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ON A RELATIONSHIP BETWEEN MONOIDS
AND MONOUNARY ALGEBRAS

MIROSLAV NOVOTNY, Brno
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1. INTRODUCTION

In the note [6], B. Zelinka assigned a monounary algebra to any finite semigroup
and characterized the class of such algebras in terms of the graph theory. In this
article, we omit the hypothesis that the semigroup is finite and characterize the class
of algebras assigned to monoids in terms of monounary algebras. On the basis of
this characterization, we derive Zelinka’s result.

2. ALGEBRA ASSIGNED TO A MONOID

We recall (cf. [4] p. 1365) that a monounary algebra is an ordered pair (S, f)
where S is a set and f a mapping of S into S. Let NV be the set of all nonnegative
integers. For any p € N, we denote by f” the pth iteration of f. We put

0 = {(x,y)eS x S; there exist p, g€ N with f7(x) = f%(y)} .

Then ¢ is an equivalence on S whose blocks are called components of (S, f)-

In what follows, we do not distinguish between algebras and their carriers; we also
omit the adjective “monounary”. If t € S, we denote by Sb ¢ the subalgebra of (S, f)
generated by the set {t} and by Cp t the component of (S, f) containing t. Clearly,
Sbt = {f!(t); 1 e N}. It is easy to see that any component of (S, f) is also a sub-
algebra.

1. Definition. Let (S, +, €) be a monoid with the binary opzration - and the unite, a €
€ S an arbitrary element. For any x € S, we put f(x) = x . a. Then (S, f) is an algebra;
it will be referred to as an algebra assigned to (S, +, e) with respect to a.

For any algebra (S, f), we denote by End (S, f) the monoid of all endomorphisms
of (S, f) where the nullary operation is idg and the binary operation is the com-
position . of endomorphisms.
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2. Theorem. Let (S, , €) be a monoid, a€S its arbitrary element, (S, f) the
algebra assigned to (S, +, e) with respect to a. Then there exists a submonoid
(E, o, ids) of End(S,f) such that, for any x €S, there exists exactly one k € E
such that k,(e) = x. '

Proof. Forany x € S, we put k,(t) = x . t where t € S is arbitrary. Thus, k(f()) =
=x.(t.a) = (x.t).a = f(k(t)) for any te S which entails that k, is an endo-
morphism of (S, f) for any x € S. Furthermore, k, = idg and k,(k,(t)) = x.(y . 1) =
=(x.y).t = k,,(t)forany x, y, t € S and, thus, ({k,; s € S}, o, ids) is a submonoid
of End (S, f). Clearly, k, is the only element k in {k; s € S} with k(e) = x. O

3. Definition. Let (S, f) be an algebra, e€ S its element, and (E, o, ids) a sub-
monoid of End (S, f) such that, for any x € S, there exists exactly one k, € E such that
k.(e) = x. Then e is said to be a marked element and (E, -, ids) a selective monoid
corresponding to e. An algebra having a marked element and a corresponding selec-
tive monoid is said to be suitable.

4. Corollary. An algebra assigned to a monoid is suitable. []

5. Definition. Let (S, /) be an algebra, S, S, its components, h a homomorphism
of S, into S,. We put

__{h(t) foramny teS,,
k() = {t forany teS —S,.

Clearly, k is an endomorphism of (S,f); it will be called the normal extension of h
and denoted by nl h.

6. Definition. An algebra (S, f) is said to be very suitable if there exists an element
ee S and for any x € S a homomorphism h, of Cp e into Cp x such that h,(e) = x
and that ({nl h; x € S}, o, ids) is a selective monoid corresponding to e.

7. Theorem. An algebra is suitable if and only if it is very suitable.
Proof. By 6 and 3, any very suitable algebra is also suitable.

Let (S, f) be a suitable algebra, e its marked element, (E, o, ids) its selective monoid
corresponding to e. For any x € S, there exists exactly one k, € E such that kx(e) = X.
We put h, = kxl\ Cpe. Then h, is a homomorphism of Cp e into Cp x such that
h.(e) = x for any x € S.

Clearly, nl h,(e) = h,(e) = k,(e) = x for any x € S.

Let x, y, t € S be arbitrary. Two cases may occur.

(a) fCpy + Cpe,then nlh[S] = S — Cpeand nlh, |\ (S — Cpe) = ids_ce-
This implies that nlh, o nl h, = nl h,.

(b) Suppose Cpy = Cpe.
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If te S — Cp e, then nl hy(t) = t which implies that (al h, o nl h,)(f) = ¢.

If teCpe, then nlh(t) = k(t). Since e,t1e Cpe, we obtain kfe) = yeCpe,
k,(t)e Cpe. Since (E, o,ids) is selective, there exists z € S such that k, o k, = k..
This implies that k(1) = k,(k,(1)) = k.(nl hy(1)) = (nl h, o nl h))(1). Thus, nl h,(t) =
= (nl hy o nlh)(1).

Since nl h(t) = t for any te S — Cp e, we obtain nl h,(t) = (nl h. o nl h,)(t) for
any te€S. Thus, nlh onlh, = nlh_.

We have proved that ({nlh,; xeS}, o) is a semigroup. Clearly, nlh, = ids.
Thus ({nl h; x € S}, o, idg) is a monoid; its selectivity is obvious.

Hence, (S, f) is very suitable. [J

3. CHARACTERIZATION OF ALGEBRAS ASSIGNED TO MONOIDS

1. Definition. Let (S, f) be a suitable algebra, e its marked element, (E, o, ids)
its selective monoid corresponding to e. For any x € S and any t€ S, we put x. t =
= k,(t) where k, is the only element k € E with k(e) = x. Then (S, *) is said to be
the groupoid associated with (S, f) with respect to e and (E, o, idg).

2. Theorem. Let (S, f) be a suitable algebra, (S, *) the groupoid associated with
(S, f) with respect to a marked element e € S and a corresponding selective monoid
(E, o, ids). Then (S, -, e) is a monoid and (S, f) is assigned to (S, -, e) with respect
to f(e).

Proof. (1) For any x€ S, let k, denote the only element k € E with k(e) = x.
Then x . e = k,(e) = x. Furthermore, idg = k, for some ze S because idg is the
unit in End (S, f) and, thus, idg € E. We have z = k,(e) = ids () = e which implies
that e . x = k,(x) = idg(x) = x for any x € S. Thus, e is the unit in S.

(2) Let x,p,z€S be arbitrary. Then x.(y.z) = k(k,(z)) = k,(z) for some
teS. Clearly, t = k,(e) = k(k,(e)) = k,(y). Thus, x.(y.z) = ki )(z). On the
other hand, we have (x.y).z = k,(z) = ki (). Hence, the associative law is
satisfied in (S, *).

(3) Let us put a = f(e), g(x) = x . a for any x € S. Then g(x) = x.a = k(a) =
= k(f(e)) = f(k«(e)) = f(x) for any x € S. Hence, g = f and (S, f) is the algebra
assigned to (S, -, e) with respect to f(e). [

3. Characterization Theorem. Let (S, f) be an algebra. Then the following as-
sertions are equivalent.

(i) (S,f) is an algebra assigned to a monoid (S, -, e) with respect to an element
aes.

(i) (S, f) is suitable.

(iii) (S, f) is very suitable.

Proof. (ii) and (iii) are equivalent by 2.7, (i) implies (ii) by 2.4, (ii) implies (i)
by 2. O '
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4. FINITE ALGEBRAS
An algebra is said to be connected if it has exactly one component.

1. Definition (cf [3] Def. 4, [4] Def. 2, [5] p. 107, [1] 2.4, [2] p. 427). Let (S.f)
be a finite connected algebra. We put
Z, = {xe€S; there exists r(x)e N — {0} such that f/"¥)(x) = x},
R, = card Z,
n/x)=min{neN; f"(x)eZ,} forany xeS§,
n, = max{n/x); xeS}.

It is easy to see (cf. l.c.) that R, > 0 and that f*/(x) = x is cquivalent to x € 7
for any x e S. Furthermore, xe S, p > 0, f?(x) = x imply that R, | p (ie., R;
divides p).

The following lemma is well-known (cf. [3] Lemma 6, 7; [4] Hilfssatz 2.7, 2.8;
[5] 3.4; [1] 3.1, [2] Theorem).

2. Lemma. If (S,f), (T, g) are finite connected algebras and h a homomorphism
of the former into the latter, then R, | R, and h[Zf] €z, O

3. Definition. Let (S, f) be a finite connected algebra, let e € S be such that n(e) =
= n,. For any t e S, there exists the least possible integer m e N such that f™(t) e
€ Sb e; we denote it by m,(f). Furthermore, there exists the least possible integer
pe N such that f™((r) = f?(e); we denote it by p,(t). We put q,(t) = p(1) — m/r)
for any t € S. If no confusion is possible, we write m, p, q for m,, p,, q., respectively.

The function g, will be used to define certain homomorphisms. We shall need
some properties of m,, p,, 4. :

4. Lemma. Let (S, f) be a finite connected algebra, let e € S be such that n (e) =
= ny. Then the following assertions hold.

(i) For any te S, we have m,(t) < p.(1), q.(t) = 0.

(i) If m(t) > 0, then m(f(?)) = m (1) — 1, p(f(t,) = pl?), 4.(f (1)) = q.(t) + L.

(iti) If my(t) =0, then m (f(t)) =0 and pf(t)) < pSt) + 1. If, moreover,
pf(t)) < pt), then te Z; and R, | p(t) — pf(1)) + 1.

Proof. (1) Let t € S be arbitrary.

If f"O(t)e Z,, then m(t) = n(t) < n, = nye) < p(2).

Suppose f™®(t)e S — Z,. Then fP*(e)e S — Z, which implies that p(f) <
< nye) =n, and thus m(t) + n, — p(t) > 0. Hence fmO*"=PO~1(1) =
zfnf—l—p(t)(fm(t)(t)) - fnf—l—p(t)(fp(t)(e)) = f"f—l(e) =fnf(e)—1(e) eS — Z,, which
yields m(t) + n, — p(t) — 1 < ny(t). Furthermore, f™O*"~PO(r) = 1N e)e Z,
and, thus, m(t) + n; — p(t) = n(t). Hence m(t) + n, — p(t) = n/t) < n;, which
implies that m(t) < p(¢).
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We have proved m(t) < p(t) and, therefore, () = 0 for any t € S, which is (i).

(2) Let us have te S, m(t) > 0.

Then f79(e) = f™~*(f(1)) and thus m(f(t)) = m(t) — 1, p(f(t)) = p(t), which
yields g(f()) = q(t) + 1. We have proved (ii).

(3) Suppose te S, m(t) = 0.

Then f7“(e) = ¢ and thus fP*!(e) = f(), which implies m(f(t)) =0 and
p(f(?)) = p(t) + 1. By 3, we obtain f7U(e) = f(1).

If, moreover, p(f(t)) < p(t), we obtain t = fP()(e) = fPN~PUM)(fPU)(¢)) =
= fPO=PUO f(1)) = frO7PUO* (1) Since p(t) — p(f(f)) + L = 1, we obtain
teZ; and R, | p(t) — p(f(t)) + 1.

We have proved (iii). O

5. Lemma (cf. [5] 3.9, 3.10). Let (S, f), (T, g) be finite connected algebras such that
R, | Ry and ny = n,. Let e€ S be such that ny(e) = n, and let x € T be arbitrary.
For any t€ S, we put h(t) = g% ?(x). Then the following assertions hold.

(l) hx[Zf] s Zy'
(ii) h, is a homomorphism of (S, f) into (T, g) such that h(e) =

Proof. (1) By 4(i), h, is a mapping of S into T.
Letus have t € Z,. Then f*/(t) = tand m(t) = m,(t) = 0, which yields g**(h,(t)) =
= g"(g"?"(x)) = g®*?(x) where p = p,. Since f""(e) =t, we obtain p(f) =
> ny(e) = n; 2 n, 2 n,(x), which implies that g"(x) € Z,. Since R, | R,, we have
Rf *rO(x) = g"(‘)(x) = h,(1). We have proved g®/(h, (t)) = h(1), whxch means
x(t) € Z,. We have proved (i).
(2) Let € S be arbitrary.
If m(t) > 0, we obtain h(f(7)) = g2V (x) = g+ (x) = g(g°"(x)) = g(hx(t))
by 4(ii).
Suppose that m(t) = 0. Then m(f(t)) = 0 by 4(iii) and the following cases can
occur.
(a) p(7(1) = p(1) + 1.
Then g(f(2)) = q(¢) + 1 and we obtain h,(f(t)) = g(h,(t)) similarly as above.
(b) p(f(2)) = p(1).
Then te Z; and R, | p(t) — p(f(1)) + 1 by 4(iii). Thus f(t) € Z; and h (f(t)) € Z,
by (i). This yields hy(f(r)) = g7~ PUO+L(h (f(£))) = 70~ PU@ +1(grUSD)(x)) =

g" " (x) = g(9"“(x)) = g(h(1))-
We have proved that h.(f(1)) = g(h.(1)) for any t € S. Thus we obtain (ii). O

6. Lemma. Let (S,f), (T, g) be finite connected algebras such that R, I R, and
ny 2 n,. Let ec S be such that ny(e) = n;. Let x€ T, y € S be arbitrary, put z =
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= g%(x), h(t) = g% (x), h(t) = f*O(y), h(t) = g*(z) for any teS. Then
h, = hyoh,

Proof. Clearly, ze T; by 5(ii), h, is an endomorphism of (S,f) and hy, h, are -
homomorphisms of (S, f) into (T, g). We have h(t) = g%®(z) = g%(h(y)) =
= h(f%(y)) = hy(hy(t)) for any te S. O

7. Theorem. Let (S, f) be a finite algebra, ((S;. fi))ier the family of all its com-
ponents. Then the following two conditions are equivalent.

(i) (S, f) is suitable.
(ii) There exists ig € I such that R, | Ry, and ny < ng, foranyiel.

Proof. (1) If (S,f) is suitable, then there exist a marked element e € S and a selec-
tive monoid (E, o, ids) corresponding to e, where E = {h,; xe S}, h, being an
endomorphism of (S, f) with h,(e) = x for any x € S. Let iy € I be such an element
that ee S;,. We put k, = hx]\ S, Since k, is a homomorphism of (S;, f,,) into
(Si fi)foranyieland x € S;, we have R, l R, foranyielby2.Letielandx€e S;
be arbitrary. Put no = ny, (e). Then fi)(e) € Z,, and hence f7°(x) = fi°(h.(e)) =
= k(fig(e)) € Z, by 2. Thus ny(x) < no = ny, (e). This implies that ny, < n;, (e)
for any iel. Particularly, n,, < ny, (e) and hence n; = n, (e). Thus ny, < ny
for any i € I. We have proved that (i) implies (ii).

(2) Let (ii) hold. We take an element e € S, such that n;, (e) = ng, .

Let iel and x€ S;, x + e, be arbitrary. For any t € S;, we put h(t) = f(x).
By 5(ii), h, is a homomorphism of (S, f;,) into (S;, f;) such that h(e) = x. We set
he =ids, , E = {nlh,; xeS}. Clearly, nlh, = ids. Furthermore, for any x€ S,
nl h, is the only endomorphism in E that sends e to x.

Let x, y € S. We have two possibilities.

(A) If either x = e or y = e, then clearly nl h, - nl h, coincides either with nl h,
or with al h, and, consequently, is in E.

(B) Suppose x * e + y. Two cases may occur.

(a) If ye S — S,,, then nlh[S] = S — S;, and nlh, |\ (S - S,;) = ids_s, .
Thus nlh,onlh, = nlh,. ‘
(b) If y € Sy, then for any t € S;, we obtain (nl h, o nl h)) (t) = nl h (h(t)) =
= h,(h(1)) = hy (1) = nlh, (1) by 6. For any teS — S;, we obtain (nlh, .
onl h))(t) = nlh(nl hy(t)) = nlh(t) = t = nl h,_,)(t). We have proved that nl h, o
onlh, = nlh, .
Thus x # e % y implies that nl h, o nl h, is in E.

Hence (E. o, idy) is a selective monoid of (S, f) corresponding to e. Thus (S, f)
is very suitable and, therefore, suitable by 2.8. []
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By 3.3 and 7, we obtain

3. Characterization Theorem (cf. [6]). Let (S, f) be a finite algebra, ((S, fi))ic
the family of all its components. Then the following conditions are equivalent:

(i) (S,f) is an algebra assigned to a monoid (S, -, e) with respect to an element
aes.

(ii) (S, f) is suitable.
(iii) (S, f) is very suitable.
(iv) There exists igel such that Ry | Ry and n; < ng, for anyiel. [

5. EXAMPLES AND REMARKS

1. Example. Let G be a cyclic group of order 4, G = {1, a, a?, a®}. The diagrams
of algebras assigned to G with respect to 1, a, a?, a*, are, respectively, as follows.

QO » =~ )

Fig. 1.

2. Example. Let (4, f) be an algebra with the following diagram.

Fig. 2.
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We assume e to be the marked element. Then the values of the functions mgs Pn> 9e
are in the first table. The second table contains the values of functions h,, Where
h(t) = f4(x) for any t € A and any x € A with x * e, h, = id,.

| e a 0 1 g l e a 0 1 g

m, 0 0 0 0 1 h, e a 0 1 g
Pe 0 1 2 3 2 h, a 0 1 0 0
d, 0 1 2 3 1 hy 0 1 0 1 1
hy |1 0 1 o 0

h l g 0 1 0 0

g

We now présent the table of the operation o of the monoid (E,.,id,), where
E = {h,; xe A}. The fourth table gives the operation - of the monoid (4, -, e)
associated with (4, f) with respect to e and (E, o, id ).

| h, h, ho hy hy, \ e a 0 1 g
h, h, h, hg hy h, e e a 0 1 g
h, hy, hy hy hy hg a a 0 1 0 0
ho hg hy ho hy hy 0 0 1 0 1 1
hy hy hg hy hy hy 1 1 0 1 0 0
hy, h, hy hy hy Iy g g 0 1 0 0

Clearly, the algebra assigned to this monoid with respect to a coincides with

(4, f)-

3. Remarks. Let us cancel the element e in the algebra and in the monoid of 2.
We obtain a subalgebra of (4, f) and a subsemigroup (not a submonoid!) of the
constructed monoid. Clearly, this subalgebra is assigned to the subsemigroup in the
sense of [6]. ’

Let us start with this subalgebra and apply the construction described in the last
paragraph of [6]. Then tg = g for any t. On the other hand, a®> = 0,0a = 1, la = 0,
ga = 0 according to the diagram of the algebra. Using the associative law we obtain
(1g)1 = g1 = g(0a) = (90) a = (g9a*)a = ((9a) a)a = (0a)a = la = 0. On the
other hand, 1(g1) = 10 as we have seen; furthermore, 10 = la* = (la)a = 0a = 1.
Thus (1g) 1 = 0 # 1 = 1(g1) and hence the operation is not associative. Thus the
simple construction of [6] gives only a groupoid associated with the algebra. The
construction of a semigroup requires more complicated methods as we have seen

in Section 4 of the present article. Nevertheless, the formulation of Theorem in [6]
is correct.

Acknowledgement. The author is grateful to B. Zelinka for his remarks concerning
a previous version of this article.
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