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Summary. A class of graphs called wreaths is introduced. It is shown that the wreaths induce
some new facets of the bipartite subgraph polytope studied in [2]. Similar results hold also for
signed graphs. The relation between associated polytopes is discussed.
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1. INTRODUCTION

A signed graphis an unoriented graph each edge of which is signed by + or — sign.
The edges are called positive or negative according to their signs. A signed graph is
called balanced if it does not contain a cycle with an odd number of negative edges.
A simple equivalent condition for a graph to be balanced is the existence of a partition
of vertices into two classes so that the positive edges have both their endpoints in the
same class and the negative edges have their endpoints in different classes. The signed
graphs were introduced in [3].

If G = (V, E) is a signed graph and F < E is a subset of edges, then the 0—1
vector xF € RE with xf = 1if ee F and xf = 0if e ¢ F is called the incidence vector
of F. The convex hull Pg,(G) of the incidence vectors of the edge sets of all balanced
subgraphs is called the balanced subgraph polytope, i.e.

Py (G) = conv {xF € RE: (V, F) is a balanced subgraph of G} .

An inequality ax < B is called a facet of Py (G) if it is a valid inequality for all
x € Py;(G) and Py (G) N {x: ax = B} is a maximal proper face of Py;(G). We assume
that the reader is familiar with the basic concepts of the polyhedral approach to the
combinatorial problems, see e.g. [1].

The balanced subgraph polytope Py, is closely related to the bipartite subgraph
polytope Pp, which is the convex hull of the incidence vectors of the bipartite sub-
graphs of a (non signed) graph. We discuss the relation between Py and Py, in the
next section.

If G = (V, E) is a graph (a signed graph) and e € E, then the inequalities 0 < x,
and x, < 1 are facets of P5(G) (of Py, (G)). These facets are called trivial. Some
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nontrivial facets and their constructions are given in [2]. The aim of this paper is
to show some new facets of Pg; and at the same time some new facets of Pg. In spite
of the fact that all results can be stated for ordinary graphs we use signed graphs
because the formulation of the results and their proofs is simpler.

2. RESULTS

Let n, r beintegers satisfyingn > 2r > 3. Weintroduce three types of signed graphs
Wors Woi r, and W, .. which are defined on the same underlying graph and differ
only in signs of edges. Each of these signed graphs is called a wreath. The vertex set
of the underlying graph is V= {0,1,...,n — 1}, the edge set E is the union of two
sets E, and E; where

Eo={(i,i+1):i=0,1,....,.n—1}, and
E ={(i,i+r);i=0,1..,n-1}.

The numbers of vertices are always taken modulo n. We call E, and E, the set of
the outer and inner edges, respectively.

The signs of edges are defined in the individual cases as follows:

W, has all edges negative,

W, . has positive outer and negative inner edges, and

W, -+ has negative outer and positive inner edges.

Fig. 1 shows a wreath W, ,.

Fig. 1

Let us note that E, forms a cycle in a wreath iff g.c.d.(n, r)=1.

Theorem 1. Let n = kr + j,0 S j <r < n[2 and let W be one of the following
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wreaths with the specified parameters k, r and j:

(i) W= W,,, reven and k + j odd,

(i) W= W,,,, k odd,

(iii) W= W,,,, rand j odd.
If Wis a subgraph of a signed graph G, then the inequality
(1 Yx.+jYx. (j+)n—-jk—r

© eeEy ceEg

is valid for the polytope Pp,(G), and it is a facet of P, (G) if and only if g.c.d.(n, r) =
= 1.

Let us denote by rank G the maximum number of edges of a balanced subgraph
of a signed graph G.

Corollary 1. Let W be a wreath from Theorem 1. Then

(2) rankW=2n—k—r+j—1
provided k = j > 0.

Theorem 2. Let n = kr + j» 0 = j < r < n|2, and let W be one of the following
wreaths with specified parameters:
(i) W= W,,, randj + k even,
(i) W= W,, ,, k even,
(ili) W= W,,,, r odd and j even.
Then rank W = 2n — k — j provided r < k + j + 1.

Remark. Corollary 1 and Theorem 2 provide rank formulas for some instances
of wreaths. However, the approach of this paper does not seem to be applicable to
a general wreath. We give a different method for establishing the rank formula
in [4]. .

At the end of this section we give two propositions which show the connection
between Py and Py;.

Proposition 1. Let G be a signed graph. Let G’ be the graph obtained from G
by changing the signs of edges incident to some fixed vertex v of G. Then Py, (G) =
= PBL(G’)‘

Proof. It follows immediately from the fact that the balanced subgraphs of G
and G’ are the same.

Proposition 2. Let G be a signed graph, let
©) Y ax. =P

ecE(G)

be an inequality and e, = (u, v) a positive edge of G. Let us define a signed graph G’

375



and the inequality

@ Y ax. s

e€E(G’)

as follows: The graph G’ is obtained from G by adding a new vertex w to V(G)
and by replacing the edge e, by two negative edges e, = (u, w) and e, = (w, v).
Leta,, = a,, = a,,and B’ = B + a,,. Then the inequality (3) is a nontrivial facet
of Py,(G) if and only if the inequality (4) is a nontrivial facet of Pp,(G’).

Proof. By a modification of the proof of Theorem 4.4 of [2] for signed graphs.

3. PROOFS

Proof of Theorem 1. We show that (1) is a valid inequality for Py, (G). To
prove it we need to consider two sets €, and €, of cycles of W. The set €, contains n
cycles of length r, each of the form

{Gi+1),(+1,i4+2),.,(i+r=-Li+n}u{i+ri},i=0..,n—-1.
The set €, contains n cycles of length k + j, each of the form
{Goi+n),(i+ri+2r),.,(i+k=-1)ri+kr)}u
v{(i+kr,i+kr+1),(i+kr+1,i+kr+2),...,G0+n-1i)},
i=0,..,n—-1.
Let B be a maximal balanced subgraph of W (i.e., no further edge of W can be added
to B). As it is more convenient for us to count the edges in the complement of B,

denote u® = |E; — B| and v® = |E, — B|. As the cycles from ¢, and %, are not
balanced, u® and v® must satisfy

() B+ r.®>n,

(6) k.uB+j.v®2n.
We claim that u® and v® satisfy also the inequality

) Wi =kji+r.
If (7) does not hold, then

(8) CuBSkj+r—jof-1,

Substituting (8) into (5) we get
k=1)P<kj—k—j.

This inequality is false for j = 0, and it gives

©) . Psk
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for j # 0 as v® is an integer. Similarly, substituting (8) into (6), we get

r—NDoPzkr—ki—-r+j+1,
which yields
(10) ¥ =>k.

Thus, there is no integral solution of (5), (6) and (8) for j = 0, and for j # 0 the
integral solutions u®, v® must satisfy v® = k due to (9) and (10). We show that there
is no maximal balanced subgraph B like that. In the signed graphs W, , and W, .,
the set E, of outer edges forms a cycle of negative edges. As B is maximal, the inter-
section |B N E,o| must be even. However,

|BAE|=n—-vP=kr+j—k=(r—-1)k+j

which is odd for all instances of parameters in (i) and (iii). Let W = W,, ,. As Bis
maximal and E, is a cycle of positive edges, the set-difference IE0 - B[ must be even.
But |[E, — B| = v® = k which is odd by (ii). As we arrived at a contradiction in all
cases, u® and v® satisfy (7). As the both coefficients at u® and »® in (7) are positive,
the inequality (7) is valid for all not necessarily maximal balanced subgraphs of W.
Using the substitution #® = n — Y x2 and v® = n — Y x? in (7), we get that (1) is

ecEy e€Eo

satisfied by all incidence vectors x® = (x7) of balanced subgraphs B of W. This
proves that (1) is valid for Py,(G).
2. Let g.c.d.(n,r) = 1. We show that (1) is a facet of Py,(G). In order to prove it
we need sufficiently many balanced subgraphs of G satisfying (1) with the equality.
Let F, be the subgraph of W arising from W by deleting k + 1 edges (n — 1, 0),
(r=1,7),...,(kr = 1, kr) from the set E,, and r — j edges (kr — 1, r — j — 1),
(kr =2, 7 —j—2),...,(kr = (r — j), 0) from the set E;. Let H, be the subgraph
of W arising from W by deleting k — 1 edges (0,1), (r,r + 1),...,((k = 2)r,
(k=2)r+1) from E, and r+j edges (k—2)r+ 1, (k—1)r+ 1),
(k=2)r+2,(k=1)r+2),...,(n —r0) from the set E;. Figures 2a and 2b
show the graphs F, and H,, subgraphs of W, ,.
Further, let Fy, Hy be defined by

Fy = (F, = {(0, 1), (0, r)})‘u {(n -1,0),(0,n—r)} and
Hy = (Ho ~ {07 — 1,(0,9)) 0 {0, 1), (0 = 1)

(Fo and Hj are obtained from F, and H, by moving the vertex 0 into the opposite
partition class.)

Finally, let F,, F,, H,and H,, k = 0,1,...,n — 1 be the graphs arising from
Fq, Fo, Hy and Hj, respectively, by their rotation, i.e.

(i+kj+keX, if (i,j)eX,,
where X stands for F, F’, H and H’. One can check that all the subgraphs defined
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are balanced and their incidence vectors satisfy (1) with equality. Let
(11) ‘ a.x<f

be a facet of Py,(G) such that a . x = g for all x € Pg,(G) satisfying (1) with equality.
We claim that there are «, &’ such that a, = « for all e€ E,, a, = &' for all e€ E,,
and a, = 0 for all e€ E(G) — (E, U E)). As x™, x*°, x™ and x"" satisfy (1), and
hence also (11) with equality, we get

Fig. 2a,b

F, F’
O0=a.x°—a.x" °= a(o_l) + a(o.,) - a(o,n_.l) - a(om_r)
and

H, H’
O0=a.x°—a.x"°= a(o,,,_l, + a(o’,) - a(o'l) —_ a(o'"_,) ’

which gives
ao,1) = A0,n-1) and ao,r) = 4@,n-r) *
As both E, and E; are cycles, using graphs F, and H; we derive that a, = a,. for all

e, e € E;, and a, = a, for all e, e’ € E,. Using again the fact that x*° and x"° satisfy
(11) with equality, and summing the outer and inner edges separately, we get
on—k—-1)+a(n—r+j)=p and
an —k+1)+a(n—r—j)=4.
This gives o’ = ja. ‘

If e € E(G) — (E, U E), then there is at least one k such that F, U {e} is a balanced
subgraph of G. As x** satisfies (11) with equality, we have a, = 0. Thus, (1) is a posi-
tive multiple of (11) and hence a facet of Pg,(G).

3. To complete the proof let us suppose that g.c.d.(n,r) = d, d > 1. We show
that in this case (1) is not a facet of Pg;(G). In particular, we show that (1) is the sum
of d facet inequalities of Pp(G). Let W', i = 0,1,...,d — 1, be a subgraph of W
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which contains all outer edges of W but only n/d inner edges of W of the form
(i,i+7r),(i+ri+2r),..0(i —ri). Denote this set of edges by E!. Let us note
that the inner edges Ef of W' form a cycle of length n/d. We show that
(12) d.yxe+j.yx.<(+)r—jk—r
ecEiy eeEq

is a facet of W. Then the inequality (1) is the sum of d inequalities (12) for i =
=0,1,...,d — 1. In the graph W' there are n/d paths of length d formed by outer
edges such that each inner vertex of this path has degree 2. By using Propositions 1
and 2 each of these paths can be replaced by a single edge with the positive sign if
the number of negative edges in the path is even, and with the negative sign in the
opposite case. Thus we obtain another wreath W with parameters 7 = n/d, F = r|d
and j = j/d. Clearly, i = k. 7 + j. If the wreath Wis of type (i) and d is even then W
is of type (i). If Wis of type (i) and d is odd then Wis of type (ii). If Wis of type (ii),
then W is of type (ii), too. If W is of type (iii), then d is odd as g.c.d.(n,r) =
= g.c.d.(j, ) = d and hence W is of type (iii). Denote by E, and E, the set of the
outer and inner edges of W, respectively. Then by the second part of the proof,

Yxe+jYxe = (j+1).7—jk—F

eeEy ecEq

is a facet of Py (W). By Proposition 2 this gives that (12) is a facet of Py, (W).
Proof of Corollary 1. Let B be a balanced subgraph of W. Multiplying inequality
(7) by (k — j), inequality (6) by (j — 1), and summing them up, we get
jk = D)@+ P 2jk - D)(k+1+7r—)).

This gives that rank W < 2n — k — r 4+ j — 1. The converse inequality is proved
by the balanced subgraph F, whose number of edges is the right hand side of (2).

Proof of Theorem 2.Let Wbe one of the signed graphs with specified parameters
k,r, and j. Let €5 be the set of n cycles of length k + 1 + r — j, each of the form

{bi+r),(i+ri+2r),...(i+k=Dri+kr),(i+kri+k+1Dr))u
vili+k+)ri+(k+1)r-1),
(i+(k+1)—-Li+(k+1)—-2),...,0+1,i)},

i=0,1,...,n — 1. Let B be a balanced subgraph of W. As the cycles from %,
are not balanced, we have

(13) (k+Dut+(r—j)®zn.

Multiplying inequality (5) by (k + 1 — r + j), inequality (13) by (r — 1), and
summing them up, we get

(kr + j) (u® + 0°) = (kr + j) (k + j).

This gives rank W<2n—k— j- The opposite inequality is proved by constructing
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the maximal balanced subgraph B which arises when deleting the following edges

from W:
(0,1),(r,r + 1), ..., (kr, kr + 1) from E,, and

(kr + 1, (k+ 1) r+ 1), (kr + 2, (k+ 1) r+2),...(n—r,0) from E.
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Souhrn

O STENE MNOHOSTENU BALANCOVANEHO PODGRAFU
SvATOPLUK PoLJAK, DANIEL TURZIK
V préci je zaveden vénec W, , jako graf, ktery je tvofen jednim cyklem délky n a viemi jeho
r-chordami. Pro n€které hodnoty n a r je nalezen maximélni bipartitni podgraf grafu W, ,. Jako

aplikace jsou odvozeny nerovnosti popisujici nékteré maximilni stény mnohosténu bipartitnich
podgrafi a mnohosténu balancovanych podgrafi.

Pesome

O BEHKE MHOI'OI'PAHHUKA CBAJIAHCHUPOBAHHOI'O ITOATPA®A
SvaTtoprLuk PoLiak, DANIEL Turz{k
B pa6oTe BBeAIcH BEHOK W,, r KaK rpad cocTosmmit ¥3 OQHOTO IUKIIA JTAHLI 72 M BCEX €ro r-XOpXH.
M5t HEKOTOPHIX 3HAYEHHI 1 ¥ 7 OOWCaH MAaKCEMAIBHBIA ABYAONbHBLL noarpad rpada W, , u B Ka-

9€CTBE CJISACTBHS 3TOTO OIMCAHHS BHIBEACHBI HEPABEHCTBA ISt HEKOTOPBIX MaKCEMAJLHBIX IpaHeH
MHOTOTPaHHHKA JBYAOJBLHEIX HOArpa¢)0B ¥ MHOrorpaHHuKa c6aslaHCHpOBaHHBIX HOATPadoB.
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