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REGULAR FACTORS IN POWERS OF CONNECTED GRAPHS

LADISLAV NEBESKY, Praha, and ELENA WiszTov4, Zilina
(Received September 20, 1978)

Let G be a graph (in the sense of [1] or [3]). We denote by V(G) and E(G) the
vertex set and the edge set of G, respectively. The number |V(G)| is called the order
of G. If W < V(G), then we denote by (W) the subgraph of G induced by W. If
a spanning subgraph F of G is a regular graph of a degree m = 0, then we say that F
is an m-factor of G. For every integer n = 1, by the n-th power G” of G we mean the
graph with ¥(G") = ¥(G) and

E(G") = {uv; u, ve V(G) with the property that 1 < dg(u, v) < n},

where d; denotes the distance between vertices in G.

If n = 1 is an odd integer and G has an n-factor, then the order of G is even.
Chartrand, Polimeni and Stewart [2] and Sumner [6] proved that if G is a con-
nected graph of an even order, then G* has a 1-factor. Nebesky [4] proved that if G
is a connected graph of an even order =4, then G* has a 3-factor. In the present
paper these results will be generalized for every odd integer n = 1. We shall prove
the following theorem:

Theorem 1. Let n = 1 be an odd integer, and let G be a connected graph of an
even order p = n + 1. Then G"*! has an n-factor.

In the present paper we shall prove one more theorem, which complements
Theorem 1. '

Theorem 2. Let n = 2 be an even integer, and let G be a connected graph of an
order p 2 n + 1. Then G**! has an n-factor.

Let G be the tree (homeomorphic with the star K(1, n + 2)) of an order p >
> n(n + 1) which is given in Fig.-1. Then G" has no. n-factor. This means that the
value n + 1 of the power in Theorems 1 and 2 is the best possible.

Note that for n = 2 a stronger result is known. Sekanina [5] proved that if G is
a connected graph, then G® is hamiltonian connected.

To prove Theorem 1 and 2 we use two lemmas and three remarks.
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Let T be a nontrivial tree, and let u and v be adjacent vertices of T. Then T — uv
is a forest with exactly two components. We denote by T(u, v) or T(v, u) the compo-
nent of T — uv which contains u or v, respectively.

Vp-n(nﬂ)

u Fig. 1.

n+d 4

Let T be a tree, and let u € V(T). We shall say that W = V(T) is a u-set in T, if
either W = {u} or there exist distinct components Ty, ..., T; (i 2 1) of T — u such
that either W= V(Ty) v ... UV(T;) or W= {u} U V(T;) u... v V(T}).

Lemma 1. Let T be a tree of an order p > n + 1, where n = 1. Then there exists
u € V(T) and disjoint u-sets W' and W" in T such that

(1) Wou W = V(T) and T— (W U W") is a tree;
() |[W| £ n and |W’'| £ n;
@) n<|wow);
(@) if [W O W'|#n+1, then |W' U W’| is even.
Proof. Since p > n + 1, there exist adjacent vertices u and v such that
|V(T(u, v))| > n and

|V(T(w, u))| < n for every vertex w + v such that uw € E(T).

(Otherwise, in T we can construct an infinite sequence of distinct vertices beginning
in an arbitrary vertex of degree one, which contradicts the finiteness of V(T)).

Let Ty, ..., T; (i = 1) be all the components of T — u which are different from
T(v, u). Denote M; = V(Ty), ..., M; = V(T;) and m = |M,| + ... + |M,|. Clearly,
m= |V(T(u, v))l — 1. Without loss of generality we assume that

nz|M|z..2|M|>0.

Since |V(T(u, v))| > n, we have m 2 n. We shall construct disjoint u-sets W' and W”
with the properties (1)—(4). We distinguish the following cases and subcases:

l.m=n Weput W =M;U...uM,;and W = {u}.
2. m > n. It is obvious that there exists an integer f, 1 < f < i, such that
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(r+ DR M|+ ...+ M| Zn.

Denote m; = |M1|‘+ e+ |Mf|.

21. m — m; S n If mis even, then we put W =M, u...0M, and W' =
= M,,; U... UM, Assume that m is odd. If m; < m — m,, then we put W' =
={ufuM;U...UM;and W =M,  U...UM,; If m — m; < m,, then we
put W =M;u..0M;and W ={u} UM;,; U...UM,.

2.2. m — m; > n. Then there exists g,f < g < i, such that

(n+ D2 [Mppy| + ...+ M| 0.

Denote m, = IMf+1| + ...+ lMg|.

2.2.1. my + myiseven. Thenweput W = M; u...oMyand W' = M, U ...
...UM,

2.2.2. my + m, is odd.

2221. m— (my + my) £ n.

22.21.1. m — m; is even. Then we put W =M, , u...UM, and W' =
=M, V...UM,

2.2.2.1.2. m — my is odd. Then m — m, is even.

.~ 222121. m — my; > n. Then m; + (m — (my + m,)) >n. We put W’
=M u...UM;and W =M,,, v...UM,

222122. m —m, S n. If mis even, then we put W =M, u...UM, U
UMy, u...uM;and W = M, U...U M, Assume that m is odd. If m, <
<m — m,, then we put W =M, u...UM;,UM,,;U...UM; and W' =
={ufuM;;u...0UM, If my; > m — m,, then we put W = {u} UM, U ...
UM, UM U .UM, and W =M, U...UM,

2222. m— (m1 + m,) > n. Then there exists an integer h, g <h < i, such that

(n+ )2 |Myuy| + ... + M| S 1.

Denote m; = ]M,+1| + ...+ IM,,[.

2.2.2.2.1. my + m; is even. Then we put W =M, u...UM; and W' =
=M, V...UM,

2.2.22.2. my + my is odd. Then m; + m, is even. We put W' = M, , U ...
.UMgand W' =M, U...UM,

The proof of the lemma is complete.

Remark 1. Let Tbe a tree, u € V(T),n = 1, and let W,, ..., W, (k 2 2) be disjoint
u-sets such that |W;| < n, ..., |W;| < n. Then every set W,, 1 < h < k, can be ar-
ranged into a sequence wy, i, ..., W, jw, such that, for every g, 1 < g < |W,,|,

if ue W,, then dr(w,, u) <g, and if u¢W,, then dy(wy,, u) < g.

This means that if u € W, then w, ; = u.
Let A’ and h"” be arbitrary integers such that 1 < b’ < h” < k. Assume that g’
and g” are integers such that 1 < g’ < |[W,|and 1 £ ¢ < |W,| and that u € W, U
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U W, implies ¢’ +g"<n+ 2, and u¢ W, U W, implies g’ + g”" < n + 1.
Then dp(Wyr g Wi g7) = dr(Wir g, u) + dp(Wyo gy ) S 1+ 1.

Denote Wy = Wy s Wo = Wy i gy ooy Wyr = Wio gy Wy = Wpo g, Wpigp =
= Wyr gy ooy Wy = Wyr e, Where m’ = [W,,|, m" = |W,,"|, and m = m’ + m". Thus
the set W,, U W, has been arranged into the sequence

Wiy eves Wy -

Let 1<i<j<m,andletj—i=<n Ifj<m ori>m', then dp(w; w;) <
If i <m' and m' < j, then dp(w;, w;) = de(Whmi—iv 1> Wir jomr) =
=di(Wy m—ivps ) + de(Wp jont) E(M — i+ 1)+ (—m)=j—i+1
< n + 1. Thus we have that if 1 £ i <j<mand j— i < n, then d(w;, w))
=n+1.

Let W be a finite nonempty set. Then we denote by K(W) the complete graph
whose vertex set is W.

s

IA TIA

Remark 2. Let T be a tree, n = 1, and let wy, ..., w,, be a sequence of distinct
vertices in T which has been obtained in the way described in Remark 1. Let m be
evenand n + 1 £ m =< 2n. Denote

E, = {wlw(m/2)+17 WiWm2)+25 ++ s WiWat1

WoWams2)+25 WaWm2)+3s <o WaWpy2

Wm/ZWma Wm/2wm+1, L] wm/2wn+(m/2)} ’

where every index i > m is to be replaced by the index i — (m/2). We denote by F
the graph with V(F) = {w, ..., w,} and

E(F) = E(K({Wl, ooy Wm/2})) |V E(K({W(m/2)+1, oy Wm})) |V Eo .
Then F is an n-factor of the graph {({wy, ..., Wy} >pn+1.

Remark 3. Let m and n be integers such that 0 < m < n. It follows from
Theorems 9.1 and 9.6 in [3] that K, has an m-factor if and only if at least one of the
integers m and n is even.

Lemma 2. Let T be a tree of an order p 2 n + 1, where n = 1. Assume that if n
is odd, then p is even. Then T"** has an n-factor.

Proof. If p=n + 1, then T"*' = K(V(T)) and thus T"*! is a regular graph
of the degree n. Assume that p > n + 1, and that for every tree T* of an order p*,
where (i)n + 1 £ p* < p,and(ii)if nis odd, then p*is even, it is proved that (T*)"*!
has an n-factor. Since p >.n + 1, it follows from Lemma 1 that there exists u € V(T)
and disjoint u-sets W’ and W” which fulfil (1)—(4). Clearly, if n is odd, then |V(T)|

and IW’ (V] W”| are even, and therefore IV(T) - (W' U W”) is also even.
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First, assume that |V(T) — (W U W")| 2 n + 1. The induction assumption
yields that (T — (W' U W")"*! has an n-factor. If |W' U W’| =n + 1, then
W' O W"ypars = (W U W) and thus T"*! has an n-factor. Let |W' u W’| >
> n + 1. Then W’ u W” is even. The set W U W” can be arranged into a sequence
Wy, ..., W,, described in Remark 1. From this fact and from Remark 2 it follows
that there exists an n-factor of the graph (W’ U W”> 1. Hence, T"*! has an n-factor.

We now assume that |V(T) — (W' 0 W’)| £ n. We distinguish the following
cases and subcases:

1. There exist disjoint u-sets W; and W, such that |W1‘ |W2| n and that
W, u W, = V(T) — {u}.

1.1. p is even. Then |W,| < lei and |W; U {u}| < n. The set {u} U W, U W,
can be arranged into a sequence wy, ..., w,, (Where m = p) described in Remark 1.
Since n + 2 £ m £ 2n and m is even, it follows from Remark 2 that there exists
an n-factor T"*!,

1.2. pis odd. Then n is even. The set W; U W, can be arranged into a sequence
Wi, ...s Wy (Where m = p — 1) described in Remark 1. Since n is even, we have
that n + 2 £ m < 2n. Consider the graph F defined in Remark 2. Since m =
2= n + 2, there exist positive even integers i < m(2and j < m[2suchthati + j = n.
Let F' be the graph obtained from the graph

F - {W1W2: WaWa, oo Wi i Wi, Wemp2)+1Wm/2)+2 »
Wemi2)+3Womi2) + 45 -+ Wom2) + 5= 1Womi2) + 1}

by adding the vertex u and the edges uwy, uw,, ..., UW;, UWgn 2yt 1, UWims2)425 - -+

< UWii2)+ ;- Then F’ is an n-factor of T"*1.

2 For arbitrary disjoint u-sets W, and W, such that IW1I n and lel <nit
holds that W, u W, # V(T) — {u}. Since |W'|<n, |W’| < n, and |V(T) -

- (w'u W”)I < n, we conclude that there exist disjoint u-sets 4, B and C such that
|4 <n, Bl sn |C|sn |[AUB|>n, [BUC|>n, |[4uC|>n,and AUBU
v C = V(T) — {u}. Denote a = |A| b= ‘B[ and ¢ = |C| Without loss of general-
ity we assume thata = b = c.
2.1. Either a + bis odd or ¢ < b. If a + b is odd, then n = a > b, and we put

A,B=Bu{u}and C = C;if a + bis even, thenc<b and we put 4 = A4,
=B and C=CuU{u}. Denote @ = |4|, b=|B| and ¢ =|C|. Thus n 2 a >
b=2¢ b+ ¢>n,and @ + b is even. In accordance with Remark 1 the set C
can be arranged into a sequence z,, ...z; such that for every g, 1 S g < ¢, ueC
implies d(z,, u) < g and u ¢ C implies dy(z,, u) < g (hence ,if u € C, then z, = u).
Analogously we can arrange the sets 4 and B. Moreover, in accordance with Remark
1, the set A U B can be arranged into a sequence wy, ..., W, (Where m = @ + b)
with the properties described in Remark 1 and such that wy, ..., w;€ 4 and w,, 4, ...

, Wn € B (if u € B, then w;,; = u). According to Remark 1, for 1 <i < ¢ and
1 <] < b, the inequality i + j < n + 2 implies ds(z;, wz4;) S n + 1. Let F be
the regular graph constructed in Remark 2. Thus V(F) = {wy, ..., w,}.

A=
B
>
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Let ¢ be odd; since p = @ + b + ¢ and @ + b is even, we have that p is odd and
therefore n is even. This means that at least one of the integers ¢ and n is even. Thus
at least one of the integers ¢ and n — ¢ + 1 is even.

211.e<(n+1)/2. Since b+é¢=n+1, we have m—a=bzn—-¢+
+ 1 > ¢. It follows from Remark 3 that K({ws41, ..., Wa41+n—z}) has a &-factor,
say H,. This means that the graph obtained from the graphs F — E(H,) and K(C)
by adding the edges

ZeWat 1> ZcWa+2s ++o ZeWat 1+n—c »
Zg—1Wa+1> Ze—1Wa+25 -+ 25— 1Wat14n-c >

ZiWa+15 Z1Was25 ++ s Z1Wat14n-¢

is an n-factor of T"*1.

212. ¢>(n+ 1)/2. Then n — ¢+ 1 <¢ < b. According to Remark 3,
K({Wa+1, ---» Wa+z}) has an (n — ¢ + 1)-factor, say H,. The graph obtained from
the graphs F — E(H,) and K(C) by adding the edges

ZeWa+1s oo ZeWat 1 +n-2 >
Zg-1Wa+25 -+ Ze—1Wat2+4n-¢>
ZIWE+E, coey zlwﬁ"‘ﬂ )

where every index i > @ + ¢ is to be replaced by the index i — ¢, is an n-factor
of T"*1,

2.1.3. ¢ = (n + 1)/2. Then n is odd, and thus ¢ is even. Obviously, ¢ = n — ¢ + 1.
We denote by d the integer a if u ¢ B, or the integer @ + 1 if u € B. Obviously,
m — d 2 ¢. We denote by d’ that of the integers d — 1 and d which has the same
parity as m/2. It is not difficult to see that d’ = ¢. For every i, 1 < i < ¢, we have
dp(z;, War—z41) S dp(zi, Wa—1-z4+1) S n + 1. The graph obtained from the graphs
K(C) and

F - E(K({Waﬂ, cees Wd+z}) - {Wd'Wa'—n War—2Wgar 35 ooy War—g+2War -+ 1}

by adding the edges

Z1Wa+e ++s Z1Wa+26-2 5
where every index i > d + ¢ means i — ¢, and the edges
ZeWars Ze—1War—15 + - Z1Wa'—z+1 5

is an n-factor of T"+1,
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22.a+bisevenandc =b. Thusc =2 (n + 1))2.Sincep=a +2c+ 1,p+ ¢
is odd. This means that if ¢ is even, then n is even. The set A U B can be arranged
into a sequence wy,e..., w,, (Where m = a + c) with the properties described in Re-
mark 1 and such that wy, ..., w,e A and w,, {, ..., w,, € B. The set C can be arranged
into a sequence zy, ..., z, such that dr(z;, u) < i for every i, 1 < i < c. Let F be the
graph defined in Remark 2. Hence V(F) = {wy, ..., w,}.

2.2.1. niseven. Then ¢ % (n + 1)/2. This means that ¢ > (n + 1)/2 and therefore
n — ¢ + 1 < c¢. This means that either ¢ or n — ¢ + 1 is even. It follows from Re-
mark 3 that K({w,+y, .., Wa4.}) has an (n — ¢ + 1)-factor, say Hj. Let F, be the
graph obtained from the graphs K(C) and F — E(Hj) by adding the edges

ZiWater +os Z1tWatn»

where every index i > a + ¢ means i — c. It is easy to see that F, is an n-factor of
V(T = u)ygn+1. Since m[2 2 ¢ > (n + 1)/2, there exist positive even integers j <
= m/2 and k < c¢ such that j + k = n. The graph obtained from the graph

Fl - {WIWZ’ W3iWg, o0y wj"le’ 2129y 23245 « vy Zk_lzk}
by adding the vertex u and the edges

UWy, UWg, ooy UW), UZy, UZg, ..oy UZ,
is an n-factor of T"*!,

2.2.2. n is odd. Then c is odd and therefore n — c is even. Since ¢ = (n + 1)[2,
we have n — ¢ < c. Since n — c is even, we have that K({w,4y, ..., W, .}) has an
(n — c)-factor, say Hj. Let F, be the graph obtained from the graphs F — E(H)
and K(C) by adding the edges

Z1Watcs oo os zlw_a+n—l H

where every index i > a + ¢ means i — c. Therefore, every vertex w;, 1 < j = m,
has the degree n in F,, and every vertex z;, 1 < k < c, has the degree n — 1 in F,.
Obviously, n — ¢ < m/2. The graph obtained from the graph

Fy — {wywa, wawy, ..., w,,..c_l_w,,-c}
by adding the edges -
UWyy ey UWy_ gy UZy, +. 0y UZ,
is an n-factor of T"*!.
Thus the lemma is proved.
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Proof of Theorems 1 and 2. Let G be a graph satisfying the conditions of Theorems
1 or 2. Then G is connected, and thus there exists a spanning tree of G, say T. Accord-
ing to Lemma 2, T"** has an n-factor. Thus G"*! has an n-factor,which completes
the proof.
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