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ON A SET IN Rn UNDER COORDINATE TRANSFORMATIONS 

HARRY I. MILLER*), Sarajevo, MUKUL PAL, Kalyani 

(Received August 4, 1982) 

1. INTRODUCTION AND PRELIMINARIES 

Let G be an open subset in Rn. In this paper we consider vector-valued functions 
T: G ^ Rn. Such a function can be written in the form T = (/i,/ 2, • ••,/„)> where 
fi : G -> R for each i = 1, 2,..., n. Following Apostol ( [ l ] , p. 417), if G is an open 
subset in R", then a vector-valued function T: G -> Rn is called a coordinate trans­
formation on G if it has the following three properties: 

a) Te C on G, that is dfjdxj (partial derivative) exists and is continuous on G 
for each i,j e {1, 2,..., n}. 

b) Pis one-to-one on G. 
c) The Jacobian determinant Jr(t) = det [d/f/dx/t)] =1= 0 for all t in G. 

The following notation will be used in this paper. 
(1) 5[c, Q] will denote the closed ball in Rn with center c and radius Q and 5(c, @) 

will denote the corresponding open ball. 
(2) If A and B are two sets, then A\B will stand for the set of all elements of A which 

are not in B. 
(3) For each Lebesgue measurable subset X of Rn, \x\ will denote the Lebesgue mea­

sure of X. 
(4) A subset B of a topological space Y is said to possess the Baire property (or to 

be a Baire set) if B can be written in the form B = (G \ P) u Q, where G is an 
open set and P, Q are sets of the first category (i.e. countable unions of no­
where dense sets). 

(5) The set of points x in Rn for which x + 1 belongs to the set E, E c Rn, is denoted 
by E - L 

(6) By the difference set D(A) of a set A cz Rn we mean the set of all vectors x — y, 
where x, y e A. 

*) The work of the first author was supported by the Republican Council for Scientific Work 
of Bosnia and Herzegovina. 
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(7) If T: Rn -> R" and C is a subset of Rn, then T(C) denotes the transformed set 
of C under T, i.e. T(C) = {T(c) : c e C}, and T(c) denotes the image of c under 
the transformation T 

(8) The zero vector in Rn, i.e. (0, 0 , . . . , 0), will be denoted by 0. 

In this paper we prove several general theorems dealing with collections of trans­
formations and their actions on subsets of Rn of positive measure or on second cate­
gory subsets of Rn possessing the Baire property. As corollaries of our theorems we 
obtain results of H. Steinhaus [12], S. Piccard [11], and S. Kurepa [5], In addition 
an example is given to show that Theorem 2' in [7] cannot be improved. 

2. RESULTS 

Theorem 1. Suppose A, A a Rn, is a set of positive Lebesgue measure and a is 
a point of density of A. IfTx, T2,..., Tp are p transformations satisfying 

(a) Tt : Rn -> Rn for each i = 1, 2, ..., p; 
(P) Tt is continuous at 0 and Tt(0) = 0 for each i = 1, 2, ..., p; 
(y) Tt(a) = a for each i = 1, 2, ..., p; 
(8) there exists an R > 0 such that Tt is a coordinate transformation on S(a, R) 

for each i = 1, 2 , . . . , p. 

Then there exists a ball K with center at the origin so that for every x EK there 
are vectors a(x), ak

k(x) e A; k, k' e {1, 2 , . . . , p] such that 

Tk(a
k
k(x)) = a(x) + Tk,(x) ; k, k'e {1, 2, ..., p] . 

Proof. There exist positive numbers Rx and R2, Rt < R, such that for each s, 
0 < s < 1, we have 

i) S[a, sR2[\ cz Tk(S[a, sRt_\) for each k = 1, 2 , . . . , p. The proof of this statement 
is given (separately) in Remark 2 at the end of this paper. This is done in order 
to make the proof of Theorem 1 more readable. Since a is a point of density of A 
we have 

ii) \A n S[a, K]|/|S[tf, K]| = 1 - e(R) for each R > 0, where 0 = e(R) = 1 and 
e(R) -> 0 as R -> 0 + . 

Because of i) we have 

iii) Tk(A n S[a, sRt]) u Tk(A
c n S[a, sRj) => S[a, sR2_\ for each s, 0 < s < 1, 

and each k = 1, 2 , . . . , p, where Ac = Rn\ A. 

Using the transformation formula for multiple integrals (see [ l ] , Theorem 15.11) 
and ii) we have 

iv) |S[a, sK2]| - |7;(AC n S[a, sR^)] = 7r,.(sK4)
n - Kk(s). e(sRt). n^sRJ1 for each s~ 

0 < s < 1, and each k = 1, 2 , . . . , p; and limKk(s) = |Jrk(a)|-
s->0* 
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Here nn is the constant of proportionality in the formula for the ^-dimensional 
volume of a ball in Rn. 

iii) and iv) taken together imply that there exists s0 such that if 0 < s < s0, then 

v) \S[a, sR2] \ Tk(A n S[a, sRj)\ < (2p 2 ) - 1 . |S[a, sK2]| for each k = 1, 2, ..., p. 

From v) and (p) it follows that there exists a ball K with center at the origin such that 

vi) \S[a, sK2] \ {Tk(A n S[a, sKJ ) - Tk,(x)}\ < 2/(3p2) . \S[a, sR2]\ for each s, 
0 < s < s0, for each k, k' e {1, 2 , . . . , p} and each x e K. 

We now show that if s < s0 and xeK, then 

x(x) = An(n n Ck
k) 

k=\ k'=\ 

is a set of positive Lebesgue measure, where Ck = Tk(A n S[a, sKJ ) — Tk>(x) and 
s0 (0 < s0 < s0) is sufficiently small. To see this, pick s0 so that 0 < s0 < s0 and such 
that 

vii) |A n 5[a, sR2] | > %\S[a, sR2~\\ if 0 < s < s0. Let 0 < s < s0, then for each 
XEK, 

X(x) -D (A n 5[a, sK2]) n ( n p C*') 
and therefore k _ 1 *'_1 

viii) \X(x)\ > \s[a, sR2] | - (i) . |5[a, sR2] | - f I |S[fl, ^ 2 ] s 

\ {Tfc(A n S[a, sRJ) - T,-(.x)}| > (|) |S[«, sR2]| - f f 2/(3p)2 |S[a, sR2]|. 
fc-=l fc'=l 

Hence |X(x)| > ( | - | ) \S[a, sR2]\ > 0. 

So there exist vectors 

a(x) G A and «£'(*) e A ; k, k' = 1, 2, ..., p , 
such that 

a(x) = T,(aJ:'(x)) - Tk,(x) ; k, k' = 1,2,..., p . 

If we consider linear transformations we gst the following corollary of Theorem 1. 

Corollary la. Suppose A, A a Rn, is a set of positive measure and a is a point 
of density of A. If 7\, T2,..., Tp are non-singular linear transformations, each 
leaving a fixed, then there exists a ball K with center at the origin so that for every 
xeK there are vectors a(x) and ak (x) in A, k, k' = 1, 2, ..., p, such that 

Tk(a
k
k(x)) = a(x) + Tk,(x) ; k, k' = 1, 2 , . . . , p . 

If we take p = 1 and Tx to be the identity transformation (Fi(x) = x for each x 
in Rn) then Corollary la yields the following result of Steinhaus [12]. 

Corollary lb. If A cz Rn is a set of positive Lebesgue measure, then D(A), the 
difference set of A, contains a ball K with center at the origin. 
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We now present the Baire set analogue of Theorem 1. 

Theorem 1'. Suppose that A, A a Rn, is a Baire set of the second category, i.e. 
A = (G\P)\J Q (where G is open and non-empty and P and Q are sets of the first 
category), and a e G. If 7\, T2,..., Tp are p transformations satisfying conditions 
(a), (P), (y), and (5) in Theorem 1, then there exists a ball K with center at the 
origin so that for every x eK there are vectors a(x), ak(x) e A, k, k' e {1, 2, ..., p) 
such that 

Tk(a
k
k\x)) = a(x) + Tk,(x) , k, k'e {1, 2,...,p}. 

Proof. There exists an Rl9 R > Rl > 0, such that S^a, KJ c G. Because of (5) 
(see [1], Theorem 13.5 and Example 3 on p. 356) each Tk is a homeomorphism when 
restricted to S(a, KJ. Therefore, by virtue of (y), there exists R2 > 0 such that 
R2 < Rj and 

i) S(a, R2) c Tk(S(a, Kj) for each k = 1, 2 , . . . , p. 

Furthermore, since each Tk is a homeomorphism on S(a, R^, we have: 

ii) Tk(A n S(a, Kx)) =-> S(a, R2)\Pk for each k = 1, 2, ..., p, where each Pk is a set 

of the first category. 

By (P) and ii) it follows that there exists a ball K with center at the origin and a num­
ber K3 (0 < K3 < R2) such that 

iii) Tk(AnS(a, R,)) - Tk{x) => S(a,R3)\P
k
k holds for each k, k' e {l, 2, . . . , } , 

where Pk
k is of the first category. 

We now show that if x e K, then 

X(x) = An(h (\CX) 
k = l k' = l 

is a set of the second category, where Ck
k = Tk(A n S(a, R^j) — Tk.(x) for each 

/c , fc ' e{ l ,2 , . . . , p} . 
To see this note that 

X(x) => (A n S(a, R3)) n(() C\ CO 
k = l fc'=l 

and therefore 

iv) X(x) => (S(a, R3) s P) n ( f. f) (S(a, R3) \ Pj')). 
fc=l k ' = l 

If we consider linear transformations we get the following corollary of Theorem V. 

Corollary l'a. Suppose A, A a R", is a Baire set of the second category, i.e. 
A = (G\P) U Q (where G is open and non-empty and P and Q are sets of the 
first category), and aeG.If Tl9 T2,..., Tp are non-singular linear transformations, 
each leaving a fixed, then there exists a ball with center at the origin so that for 
every xeK there are vectors a(x) and ak

k(x) in A; fc, k' = 1, 2 , . . . , p such that 
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Tk(a
k
k'(x)) = a(x) + Tk.(x); k, k' = 1,2,..., p. 

If we take p = 1 and Tx to be the identity transformation then Corollary Va 
yields the following result of Piccard [11]. 

Corollary l'b. If A a Rn is a Baire set of the second category, then D(A), the 

difference set of A, contains a ball K with center at the origin. 

We now state a theorem which yields a result of S. Kurepa as a corollary. 

Theorem 2. Suppose A, A a R", is a set of positive measure and a is a point of 
density of A. Suppose further that T1? T2, ..., Tp are p transformations satisfying 
conditions (oc), (y) and (8) in Theorem 1. If T[,T2,..., T'p are p transformations 
satisfying conditions (a) and (P), then there exists a ball K with center at the origin 
such that for every xeK there exist vectors 

a(x)e A , ak(x) e A , k = 1,2, ..., p , 

such that 

Tk(ak(x)) = a(x) + T£(x) , k = 1, 2, ..., p . 

Proof. The proof of Theorem 2 is very similar to that of Theorem 1 and will 
therefore be omitted. 

If we consider linear transformations we get the following corollary of Theorem 2. 

Corollary 2a. Suppose A, A a R", is a set of positive measure and a is a point of 
density of A. Suppose further that T1, T2, ..., Tp are non-singular linear transfor­
mations each leaving a fixed. If T[, T2, ..., Tp are p linear transformations, then 
there exists a ball K with center at the origin such that for every x e K there exist 
vectors 

a(x) e A , ak(x)eA, k=\,2,...,p 

such that 

Tk(ak(x)) = a(x) + П(x) , k=l,2,...,p. 

If Tl9 T2,..., Tp are all taken to be the identity transformation and Tk = (bk

tj) 
is the linear transformation given for each k = 1,2, ..., p as follows: by = ock for 
/ = j and bk

tj = 0 for / + j , then Corollary 2a yields Theorem 1 of S. Kurepa [5]. 
Namely, we have 

Corollary 2b. Let A c Rn be a set of positive measure. For any system of p real 
numbers ax, a 2 , . . . , ap (afc + 0) there exists a ball K with center at the origin, such 
that for any xeK there are vectors a0(x), a±(x),..., ap(x) in A such that 

x = (at(x) - a0(x))j(x1 = (a2(x) - a0(x))/a2 = ... = (ap(x) - a0(x))]ctp . 

We now present the Baire set analogue of Theorem 2. 
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Theorem 2'. Suppose A a Rn is a Baire set of the second category, i.e. A = 
= ( G \ P ) u Q (where G is open and non-empty and P and Q are sets of the first 
category), and a e G. Suppose further that Tu T2,...,Tp are p transformations 
satisfying conditions (a), (y) and (8) in Theorem 1. If T[, T2, ..., Tp are p transfor­
mations satisfying conditions (a) and (p), then there exists a ball K with center 
at the origin such that for every x EK there exist vectors 

a(x) e A , ak(x) e A , k = 1,2,..., p , 

such that 

Tk(ak(x)) = a(x) + Tk'(x), k=l,2,...,p. 

Proof. The proof of Theorem 2' is very similar to that of Theorem V and will 
therefore be omitted. 

Clearly, if we consider linear transformations we can obtain Baire set analogues 
of Corollaries 2a and 2b. These analogues (their statements and proofs) are straight­
forward and will not be listed here. 

We conclude this paper by showing that Theorem 2' in [7] cannot be improved. 
Let Q be a metric space and let S£n denote the family of all Lebesgue measurable 

subsets of Rn. Suppose further that for each COE Q, Tw is a mapping of S£n into Z£n. 
In [7] families of transformations (T^^ are considered that satisfy the following 
conditions. There exists CO0E Q and a, b E Rn such that: 
i)' l imsup{|a — F^K)!} = r for each closed ball K = S[b, r] with center b. 

n->oo 

Here \y — C\ denotes the set {\y — c\ : c E C}, where \y — c\ denotes the ordinary 
Euclidean distance between y and c. 

ii) E,F ESen, E c F implies TW(F) c TW(F) for each COEQ. 

iii) If E E <£n and con - co0 (in Q), then lim |rWn(F)| = |rwo(F)| = \E\. 
n-+oo 

Theorem 2' in [7] states: Suppose A and B are two sets of positive measure in R" 
and a is a point of density one in A, ft is a point of density one in B and co0 is a point 
of Q. Suppose (rw)c(,e.o is a family of transformations of S£n into JS?n satisfying the 
conditions (i)', (ii) and (iii) with respect to the points a, b and co0 mentioned above. 
Then, if (con)n= t is a sequence in Q converging to co0 and p is a positive integer, 
there exists p strictly increasing integers nl9 n2, -..,np such that 

^ \ ( - ) ^ % ( . ) n . . . n r % ( f l ) 

is a set of positive Lebesgue measure. 

Neubrunn and Salat [9], M. Pal [10], and H. Miller [8] have papers related to [7]. 
We now proceed to show that the last mentioned theorem cannot be improved. 

Let K denote the open ball in R2 with center at the origin and radius 1 and let L 
(aR2) be given by the formula L = {(0, 0)} u [0, 1) x (0, 1). L e t / denote the func­
tion defined on K with range L, defined as follows: 

230 



f(0, 0) = (0, 0) and f(x, y) = (9j2n, r) for each (x, y) e K \ {(0, 0)} , 

where 0 g 0 < In , x = r cos 0 and y = r sin 6 . 

Then f is a one-to-one mapping of K onto L. Furthermore, the partial derivatives 
o f fand f - 1 exist and are continuous onK \ {(x, 0) : 0 = x < 1} and (0, 1) x (0, 1), 
respectively. 

In addition, J f and Jf-i (the Jacobians off and f - 1 , respectively) are non-zero 
at each point of K \ {(x, 0) : 0 = x < 1} and (0, 1) x (0, 1), respectively. 

Each x e [0, 1] has a unique binary expansion 

00 

x = Z^C*)2-'* 
i= 1 

where xt(x) = 0 or 1 and 
OO 

Z *.•(*) = °° 
i = l 

except if x = 0. The functions (xt)?L t are mutually independent identically distributed 
random variables ([4], p. 1) defined on the probability space ([0, 1], M, m), where M 
is the collection of all Lebesgue measurable subsets of [0, 1] and m is the Lebesgue 
measure. Let N = {1, 2, 3,...} and suppose h is a one-to-one mapping from N x N 
onto N. Then the random variables (y,)r=i defined by 

OO 

yiW = Zx/.(«,o(x)-2-" 
n = l 

tor each i e N and each x e [0, 1], are mutually independent and each of them is 
equidistributed on [0, 1] (see [4], p. l), i.e., given any subinterval I of [0, l ] we have 

\(xe[0,l]:yi(x)el\ = \yTl(l)\ = \l\ 

for each i in N. 

Consider the mappings (TI)fL1 on 0>(K) (the collection of all subsets of K) into 
&(K) given as follows. If B c K, then B = \J(Br : 0 = r < 1), where Br is the set 
of all points of B whose distance from the origin is r. Then define: 

T;(B) =r1(\J(yT\Cr) x {r} : 0 < r < l)) 

if B0 = 0 and 

T;(B) = f-\U(yT\cr) x {/•}. o < - < 1)) u (o, o) 

if B0 = {(0, 0)}, where f(Br) = Cr x {r}, Cr <= [0, 1). Notice that yT\C) c [0, l) 
if C c [0, 1). 

For each i e N, let Tf be the extension of T/ given as follows: 

T,(B) = T;(B nK)u(B\K) for each subset B of R2 . 
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It is not difficult to see that for each ieN, T{(B) is a measurable subset of R2 

whenever B is a measurable subset of R2 and that \Tt(B)\ = \B\ for each measurable 

set 5. 

Consider the following figure. 

Fig. 1. 

Let the curve k be chosen so that k is strictly monotonic and so that A, the open 

ball K less the shaded area (including the points on k, (0, 0) and the points on the 

positive x-axis) has metric density 1 at the origin. Clearly A is an open subset of K. 

We now show that if the mappings (T^)f=1 are given as above and (T^)7=i is any 

subsequence of (T^)f=1 then 

\A n n Th(A)\ = 0. 
1 = i 

To see this notice that f(Ar) is of the form Ir x {r}, where Ir ( c [0, 1J) is an interval 

of length strictly less than 1 for each r, 0 < r < 1. Here, as before, Ar denotes the 

set of all points of A whose distance from the origin is r. For each r, 0 < r < 1, the 

sets {(yi^vIr) .' k e N)} are independent (in the sense of probability theory) and each 

set has the same Lebesgue measure, namely ^ ^ ( I , . ) ! is equal to the length of Ir for 

eachj e /V. Therefore, since the length of Ir is less than one, the measure of 

nyr/to 
I=i 

is zero. This implies that 

00 00 

and therefore 

n r . /A ) = n ( u Th(Ar))= u (OTh(Ar)) = 
j = l j = 1 0 < r < l 0 < r < l j ' = l 

oo 

= u (nrVWM'})) 
0 < r < l j = l 

f)Th(A)= U S,, 
У = l 0 < r < l 

where S, is a set of points, each having distance r from the origin, whose one-dimen-
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sional Lebesgue measure ([2], Example 1.5, p. 6) is zero an hence ([3], p. 193) 

|nr,/4 = °-
1=1 

Consider the metric space Q = IV u {0}, with the metric d, where d(i,j) = 
= |l/i - l/j| for each i,j e N and d(i, 0) = l/i for each i e N and d(0, 0) = 0. Let 
(Ti)T=i De l " e sequence of transformations given above and let T0(B) = B for each 
Lebesgue measurable subset B of R2. Then Tn maps S£2 into Z£2 (the collection of 
all Lebesgue measurable subsets of R2) for each ne Q. 

The collection of mappings {Tn}neQ has the following properties. 

i') If U is a closed ball in R2 with center at the origin and n e Q, then sup {|T„(x)| : 
: x e U} = r, where r is the radius of U and |y | is the distance between v and the 
origin. 

ii) If E, F e <£2 and E c= F, then Tn(E) c Tn(F) for each n e Q. 

iii) If EeS£2, then lim |T(F)| = |T0(F)| = |F|. 
w->oo 

To see the last property observe that E e <£2 implies 

Tn(E)= U Tn(Er)u(E\K) if Fo = 0 
0 < r < l 

and 
Tn{E)= U TB(Er)u(£\K)u{(0,0)} 

0 < r < 1 

if Fo = {(0, 0)}, where Er (0 = r < l) is the set of all points in E whose distance 
from the origin is r. The one-dimensional Lebesgue measure of Tn(Er) and Er are 
equal for each r, 0 = r < 1, and therefore |F„(F)| = |F| for each n e Q and hence 
iii) follows. 

We have thus proved the following theorem. 

Theorem 3. There exist Lebesgue measurable subsets A and B of R2, each having 
positive measure, and points a and b having density one in A and B, respectively, 
and a point co0 in Q (a metric space) and a family (T^^n of transformations of S£2 

into <£2 satisfying i'), ii) and iii) with respect to the points a, b and co0 such that 
for every sequence (con)n

G
=l in Q converging to co0, 

An?\ T (B) 
k=l k 

is a set of measure zero for each subsequence (conk)k=i of (ton)n = x. 

R e m a r k l . I t i s not difficult to verify that Theorem 2 in [6] follows from Theorem 
2 in this paper. It is also interesting to note that Theorem 1 in [6], whose proof is 
in some ways similar to the proof of Theorem 1 in this paper, can be generalized by 
omitting its first hypothesis (namely that |F;(xj| = |*| (i = 1,2, . . . ,k) for any 
xeK[0,Q]). 

233 



Remark 2. We now prove i) in the proof of Theorem 1 by showing the following 
lemma. 

Lemma. Suppose T = (fl9f2, ...,fn) is a transformation of R" into Rn.. (i.e. 

T:Rn -> R" and fi :Rn -> R for i = 1, 2, .... n). Suppose further that: 

(a) T(a) = b (a, be Rn), 

(b) there exists a neighborhood N of a such that dfjdxj exists and is continuous 
on Nfor each i,j e [1, 2, ..., n}; 

(c) JT(a) * 0. 

Then there exist Rl9 R2 > 0 such that 

(d) S[b,-sR2] cz T(S[a, sKJ ) for each s, 0 < s < 1. 

Proof. By the above conditions (see [1], Theorems 13.4,13.5) there exists a positive 
number R and an open subset K of Rn containing b such that Tmaps S(a, R) homeo-
morphically onto K. Since T restricted to S(a, R) is a closed mapping, it follows 
that each s, 0 < s < 1, there exists a unique positive number r(s) such that 

T(S[a9 sR]) -D S[a, r(sj] 
and 

T(S[a9 sR]) * S[a9 r] 
if r > r(s). 

If lim r(s)lsR > 0, it is easy to see that (d) follows. 
s - 0 + 

If lim r(s)jsR = 0, then there exists a strictly decreasing null sequence (sn)n=l with 
s - 0 + 

the property that lim r(sn)jsnR — 0. 
H-+00 

If £ > 0, then it follows that there exists two sequences (xn)n = t and (yn)n= t in R" 
such that 

a) yn = T(xn) for each n, 

p) xn e S(a, R) for each n and lim xn = a, 
n->oo 

y) yn e K for each n and lim yn = b, 
n->oo 

5J \\yn - b\\l\\xn - a\\ <(l + s)r(sn)lsnR, 

where || || denotes the usual Euclidean norm in Rn. Property 5) follows from the defini­
tion of the function r(s). Let G = (gl9 g2,..., g„) denote the inverse of T on K, i.e. 
for each y eK, G(y) = x if and only if T(x) = y. Of course G is a homeomorphism 
of K onto S(a, R), G(b) = a and all the partial derivatives dg^Xj exist and are 
continuous on a neighborhood of b (see [1], Theorem 13.6). This in turn implies 
(see [ l ] , p. 356, example 3) that there exists a neighborhood N of b, N c K, and a po­
sitive number A such that fG^j) — G(y2)|| ^ -4||yi — y2|| whenever yi,y2eN. 
The last inequality clearly contradicts 5) given above and hence lim r(s)lsR = 0 is 
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impossible. This implies that lim r(s)lsR > 0 and (d) follows, completing the proof. 

Notice that the ratio RilR2 in our lemma can be taken to be A. 

Remark 3. Various authors have generalized Corollary lb. One such generaliza­

tion can be found in the paper: M. E. Kuczma and M. Kuczma: An elementary proof 

and an extension of a theorem of Steinhaus. Glasnik Mat. 6 (26) (1971), 11 — 18. 
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