem 2. Let x be a vertex of eccentricity at most 2 in G. We define 
a special colouring of Lt(x) and the vertex x in Algorithm A. This partial colouring 
leads to a proper colouring of all vertices of the graph G with at most 3 colours of the 
set {0,1, 2}. 
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Algorithm A 
colour (x) := 0; 
FOR every isolated vertex y of Lt(x) DO colour (y) := 2; 
FOR every star S in Lx(x) DO 

colour (s) := 2; {for the vertex s of degree t > 1 in S} 
colour (p) := 1; {for every vertex p of degree 1 in S} 

WHILE there is K2 in Llvx) which has not been coloured DO 
{Let w0, t0 be the vertices of K2). 

colour (t0) : = 1; 
coluur (w0) := 2; 
Find the sequence Hi = i/(x; wh th w^i9 f ^ ) such that H0 = 
= H(x;w0, t0; w_1? t-t), i = 0, ±1 , +2 , . . . . 
{The sequence may be empty.} 
FOR every wt and tt of the sequence DO 

colour (tt) := 1; 
colour (WJ) := 2; 

If the eccentricity of x equals 2 we have to colour the vertices of the components 
of L2(x). Evidently, we can colour with 0 and 1 such components whose vertices 
are adjacent to isolated vertices in Lt(x). Let us proceed to the colouring of the other 
components. Let F be a component of L2(x) which has not been coloured yet. One 
of the two underlying cases has to appear. 

Case 1. There is a vertex y of F adjacent to a vertex w of a star S in Lx(x). Let z 
be a neighbour of y in F. 

Case 1.1. Let w be the center of F. Note that, if z has a neighbour belonging to S, 
then all other vertices of Lt(x) adjacent to z or y are isolated in Lt(x). We colour F 
as follows. If z is adjacent to w then if y is the center of F then colour (y) := 1, 
else colour (y) : = 0. In both cases colour (z) : = 1-colour (y) and we colour the re­
maining vertices of F with 0. Assume that z is not adjacent to w. If z is the center 
of F then colour (z) := 0 and colour (u) := 1 for the other vertices of F, else colour 
(y) := 1 and colour (u) := 0 for u e V(F) — {y}. Assume that no neighbour of y 
in F is adjacent to a vertex of S. Let ubea vertex of Lx(x) adjacent to the vertex z. 
If v is adjacent to y then one can see that every vertex different from w of Llvx) and 
adjacent to y or z is isolated in Llvx). In the opposite case C3 or P4 is contained 
in L2(p) for some vertex p of S, or P4 is contained in the 2-link of a neighbour of v. 
Therefore we can properly colour the center of F with 1 and other vertices of F 
with 0. Assume that y is not adjacent to any neighbour of its adjacent vertices. 
If there is a vertex q in Lx(x) adjacent to y, q 4= w, then it is adjacent to v, or else P4 

is contained in L2(v) or in L2(w). Further, v is the unique vertex of Lx(x) adjacent 
to z, and either w or w and q are the only vertices of Lx(x) adjacent to y. Hence, if z is 
the center of F we can colour it with the colour of q and the other vertices of F with 
0. If y is the center of F then the other vertices of F are adjacent to v9 or else P4 is 
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contained in L2(v) orL2(w). Hence, we can colour y with 0 and the other vertices of F 
with the colour of q. Consider the case when w is the unique neighbour of y belonging 
to L1(x). It is easy to see that if y is the center of F, then one can colour it with 1 
and the other vertices of F with 0. Assume that z is the center of F. If every vertex 
belonging to L{(x) and adjacent to z is isolated in L lvx) then we can colour z with 1 
and the other vertices of F with 0. If there is q adjacent to v in L lvx) then there is 
no other vertex in Lt(x) adjacent to z, or else L2(w) contains either C3 or P4. Hence 
we can colour z with the colour of q and the other vertices of F with 0. 

Case 1.2. Let w be not the center of S, i.e., w is a vertex of degree 1 in S. Evidently, 
no vertex of F is adjacent to the center of any star in Lt(x), or else we have Case 1.1. 
If z has a neighbour in S then all vertices Llv%) adjacent to y or z belong to S, or 
else P4 is contained in L2(v) for some vertex v adjacent to z or y and belonging to 
Lt(x) but not belonging to S, or C3 is contained in the 2-link of the center of S. 
Thus, we can colour the center of F with 2 and the other vertices of F with 0. In the 
opposite case, i.e., if no neighbour of y in F has a neighbour in S, then every neighbour 
of any vertex adjacent to y in F is isolated in L lvx), or else either C3 or P4 is contained 
in the 2-link of some vertex of S. It is clear that we can colour all vertices adjacent 
to y in F with the colour 1 and the other vertices of F with 0. 

Case 2. There is a vertex y of F adjacent to a vertex w of a certain K2, called K 
below, in L lvx). Let z be a neighbour of y in F. Let t be the vertex of K, t #= w. 

Case 2.1. Let z have a neighbour in K. If not vertex of any component in L lvx) 
different from K is incident to y or z then one can colour F with at most 3 colours 
of the set {0, 1, 2}. Assume that there is a vertex v, v =# w, in Lt(x) which is adjacent 
to y. If z is adjacent to w then every neighbour of y in F is adjacent to the unique 
vertex w in Llv%), or else L2(t) contains C3 or P4, or L2(z) contains P4. Therefore, 
we can colour y with 0, z with the colour of t, and the other vertices of F with the 
colour which has been assigned to the vertex of degree 1 in F. Assume now that z 
is adjacent to t, and no neighbour of y in F is adjacent to w. If v defined above is 
adjacent to z then every neighbour of y or z belonging to Lt(x) but not belonging 
to K is isolated in Lx(x), or else C3 or P4is contained in the 2-link of t or w or other ver­
tex of L lvx). Moreover, all the other vertices of F have isolated neighbours in L lvx). 
Hence, we can colour z with 0 because we can assume without loss of generality that 
the vertex w is coloured with 2, and the other vertices of F with 1. Assume that v is not 
adjacent to z. If z has a neighbour q belonging to L lvx), q =¥ t, then q and v induce 
K2, or else L2(v) contains P4. Moreover, v and w are the unique neighbours of y, and 
t and q are the unique neighbours of z inL l vx). Since Algorithm A assigns the same 
colour to v and w, say 2, and the colour 1 to t and q, we can colour y with 1, z with 2 
and the other vertices with 0. Now assume that t is the unique neighbour of z belonging 
to L lvx). If z is the center of F then we colour it with the colour of w, and the other 
vertices with 0. If y is the center of F then no neighbour of y in F is adjacent to w 
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or v, or else L2(z) contains P4. If every vertex of F different from y is adjacent to t, 
then we can colour y with 0 and the other vertices of F with the colour of w. In the 
opposite case, there is a neighbour u of y in F adjacent to q of L^x), q -f= v, w, t. 
Further, q is adjacent to v, or else L2(q) contains P4. Evidently, every vertex of F 
has its neighbours in {w, v, t, q) among the vertices of L l v x). Therefore, we can 
colour y with 0 and the other vertices of F with the colour of w, or v. 

Case 2.2. Let no neighbour of y in F have a neighbour in K. Let us assume that v 
is the neighbour of z in Lx(x). If v is not isolated in Lx(x) then v is the unique neighbour 
of z belonging to L l v x), or else L2(w) contains C 3 or P4. This implies that w is the 
unique neighbour of y in Lt(x), or else L2(v) contains C 3 or P4. Hence, we can colour y 
with the colour of t and the other vertices of F with 0. Assume that all neighbours of z 
belonging to L l v x) are isolated in Lt(x). Then we can colour y with 0, z with 1, and 
the other vertices of F with 0 if z is the center of F, and with 1 in the opposite case. 

Finally, every vertex isolated in L2(x) can be coloured with 0. This completes the 
proof. 

We know no example of a planar graph G belonging to ^(X^) whose radius is 
greater than 2 and whose chromatic number is greater than 3. Let ^P(X2) be the 
subclass of planar graphs of the class ^ ( j f 3 ) . 

Conjecture 2. /(G) ^ 3 for every G e ^ P ( j f 3 ) . 
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Souhrn 

O GRAFECH SE SPECIÁLNÍMI SPOJOVÝMI GRAFY 
S CHROMATICKÝM ČÍSLEM ROVNÝM NEJVÝŠE TŘEM 

HALINA BIELAK 

/-spojový graf vrcholu x v grafu G je podgraf grafu G indukovaný vrcholy, které mají vzdále­
nost od x v G rovnu/. Článek se zabývá odhady chromatického čísla grafu G pomocí chromatic-
kých čísel jeho spojových grafů. Je dána odpověď na otázky L. Szamkolowicze a popsána jistá 
třída grafů s chromatickým číslem nejvýše 3 a spojové grafy speciálního typu. 
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Peзюмe 

ГPAФЫ CO CПEЦИAЛЬHЫMИ ЛИHKOBЫMИ ГPAФAMИ 
И XPOMATИЧECKИM ЧИCЛOM HEПPEBЫШAЮЩИM 3 

HALINA BIELAК 

Пo oпpeдeлeнию ,,J— линқoвый гpaф" вepшины jeгpaфa G — этo пoдгpaф в G индyциpo-
вaнный вepшинaми, paccтoяниe кoтopыx дo x paвнof. B cтaтьe изyчaютcя oцeнки xpoмaтичec-
кoгo чиcлa гpaфa G пpи пoмorци xpoмaтичecкиx чиceл eгo линкoвыx гpaфoв, дaëтcя oтвeт 
нa вoпpocы Л. Шaмкoлoвичa и oпиcывaeтcя нeкoтopый клacc гpaфoв c линкoвыми гpaфaмй 
cпeциaльнoгo типa и xpoмaтичecким чиcлoм нenpвышaющим 3. 
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