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Časopis pro pěstování matematiky, roč. 109 (1984), Praha 

ON A RELATIONSHIP BETWEEN MONOIDS 
AND MONOUNARY ALGEBRAS 

MIROSLAV NOVOTNY, Brno 

(Received September 7, 1983) 

1. INTRODUCTION 

In the note [6], B. Zelinka assigned a monounary algebra to any finite semigroup 
and characterized the class of such algebras in terms of the graph theory. In this 
article, we omit the hypothesis that the semigroup is finite and characterize the class 
of algebras assigned to monoids in terms of monounary algebras. On the basis of 
this characterization, we derive Zelinka's result. 

2. ALGEBRA ASSIGNED TO A MONOID 

We recall (cf. [4] p. 1365) that a monounary algebra is an ordered pair (S,/) 
where S is a set and / a mapping of S into S. Let N be the set of all nonnegative 
integers. For any p e /V, we denote by fp the pth iteration of/ We put 

Q = {(x, y) e S x S; there exist p, q e N with fp(x) = fq(y)} . 

Then Q is an equivalence on S whose blocks are called components of (S,/). 

In what follows, we do not distinguish between algebras and their carriers; we also 
omit the adjective "monounary". If t e S, we denote by Sb t the subalgebra of (S,/) 
generated by the set [t] and by Cp t the component of (S,/) containing t. Clearly, 
Sb t = {fl(t); I e N}. It is easy to see that any component of (S,/) is also a sub-
algebra. 

1. Definition. Let (S, •, e) be a monoid with the binary operation • and the unit e, a e 
e S an arbitrary element. For any x e S, we put/(x) = x . a. Then (S,/) is an algebra; 
it will be referred to as an algebra assigned to (S, •, e) with respect to a. 

For any algebra (S,/), we denote by End(S,f) the monoid of all endomorphisms 
of (S,/) where the nullary operation is id5 and the binary operation is the com­
position o of endomorphisms. 
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2. Theorem. Let (S, *,e) be a monoid, aeS its arbitrary element, (S,f) the 
algebra assigned to (S, m,e) with respect to a. Then there exists a submonoid 
(E, o, ids) of End(S,f) such that, for any xeS, there exists exactly one kxeE 
such that kx(e) = x. 

Proof. For any x e S, we put k^t) = x . t where t e Sis arbitrary. Thus, kx(f(t)) = 
= x . (t. a) = (x . t). a = f(kx(t)) for any t e S which entails that kx is an endo-
morphism of (S,f) for any xeS. Furthermore, ke = ids and kx(ky(t)) = x . (y . t) = 
= (x . y). t = kx,y(i) for any x, y, t e S and, thus, ({ks; s e S}, o, ids) is a submonoid 
of End(S,f). Clearly, kx is the only element k in {ks; seS) with k(e) = x. • 

3. Definition. Let (S,f) be an algebra, eeS its element, and (E, 0, ids) a sub­
monoid ofEnd(S,f) such that, for any x e S, there exists exactly one kxe E such that 
kx(e) = x. Then e is said to be a marked element and (E, 0, ids) a selective monoid 
corresponding to e. An algebra having a marked element and a corresponding selec­
tive monoid is said to be suitable. 

4. Corollary. An algebra assigned to a monoid is suitable. • 

5. Definition. Let (S,f) be an algebra, S1? S2 its components, h a homomorphism 
of Sx into S2. We put 

t) for any t e Sx 

for any teS — S1. -»-{!*. 
Clearly, k is an endomorphism of (S,f); it will be called the normal extension of h 
and denoted by nlh. 

6. Definition. An algebra (S,f) is said to be very suitable if there exists an element 
eeS and for any x e S a homomorphism hx of Cp e into Cp x such that hx(e) = x 
and that ({nl hx, x e S}, 0, ids) is a selective monoid corresponding to e. 

7. Theorem. An algebra is suitable if and only if it is very suitable. 

Proof. By 6 and 3, any very suitable algebra is also suitable. 

Let (S,f) be a suitable algebra, e its marked element, (E, 0, ids) its selective monoid 
corresponding to e. For any x e S, there exists exactly one kxe E such that kx(e) = x. 
We put hx = kx^ Cp e. Then hx is a homomorphism of Cp e into Cp x such that 
hx(e) = x for any xe S. 

Clearly, nl hx(e) = hx(e) = kx(e) = x for any x e S. 
Let x, y, t e S be arbitrary. Two cases may occur. 

(a) If Cp y =t= Cp e, then nl hy[S] ._. S - Cp e and /i/ fe_ [̂  (S - C/> e) = ids_C/?e. 

This implies that nl hx 0 nl hy = n/ / t r 

(b) Suppose Cp y = Cp e. 
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If / e S — Cp e, then nl hy(t) = t which implies that (nl hx 0 nl hy) (/) = /. 
If t e Cp e, then nl hy(t) = ky(t). Since e, t e Cp e, we obtain ky(e) = y e Cp e, 

ky(t) e Cp e. Since (E, 0, ids) is selective, there exists z e S such that kx0 ky = kz. 
This implies that kz(/) = kx(ky(t)) = kx(nl hy(t)) = (nl hx 0 nl hy) (/). Thus, nl hz(t) = 
= (nl hx o nl hy) (/). 

Since nl hz(t) = / for any / e 5 — Cp e, we obtain nl hz(t) = (nl hx 0 nl hy) (/) for 
any / e S. Thus, nl hx 0 /i/ /zy = /i/ liz. 

We have proved that ({nlhx\ xeS},o) is a semigroup. Clearly, nlhe = ids. 
Thus ({nl hx\ x e S}, 0, ids) is a monoid; its selectivity is obvious. 

Hence, (S,f) is very suitable. • 

3. CHARACTERIZATION OF ALGEBRAS ASSIGNED TO MONOIDS 

1. Definition. Let (S,f) be a suitable algebra, e its marked element, (£, o, ids) 
its selective monoid corresponding to e. For any x e S and any / e S, we put x . / = 
= kx(t) where kx is the only element k e E with k(e) = x. Then (5, •) is said to be 
the groupoid associated with (S,f) with respect to e and (E, 0, ids). 

2. Theorem. Let (S,f) be a suitable algebra, (S, •) the groupoid associated with 
(S,f) with respect to a marked element e e S and a corresponding selective monoid 
(E, o, ids). Then (S, •, e) is a monoid and (S,f) is assigned to (S, •, e) with respect 
tof(e). 

Proof, (l) For any xeS, let kx denote the only element keE with k(e) = x. 
Then x . e = kx(e) = x. Furthermore, ids = kz for some zeS because ids is the 
unit in End(S,f) and, thus, ids e E. We have z = kz(e) = ids (e) = e which implies 
that e . x = ke(x) = ids (x) = x for any xe S. Thus, e is the unit in S. 

(2) Let x, y, ze S be arbitrary. Then x . (y . z) = kx(ky(z)) = kt(z) for some 
/ e S. Clearly, / = kt(e) = kx(ky(e)) = kx(y). Thus, x .(y . z) = kkx(y)(z). On the 
other hand, we have (x . y). z = kx.y(z) = kkx(y)(z). Hence, the associative law is 
satisfied in (S, •). 

(3) Let us put a = f(e), g(x) = x . a for any xe S. Then g(x) = x . a = kx(a) = 
= kx(f(e)) = f(kx(e)) = f(x) for any xe S. Hence, g = / and (S,f) is the algebra 
assigned to (S, •, e) with respect to f(e). • 

3. Characterization Theorem. Let (S,f) be an algebra. Then the following as­
sertions are equivalent. 

(\) (S,f) is an algebra assigned to a monoid (S, •, e) with respect to an element 
aeS. 

(ii) (S,f) is suitable. 
(iii) (S,f) is very suitable. 

Proof, (ii) and (iii) are equivalent by 2.7, (i) implies (ii) by 2.4, (ii) implies (i) 
by 2. • 
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4. FINITE ALGEBRAS 

An algebra is said to be connected if it has exactly one component. 

1. Definition (cf [3] Def. 4, [4] Def. 2, [5] p. 107, [1] 2.4, [2] p. 427). Let (S,f) 
be a finite connected algebra. We put 

Zf = {xe S; there exists r(x) e N - {0} such that f''(*}(x) = x}, 

Rf = card Zf, 

nf(x) = min [n e N; fn(x) e Zf) for any xe S , 

nf = max {nf(x); x e S} . 

It is easy to see (cf. I.e.) that Rf > 0 and that fRf(x) = x is equivalent to x e Zf 

for any x e S. Furthermore, x e S, p > 0, fp(x) = x imply that Rf | p (i.e., Rf 

divides p). 
The following lemma is well-known (cf. [3] Lemma 6, 7; [4] Hilfssatz 2.7, 2.8; 

[5] 3.4; [1] 3.1, [2] Theorem). 

2. Lemma. If (S,f), (T, g) are finite connected algebras and h a homomorphism 
of the former into the latter, then Rg | Rf and h[Z^] c Zg. • 

3. Definition. Let (S,f) be a finite connected algebra, let e e S be such that nf(e) = 
= nf. For any t e S, there exists the least possible integer me N such that fm(l) e 
e Sb e\ we denote it by me(t). Furthermore, there exists the least possible integer 
peN such that fme(t)(t) = fp(e); we denote it by pe(t). We put qe(t) = pe(t) - me(t) 
for any t e S. If no confusion is possible, we write m, p, q for me, pe, qe, respectively. 

The function qe will be used to define certain homomorphisms. We shall need 
some properties of me, pe, qe. 

4. Lemma. Let (S,f) be a finite connected algebra, let e e S be such that nf(e) = 
= nf. Then the following assertions hold. 

(i) For any t e S, we have me(t) = pe(t), qe(t) = 0. 
(ii) Ifme(t) > 0, then me(f(t)) = me(t) - 1, pe(f(t;) = pe(t), qe(f(t)) = qe(t) + 1. 

(iii) If me(t) = 0, then me(f(tj) = 0 and pe(f(t)) = pe(t) + V If, moreover, 
Pe(f(t)) = pe(t), then t e Zf and Rf | pe(t) - pe(f(t)) + 1. 

Proof. (1) Let t e S be arbitrary. 

Iffmit)(t)eZf, then m(t) = nf(t) = nf = nf(e) = p(t). 

Suppose fm(0(r) eS - Zf. Then fp(t)(e) e S - Zf which implies that p(t) < 

<nf(e) = nf and thus m(t) + nf - p(t) > 0. Hence /»(')+»/-i»(o-i(rj = 

= fnf-x-p(tym(t)^t)) =fnf-i-p(tyP(t)^ =/»/-!(<,) =f"f^-1(e)eS - Zf, which 
yields m(t) + nf - p(t) - 1 < nf(t). Furthermore, /*(0+»/-p(0(r) = f»f^(e) e zf 

and, thus, m(t) + nf — p(t) = nf(t). Hence m(t) + nf — p(t) = nf(t) = nf, which 
implies that m(t) S p(t)-
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We have proved m(0 ^ P(0 and> therefore, q(t) ^ 0 for any t e S, which is (/). 

(2) Let us have t e S, m(0 > 0. 

Then jp(t)(e) = j m ( ' ) - 1 ( j (0) and thus m(/(.)) = m(t) - 1, p(j(0) = K0> w h i c h 

yields q(f(t)) = q(t) + 1. We have proved (//). 

(3) Suppose t e 5, m(t) = 0. 

Then jp(,)(e) = t and thus fp(t)+l(e) = / ( . ) , which implies m(/(r)) _ 0 and 
p(/(0) = p(0 + I- By 3, we obtain fW»(e) = /(f) . 

If, moreover, p(f(t))^p(t), we obtain .• = /p ("(e) _/*'>-*/<'»(/*/(•»(«)) = 
= /P«)-P(/0))( /( ,))= /P«)-P(/( .))+ i( t) . S i n c e p(f)_p(/(,)) + i = i, w e obtain 

feZ /andR / |p(0-Kj(0)+1-
We have proved (iii). D 

5. Lemma (cf. [5] 3.9, 3.10). Let (S,f),(T, g) be finite connected algebras such that 
Rg | Rf and nf ^ ng. Let eeS be such that nf(e) = nf and let XE T be arbitrary. 
For any t e S, we put hx(t) = gqe(t)(x). Then the following assertions hold. 

(i) /.,[_,] _ zg. 
(ii) hx is a homomorphism of(S,f) into (T, g) such that hx(e) = x. 

Proof. (1) By 4(/'), hx is a mapping of S into T 

Let us have t e Zf. Then f*^) = t and m(t) = me(t) = 0, which yields gRf(hx(t)) = 
= gRf(gp(t)(*)) = gRf+p(t)(x) where p = pe. Since fp(t)(e) = t, we obtain p(t) = 

= nf(e) = nf ^ ng = ng(x), which implies that gp(t)(x) e Zg. Since Rg | Rf, we have 
gRf+p(t)(x) = gp(t)(x) = hx(t). We have proved gRf(hx(t)) = hx(t), which means 
hx(t) e Zg. We have proved (i). 

(2) Let teS be arbitrary. 

If m(t) > 0, we obtain hx(f(t)) = g^^x) = gq(t) + 1(x) = g(gq(t)(x)) = g(hx(t)) 
by 4(ii). 

Suppose that m(t) = 0. Then m(f(t)) = 0 by 4(iii) and the following cases can 
occur. 

(a) Kj(0) = KO + i-
Then q(f(t)) = q(t) + 1 and we obtain hx(f(t)) = g(hx(t)) similarly as above. 

(b) Kj(0) = K0-
Then t e Zf and Rf | p(t) - p(f(t)) + 1 by 4(iii). Thus f(t) e Zf and hx(f(t)) e Zg 

by (/). This yields hx(f(t)) = aK , ,-p ( / ( , ) ) + 1(h ,(j(0)) = ap(')-^'» + 1(flp(/(',,(x)) = 

= flp(,)+1(x) = g(g^\x)) = a(hx(0). 
We have proved that hx(f(t)) = g(hx(t)) for any t e S. Thus we obtain (ii). • 

6. Lemma. Let (S,fj, (F, g) be finite connected algebras such that Rg | Rf and 
nf = ng. Let eeS be such that nf(e) = nf. Let x e T, y e S be arbitrary, put z = 
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= 9qAy\x), hx(t) = gq'{t)(x), hy(t) = fq'{t)(y), hz(t) = gqM(z) for any teS. Then 
hz = hx o hy. 

Proof. Clearly, zeT; by 5(iiJ, hy is an endomorphism of (S,f) and hx, hz are 
homomorphisms of (S,f) into (T, g). We have hz(t) = gqM(z) = gqe(t)(hx(y)) = 
= K(fq'{t)(y)) = hx(hy(t)) for any teS. • 

7. Theorem. Let (S,f) be a finite algebra, ((£,-, f;}J;e/ the family of all its com-

portents. Then the following two conditions are equivalent, 

(i) (S,f) is suitable. 

(ii) There exists i0 el such that Rfi | Rfi and nfi g nf. for any i el. 

Proof. (1) If (S,f) is suitable, then there exist a marked element ee S and a selec­
tive monoid (E, 0, ids) corresponding to e, where E = {hx;xeS}, hx being an 
endomorphism of (S,f) with hx(e) = x for any xe S. Let /0 e I be such an element 
that eeSio. We put kx = hx ^ Sio. Since kx is a homomorphism of (Sio,fio) into 
(Shft) for any / e I and x e S{, we have Rfi | Rf. for any i e I by 2. Let i e I and x e St 

be arbitrary. Put n0 = nf.Q(e). Then fn
t°(e) e Zf. and hence f-°(x) = f-°(hx(e)) = 

= kx(f"o(e)) e Zft by 2- Thus nf.(x) ^ n0 = nf. (e). This implies that nfi = nf. (e) 

for any / eI . Particularly, nf. :_ nf. (e) and hence nf. = nf. (e). Thus nfi _ nf. 

for any i e L We have proved that (/) implies (//). 

(2) Let (//) hold. We take an element e e Sio such that nf. (e) = nf. . 

Let / e I and x e Sh x =t= e, be arbitrary. For any f e Sio, we put hx(f) = fqe(t)(x). 
By 5(ii), h^ is a homomorphism of (Sio, fio) into (S^f) such that hx(e) = x. We set 
he = ids. J -E = {nlhx; xeS}. Clearly, nlhe = ids. Furthermore, for any xeS, 

10 

nl hx is the only endomorphism in E that sends e to x. 

Let x, y e S. We have two possibilities. 
(A) If either x = e or y = e, then clearly nlhx o n /h y coincides either with nlhx 

or with nl hy and, consequently, is in E. 

(B) Suppose x =# e =j= y. Two cases may occur. 

(a) If yeS- Sio, then nlhy[S] £ S - S10 and nl hx [ (S - S,0) = ids_s.o. 

Thus H/ hx o /i/ /zy = nl hy. 

(b) If j e Sio, then for any t e Sio we obtain (nl hx 0 /i/ hy) (.) = H/ hx(hy(t)) = 
= hx(hy(t)) = A*x(y)(0 = n/'^x(y)(0 by 6. For any te S - Sio we obtain (/i/fc, 0 

o n/ hy) (t) = n/ hx(#i/ hy(t)) = n/ hx(f) = t = nl hhx(y)(t). We have proved that nl hx o 

Qnlhy = nlhhx(y). 

Thus x =1= e =f= j^ implies that nl hx o /i/ hy is in £. 

Hence (E. o,id5) is a selective monoid of (S,f) corresponding to e. Thus (S,f) 
is very suitable and, therefore, suitable by 2.8. • 
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By 3.3 and 7, we obtain 

3. Characterization Theorem (cf. [6]). Let (S,f) be a finite algebra, ((S,f,))/e/ 
the family of all its components. Then the following conditions are equivalent: 

(i) (S,f) is an algebra assigned to a monoid (S, -, e) with respect to an element 
aeS. 

(ii) (S,f) is suitable. 

(iii) (S,f) is very suitable. 

(iv) There exists i0 e I such that Rfi | Rf. and nfi ^ nf. for any i e /. • 

5. EXAMPLES AND REMARKS 

1. Example. Let G be a cyclic group of order 4, G = ( l , a, a2, a2}. The diagrams 
of algebras assigned to G with respect to 1, a, a2, a3, are, respectively, as follows. 

a a 

1 

2. Example. Let (A,f) be an algebra with the following diagram. 

1 

ô e 

Fig. 2. 
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We assume e to be the marked element. Then the values of the functions mei Pn> qe 
are in the first table. The second table contains the values of functions hx, where 
hx(t) = fq'{t)(x) for any t e A and any x e A with x 4= e, he = \dA. 

me 

Pe 

e 

e a 0 

0 0 0 
0 1 2 
0 1 2 

e a 0 1 

л. e a 0 1 

л. ö 0 1 0 

Ao 0 1 0 1 
A, 1 0 1 0 

л. 9 0 1 0 

We now present the table of the operation 0 of the monoid (E, 0, idA), where 
E = [hx; xeA}. The fourth table gives the operation • of the monoid (A, -,e) 
associated with (A,f) with respect to e and (E, 0, idA). 

л. A. Ao Лi A
9 

e a 0 1 9 

Л. A. A„ Лo Ai A. e e a 0 1 9 

K A. Ao Ai Лo Лo a a 0 1 0 0 

Лo Лo Ai Ao л, Лi 0 0 1 0 1 1 

A, Ai Ao Ai Лo Ao 1 1 0 1 0 0 

Л, 
ft
. Лo Лi Лo Лo g 1

 9 0 1 0 0 

Clearly, the algebra assigned to this monoid with respect to a coincides with 

(A,/)-

3. Remarks. Let us cancel the element e in the algebra and in the monoid of 2. 
We obtain a subalgebra of (A,f) and a subsemigroup (not a submonoid!) of the 
constructed monoid. Clearly, this subalgebra is assigned to the subsemigroup in the 
sense of [6]. 

Let us start with this subalgebra and apply the construction described in the last 
paragraph of [6]. Then tg = g for any t. On the other hand, a2 = 0,0a = 1, la = 0, 
ga = 0 according to the diagram of the algebra. Using the associative law we obtain 
(ig) 1 = gl = g(0a) = (g0) a = (ga2) a = ((ga) a) a = (0a) a = la = 0. On the 
other hand, l(gl) = 10 as we have seen; furthermore, 10 = la 2 = (la) a = 0a = 1. 
Thus (la) 1 = 0 4= 1 = l(gl) &nd hence the operation is not associative. Thus the 
simple construction of [6] gives only a groupoid associated with the algebra. The 
construction of a semigroup requires more complicated methods as we have seen 
in Section 4 of the present article. Nevertheless, the formulation of Theorem in [6] 
is correct. 

Acknowledgement. The author is grateful to B. Zelinka for his remarks concerning 
a previous version of this article. 
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