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&asopis pro péstovini matematiky, rot. 98 (1973), Praha

ON CONVOLUTION OF k CONTINUOUS FUNCTIONS

Jikf JARNIK, Praha
(Received August 4, 1971)

It was shown in [1] that there exist functions x(¢), y(f) continuous in an interval I
such that the convolution x * y = [§ x(t) ¥(t — ) dr does not possess the derivative
at any interior point t € I. The aim of the present note is to generalize this result to
the case of k functions, k = 2.

First we shall introduce two lemmas. Lemma 1 is obtained from Lemma 1 [1] in
an easy way by mathematical induction. Lemma 2 is in a sense analogous to Lemma 2
[1], although a differentiable oscillating function is used instead of a piecewise
linear one. Again mathematical induction is used to prove the assertion for any
integer k = 2. In both cases the proofs are elementary and therefore they are omitted.

Lemma 1. Let I = (0, t,>, t, > 0 or I =0, +). Let k 2 2 be an integer,
Xy, X3, ..., X € C(I) (i.e. continitous functions on I),

()] < Li, |x(t + k) — x(t)] < K:h

forallt,t + hel, h > 0. Denote x x y = (x * y) (t) = [ x(z) y(t — <) dt for any
x,y€ C(I), tel. Then

tk—l

0] = s+ e e ) O] S Lk L

’

|zt + ) = 2t)] S LyL, ... Ly [L" (t(:j);)_'z R (ktk——ll) !] '

forallt,t + hel, h > 0.

Lemma 2. Let x(t) = xa(t) = 3b cos 2nat. Then for any integer k = 2 and all t

bktk-—l bk
X*kX*,.%¥X =———+————cos2nat + — fi(t,a
k times 22k—1(k - 1)! a fk( )

where |fk(t, a)l < ck(t)a i.e. fi is bounded for each k, t as a function of a.
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The main result of the present note is

Theorem 1. For any integer k = 2 there exists a function x(t) = x(t, k) e
€ C(<0, + o0)) such that the convolution x * x % ... * x (k times) does not possess the
derivative for any t > 0.

Proof. Let the integer k = 2 be fixed. Put
x,(f) = 3b,cos 2na,t, b, =2"**D" g = po¢+D

for all positive integers n,

W - x() = 000

Since |x(f)] < 4, 27**", the series (1) converges absolutely and uniformly on
n=1

0, + ). Hence

P1 p2 Px *
pi=1
i=1,..,k
The following inequalities are obvious:
(2) )] < 36, [xalt + h) — x,(8)] < na,b,h

forallt =0, h > 0.

For fixed t let us choose integers P, gus 7> Sus Un» W, analogously to [1], ie.

P,. even’ %pn é tan < %P,. + 1’
dn Odd, %qn = ta, < i'qn +1,

r"—_—p"—)l, "=£"_.—*—-.._3.-—)t, vn=q"-—)t, "=&'_-‘-_3_)t,
20,, a, ay 2(1,'
so that
3
(3) Sy — Ty =Wy — Uy = — .
. 2a

Denoting z = x*x*...*Xx, z

p2 ¥ ... % X, let us estimate the
difference

(4)

Zsz,---,pk(sn) - zm.---,px(rn)

Sy = Ty

S,,'—- Ty Sy — Tn
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where the sum is taken over all k-tuples of positive integers except n, n, ..., n. To
this purpose, let us estimate the expression

zPh"'yPk(s") R T Pk(r) .

Sp — Ty

(a) Let p, < n. Then according to Lemma 1 and (2)

sk—z k-—l
A4 é 2,‘_1 bmbpz bpk-x (}bpk'(kj)-; + napkbpk ( 1) )

1 t
< - - s k—2
= 21k = 2); bpb,,... b, (2 + na,, P 1)(: + 1)*72.

(b) Let p, > n. Then again according to Lemma 1 and (2), (3)

A

1 ril 4 gkt g 1
AL —=b,b, .. b, % T o - k=1,
= 2k P17 P2 pi (k _ 1)' . 3 = 3(k _ 1), bmbm bpkan(t + l)

The following inequalities are needed in the sequel:

()

b, < 2by,

(6)

. [
U
M= z[\’J 8

—k/(k+1
ab; < 2b)v+/1 )

for any positive integer N.

In fact, it holds b;.+; = b%**; hence b;s+1/b; = b5 < b; < 27/ and consequently

o)l e

o o (05

< 2b;* = 2bED

HA

-~
™M=
_

which proves inequalities (5), (6),

Now let us estimate the sum of all 4 = Ap,....;n such that Px * n: According to
(a), (b) and (5), (6) it holds
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© t + 1k—2 n—1 nt n—1
s Z bmbﬂz bPk-l {'(—)—[ z bmc + ___1 Zlapkbmc] +
Pk

2k — 2)! Loz k— 12

+ a,(t + 1) b,k} <
3(k - 1)’ pk=n+1

= Z bmbp: bpk-n{Ak(t) + Bk(t) bll-k/(k+l) + Ck(t)}

Pisees Pr-1
where 4,, B, C, are some functions of ¢. (The equality a, = b, **! = b, , is used
for the evaluation of the last term.) Finally, the inequality )" b; < 2 (which is a special
j=1

case of (5)) yields
Y 4 < 27 (AR(1) + Bi(1) by MDY

p*n

Evidently, the same estimate is obtained for the sums ). A where we assume suc-
, py*n
cessively j = 1,2, ..., k — 1. Summarizing all these estimates, we obtain obviously

an estimate for the expression (4):

2(s) = 2(rn) _ Znool(n) = Zn,...lTw)

Sp = Tn Sp — Iy

=

< k227 AR(r) + Bi(r) b H4TD).

On the other hand, Lemma 2 together with (3) yields

21k — 1)1 a0 V] 3

Z,..., n(sn) — Zy,..., n(rn)

= Dy(t) bja, + 3gu(t; a,) by = D(t) b, ' + 3gu(t, a,) b,

where |gi(t, a,)| < E,(t) and the functions D,, E, are independent of n. Comparing
the two last relations, we obtain immediately

fim 202 =24 _ o

n- Sy — I'y
Quite analogously it may be shown that

2(ws) = 2(v) _

lim — o0

B W, — U,
and the assertion of the theorem follows immediately (cf. Lemma 3 [1]).
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In an analogous way as in [1] it is possible to prove

Theorem 2. There is a set M =« C*=C x C x ... x C (k times), C = C(I)
such that

(a) C* — M is of the 1st category in C*,

(b) if x = (xy, X3, ..., X) € M, then the convolution x{ * x, * ... * x, does not possess
the derivative at any interior point tel.

However, we prefer to introduce the proof of a similar theorem which is perhaps
more interesting since it deals (for any integer k = 2) with the space C and not C*.
For the sake of brevity let us suppose I = <0, 1).

Theorem 3. Let V be a set of all functions x(t) e C = C(0, 1)) such that the con-
volution z = x * x ... » x (k times) does not possess the derivative at any t, 0 <
<t < 1. Then the complement W = C — V is a set of the 1st category in C (with the
usual uniform metric).

Proof. For any positive integer n let G, G, be the sets of functions from C with
the following property:
Toanytel, = (1/n, 1 - 1/n> there are number r, s, r < s such that

t+

() t—

B
IA
~
A
I\
1]
IA
ERES

(8) z_(sz————:(r_) > n (< —n respectively) .

[} ©
Put M, = NG, M, =NG,, M =M, nM,. Obviously M = V and hence
n=1 n=1

W = C — M. We shall show (for any positive integer n):

(i) G, as well as G, are open sets, i.e. F, = C — G, F, = C — G, are closed
sets;

(ii) G, as well as G, are dense sets in C.
This will prove Theorem 3 since then We C — M = G(F: v F,) where F,, F;
are nowhere dense in C. " |
(i) Let x,(¢) € F, for all positive integers v, lim x,(t) = x(¢) in C, i.e. uniformly.
Then Lemma 4 [1] implies lim z,(t) = z(¢), z, =v;,w¢ x, * ... * x, (by mathematical

induction). As x ¢ G}, there is t, € I, such that for all r, < s, satisfying

A .

A

IA
X |-

©) t, ~

S | =
A
~

<

Sy t, +
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it holds
(10) . ZV(SV) — Zv(rv)

Sy — Ty

IA

n.

We can choose a convergent subsequence from the sequence t,; let us assume at
once limt, = tel,. For any r < s satisfying (7) let us define r, =r + ¢, — 1,

A aud" )

s, = s+ t, — tsothat r, > r, s, > s and (10) holds. Hence also

z(s) — z(r) — lim z,(s,) — z,(r,) <n
S—r v—= s, — T,
which prowes (i). .
(i) Let ye C, e > 0, n a positive integer. We shall show that there exists x € G,
o(x, y) < &, ¢ being the uniform metric in C. The function y can be approximated by

a continuous piecewise linear function 5 so that ¢(y, #) < %e. There is a constant A
such that

(11) ] = A, |n(t;) — n(t2)| £ Alty = 1,

for0<t;<1,i=1,2.
Put x = + X, X(t) = }¢ cos 2nat (cf. Lemma 2). Evidently o(x, y) < o(x, n) +
+ o(y, n) < e Hence it is sufficient to prove x € G, .

It holds
(12) Z = XAX K KX = Xy Xgp ¥ e * Xy +
kK [k
+ Z (')q*...*n * X ¥ oee * Xy,
j=1\J J times (k= j) times

Let tel,. Put r = (2m + 1)[2a, s = (2m + 6)[2a where m is an integer, 2m + 1 <
< 2at < 2m + 3. Then obviously max(s —¢t, t —r) <s— r = 4a; hence (7)
holds for a large enough. Our aim is to estimate the expression (z(s) — z(r))/(s — r);
let us first consider the analogous expression for any term of the sum on the right hand
side of (12). Denoting

Zj =NE RN R X R X KL ¥ X,
' Jj times (k—j) times

it holds according to Lemma 1 and (11)

s (EG)MAJ ((ks*-_zz)! ¥ (krk—_ 11)’> .

The right hand side of the inequality is bounded independently of a (since (7) holds

z g(s) — zy(r)
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for r, 5). On the other hand, the first term on the right hand side of the identity (12),
i€ Zg(t) = X * Xge * ... % X, (k times) fulfils (again according to Lemma 1)
zo(s) — zo(r) 2671 2a

.=+ gt a
s—r 2%k — 1)1 5 o )

where g,(t, a) is bounded as a function of a for any k, ¢. It is evident that if a is chosen
sufficiently large then (8) holds and hence x € G, . The proof of (ii) for the sets G,
being quite analogous, we may consider the proof of Theorem 3 complete.

Remark. Let & eV (see Theorem 3). Take the set V(¢) of all functions from C
with the following property: If x;eV(¢), i =1,2,...,k, then the convolution
X, * X, * ... * x, does not possess the derivative at any point 0 < ¢ < 1. It would be
interesting to obtain some information on the structure of the sets V() and their
mutual relations. (If ¥"= U V(£), then evidently ¥ < ¥~ and hence the complement

seV

of ¥"in C is of the 1st category.)
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