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CASOPIS PRO PESTOVANI MATEMATIKY
Vyddvd Matematicky astav CSAV, Praha

SVAZEK 107 % PRAHA 26. 2, 1982 * CISLO 1

ON f-THIN SETS

PAveL KosTYRKO, Bratislava

(Received November 9, 1978)

In [1], [2] and [3] some special cases of a Turin’s problem are solved. This
problem can be generalized in the following way:

Let f:N*—> N (N — the set of all positive integers), ke N, k > 1. The set. M
(M < N) is said to be f-thin if f(x,, ..., x,) ¢ M for each k-tuple of distinct numbers
from M. Let f*(n) = max {m:{n,n + 1,...,m} can be decomposed into two
f-thin sets}, provided that the function f* exists. We shall find an upper ‘estimate
for a class of functions f*. Let us remark that e.g. for the function f:N? - N
defined by f(x,. x;) = x; + x,, for x; and x, odd, and f(x,, x,) = 1 in the opposite
case, the function f* does not exist. Indeed, N can be decomposed into the set A4
of all even numbers and B = N — A. 4 and B are infinite f-thin sets.

In the above mentioned papers additive k-thin and multiplicatively k-thin sets
are investigated, i.e. functions a,(xy, ..., %) = Xy + ... + x;, and my(x,,..., %) =
= X, ... X, are considered. It is proved that a;(n) = n(k* + k — 1) + }(k — 1).
.(kK* + 2k — 2) — 1 holds for k > 1, and for k = 2 and k = 3 the inequality can
be replaced by equality ([1], [3]). Further, it is known that for each k > 1 there
exists a polynomial p,(n) of the degree k? + k — 1 (p(n) = n***™* + 4(k - 1).
S(k* + k= 2)n¥**2 4 ) such that my(n) 2 p(n) (n = 1,2,...), liminf.
. (m3(n)[n*) = n) = 2, lim sup ((m3(n)[n*) — n) £ 4, lim inf ((m%(n)/n*°) — n) = 10,
lim sup ((m3(n)/n*®) — n) < 13 ([1],[2]). .

The meaning of the number f*(n) follows from its definition: For any decomposi-
tion of the set {n,n + 1, ..., m}, m > f*(n), into two disjoint sets, in one of them
the equality x = f(xy, ..., x,) with unknowns x, x,, ..., X, can be solved in such a
way that x; & x; whenever i * j.

The aim of the present article is to give an upper estimate for a class of functions f*.
This will prove the existence of f*. Further, Corollary of Theorem 3 gives the

affirmative answer to the question raised by B. Novadk in connection with his review
of [2]. Let us remark that our problem has its origin in a problem of I. Schur. This
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problem and also some of its generalizations are treated in the third part of the mono-
graph [0]. An ample list of references is also included in the monograph.

Let o be a binary operationin N (o: N x N — N), such that (N, o) is a commutative
group. In the following definitions we use a* = @ o do ... o a a-times, a' = a.

Definition 1. Let p(p = 1),9(¢ 2 1),0< ¢, <¢; <...<¢,0=d, <d, < ...
... < d, be integers, let a,, B; be positive integers (i = 1,...,p; j = 1,..., g). The
binary operation o is said to have the property A if the assumption that the equation

("‘) a“{‘an‘o...oa;"=bf‘obg‘o...ob2"

(@;=n+¢,i=1,...p;bj=n+d;, j=1,...,q)is fulfilled for infinitely many
neN implies p =q,¢; =d;and a; = B;fori = 1,...,p.

Definition 2. The binary operation o is said to have the property B if the assumption
ay + ... +a,> By + ... + B, implies
(++) - liminf (af' o ... 0 a)[(B)' o ... 0 i) > 1.

n— oo

Definition 3. We shall say that a function f: N?— N is a quasi-polynomial of
a degree oy + ... +a, if f(xq,...,x,) = x{'c...ox}*. A quasi-polynomial of
a degree k, f(xl, vees Xi) = Xq 0 ... 0 X, is said to be an AB-function if the operation o
has properties A and B.

Example 1. Let s € N and let the operation » be determined in terms of the usual

multiplication by X o y = sxy. Then the function m (Xy, ..., X;) = Xj0...0%, =
= s*~1x, ... x, is an AB-function.

Indeed, if the equality (x), which has the form »
ST n )y (nte )y =5"1n+d ) ... (n+d)

(a=ay + ...+ @y, p=P(+ ...+ B), is fulfilled for infinitely many n, then the
properties of polynomials defined on the infinite integral domain imply p = gq,
¢; = d; and a; = B; for each i = 1,..., p. The inequality (+*) is obviously fulfilled
as well.

It follows from Example 1 that for each k > 1 there exists infinitely many AB-
functions.

Theorem 1. Let f = f(x,, ..., %) be an AB-function. Then
(a) for each k > 1 there exists n, € N such that
f*n) < max { min {a,0(ai""o...0aq72)}},
{ag,...,ax+2)<L i=1,..,k+2

where L = {n, n+1,...,n+ 2k + 2}, holds for evéry n = ng;
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(b) for each k > 6 there exists n, € N such that

f*(n) < max { min z{ai o(d .. afIo)}) s

LU T ax+2}<M i=1,...k+
where M = {n,n + 1,...,n + 2k + 1}, holds for every n Z n

Proof. First we prove part (b) of Theorem 1. Let us suppose that the set
{n,n + 1,..., m} is decomposed into two disjoint f-thin sets 4 and B. We shall show
the existence of a number m, such that m, € A and m, € B. Hence we can conclude
f*(n) < m,, Any distribution of numbers of theset M = {n,n + 1,...,n + 2k + 1}
with 2k + 2 elements into sets A’ = AN M and B' = B n M leads to one of the
following two cases: (i) each of the sets A’ and B’ contains k + 1 elements; (ii) one
of the sets (4’ or B’) contains at least k + 2 elements. Further, we shall consider
a finite number of quasi-polynomials. Taking into account property A4 we can choose
no € N such that different quasi-polynomials have different values whenever their
arguments are greater than n,. In the sequel we deal only with such arguments, i.e.
Wwe Suppose n = ng.

(l) Let {al, oy ak+1} (e A and {bl’ ceey b,k+l} [t B (M = {al, ceay ak+1, bl’ .o
* bk+l})‘

Lemma. a;0...0a,,,€B, byo...oby s €A

Proof of Lemma. Indirectly: Let us suppose @ = @yo0...0a;,1€ A. Ifa;0a;€ 4
(1Si<jsk+1),then(a;00;)0a0...08;_1°0i410...08;_10Gj110.0byyy =
= a € B and hence a; - a; € B. Consequently

(1) (al oaz)o(azo a3)o... o(ako ak+1) = a, oa§ 0 eue oa: oa,,HEA.

On the other hand, @od;0...00; = ;0G5 0...0 al . a,,, € B which contradicts
(1). The proof of the second part of the statement of Lemma is analogous.

Obviously by o...ob,ed, and t; = @y o.c.oGy_go(byo...ob)eB, t, =
=dyo..obgg0840(bjo...ob)eB. Hence t =110t)0(a50...00a4;)0
objowiobyo3 = 0830..0p 2088 10aF oygoblobdo...ob 50bi 50
o b,f_l 0 b,f eA. Consequentlyw = to(b1 oveoby_gobry1)oBionioy 308y =
=0} ot c...0af 300 5008 _0aF oGy obiobyo..obf 30b_s0bi 10
o b? o by, € B. If we interchange symbols “a” and “b” as well as “A” and “B”
we have a proof for we A. Hence for the given decomposition of the set M, the
number expressed by the quasi-polynomial w of the degree 8k — 6 belongs neither
to A nor to B.

(ii) Let us suppose {a;,..., a4} = 4. Put (for 1 Si<j<k+2u ;=
=djo0.0Bi 30841 0.cc0Bj_g0B 4100 ysse Obviously u;; € B. Hence u =
=Uzzollygo.c.ollyyg fia = a’{ a(lg_1 oag 2 0 eus °ak+1 o a“_;EA and

(2 Z=Uodzo...0yy; =a0d 'o...0a;5€B.



Taking into consideration the proof of Lemma we easily see that v; = @y 0...0G;_1 o
0@j4q0...00,,,€ B holds for each i =2,...,k. Hence vy0...00 0 Upyy 42 =
=akoat"!o... 0 ak7! € A. This contradicts (2) Hence for the given decomposition
of the set M, the number expressed by the quasi-polynomial z of the degree k% +
+ k — 1 belongs neither to A nor to B. A
With respect to the assumption k > 6, the degree of the quasi-polynomial z is
greater than that of the quasi-polynomial w as well as than those of the other quasi-
polynomials p from the above considerations. It follows from the property B that
there exists n, such that z > w and z > p whenever n 2 n;. Put n, = max {n,, n,}.
The estimate for the function f* is determined by the quasi-polynomial z =
= Py(Xy, ...y X442) = X 0 X5 ' ox57 ' o...0xs;3. The above consideration has

concerned any subset of M with k + 2 elements. Therefore

a0 dil)

f*(n) <  max  { min {d} .
{(a1,0esa42} EM . (J1yenesic+2)

where (jy, ..., jy+2) runs over all orders of numbers (1, ..., k + 2).

We prove part (a) of Theorem 1. Let us suppose that the set L= {n,n + 1,.
..., n + 2k + 2} with 2k + 3 elements is decomposed into two disjoint f-thin sets 4
and B. In any distibution of numbers of the set L either " = An LorB =Bn L
contains at least k + 2 elements. Let us suppose {ay, ..., a,,,} = A. It is obvious
that the method of the proof of part (b) (ii) is applicable in this case. Since the sets L
and M are different, the estimate of the function f* for n 2 n, (n, is determined by
conditions analogous to those from the proof of part (b)) is determined by the ine-
quality

fHm)<  max  { min {djoa; o .0a N,
(@153 42} EL (J1yeesdic+2)
where (jy, ..., ji+2) runs over all orders of numbers (1, ..., k + 2). This completes
the proof of Theorem 1.

Let us apply Theorem 1 to the function from Example 1.

Theorem 2. Let se N, k > 1 and my (x4, ..., %) = s 'x; ... x;. Then

(a) there exists ny € N and a polynomial Q, , of the degree k* + k — 1(Q, (n) =
= (koL o2 4 ), G = k(k + 1) + 3(K* — 1) (3k + 4)) such
that my (n) < Q, ,(n) holds for every n 2 n;

(b) for k > 6 there exists n, € N and a polynomial g, , ofb the degree k* + k — 1
((n) = S“H72 (@ £ D2 4 L), Dy = K + 3(K? — 1) (3k + 2)) such
that my (n) < g, (n) holds for each n 2 n,. ’

Proof. Theorem 2 is a consequence of Theorem 1. It is easy to see that the quasi-

polynomial P, introduced in the proof of Theorem 1 is of the form Py(Xy, ..., Xy 4,) =

= s *+E-2xkxk=1 . xk71. Hence in the case (a),



max { min {***%afa...q.,) ")} =
{@150eey ak+2}<SL i=1,..,k+2

=k + 1 (n+k+ 2 (n+ 2k + 2 = @ (n)
for every sufficiently large n. In the case (b),
max { min {¥**2afa,...aq.,,) 1} =
{@1 5000y ax+2}<M i=1,..., k+2
= P2 4 ke (n 4+ k + D)L (n + 2k + 1L = g, (n)
holds for each sufficiently large n.

Theorem 3. Let s€ N, my (xy, ..., %) = s*"'x; ... x;. Then

lim inf ((mf (n)[n***=2) = (8¥**2n)) = 42 Yk — 1) (K* + k — 2)

and
lim sup (m,’f’s(n)/n"z“‘_z) — (s¥**2n)) < TR 2(k(k + 1) + 3(k2 = 1) (3k + 4))

n— oo

holds for each k > 1. If k > 6, then

lim sup ((m2 (n)n**=2) — (+*2n)) < $*2(k2 + 3(k2 — 1) (3k + 2).

n—oo

k1+k—2) _ (sh2+k—2

Proof. Upper estimates of lim sup ((mj ,(n)[n n)) are immediate

n—o

consequences of Theorem 2. If for each ne N we put a = mk,s(n, n+1,..,n+
+k+1), B=ma+1,..,0+k—1)and y=m (n,n+1,...,n+ k—
— 2, B), then it follows from the properties of multiplication that A = {n,n + 1,...
vwa—1}U{gB+1,...y = 1},B={a,a + 1, ..., p — 1} provide a decomposi-
tion of the set {n, n + 1, ...,y — 1} into two m, -thin sets A and B. Hence m} (n) =
27— 1 =21 g gk — 1) (K 4 k — 2) n®***=2 4 ) holds for each
neN. The last inequality yields the lower estimate for 11m 1nf ((mg (n)|n¥***=2) —

(k2+k 2 ))
Corollary. Let se N and k > 1. Then
mk s(n)/ k2+k=-2 — Sk1+k—2n + Q(l).

Remark. It is easy to see that the quasi-polynomial my , (x,, ..., xk) = Xg10...
..o Xy, S€N, te N U {0}, determined by the operation x o y = s(x + ) (y +t) — ¢
is an AB-function. The function m,  from Example 1 is its special case, my ; = my ; o.
This suggests the question: What is the general form of any 4B-function?



References

[0] W. D. Wallis, Street Anne Penfold, Wallis Jennifer Seberry: Combinatorics, Springer-
Verlag, Lecture Notes 292, 1972. '

[1] E. Nyulassyovd: On the k-thin arithmetical sets. Acta fac. rer. nat. Univ. Com. XXXI (1975),
45—57.

[2) E. Nyulassyovd: On multiplicatively k-sets. Acta fac. rer. nat. Univ. Com. XXXIV (1979),
165—168.

[3]1 8. Zndm: Notes on an unpublished theorem of Turin. Mat. Lapok I4 (1963), 307—310.

Author’s address: 816 31 Bratislava, Mlynska dolina (Matematicko-fyzikdlna fakulta UK).



		webmaster@dml.cz
	2012-05-12T11:29:10+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




