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Časopis pro pěstování matematiky, roč. 106 (1981), Praha 

REGULAR FACTORS IN POWERS OF CONNECTED GRAPHS 

LADISLAV NEBESKY, Praha, and ELENA WISZTOVA, 2ilina 

(Received September 20, 1978) 

Let G be a graph (in the sense of [1] or [3]). We denote by V(G) and E(G) the 
vertex set and the edge set of G, respectively. The number |V(G)| is called the order 
of G. If W £ V(G), then we denote by < JF>G the subgraph of G induced by W. If 
a spanning subgraph F of G is a regular graph of a degree m _ 0, then we say that F 
is an m-factor of G. For every integer n = 1, by the n-th power Gn of G we mean the 
graph with V(Gn) = V(G) and 

E(Gn) = {uv; u,ve V(G) with the property that 1 = dG(u, v) = n} , 

where dG denotes the distance between vertices in G. 
If n _ 1 is an odd integer and G has an n-factor, then the order of G is even. 

Chartrand, Polimeni and Stewart [2] and Sumner [6] proved that if G is a con­
nected graph of an even order, then G2 has a 1-factor. Nebesky [4] proved that if G 
is a connected graph of an even order = 4 , then G4 has a 3-factor. In the present 
paper these results will be generalized for every odd integer n ̂  1. We shall prove 
the following theorem: 

Theorem 1. Let n ̂  1 be an odd integer, and let G be a connected graph of an 
even order p = n + 1. Then Gn+1 has an n-factor. 

In the present paper we shall prove one more theorem, which complements 
Theorem 1. 

Theorem 2. Let n ̂  2 be an even integer, and let G be a connected graph of an 
order p ̂  n + 1. Then Gn+i has an n-factor. 

Let G be the tree (homeomorphic with the star K(\, n + 2)) of an order p > 
> n(n + 1) which is given in Fig. 1. Then Gn has no. n-factor. This means that the 
value n + 1 of the power in Theorems 1 and 2 is the best possible. 

Note that for n = 2 a stronger result is known. Sekanina [5] proved that if G is 
a connected graph, then G3 is hamiltonian connected. 

To prove Theorem 1 and 2 we use two lemmas and three remarks. 
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Let T be a nontrivial tree, and let w and v be adjacent vertices of T. Then T — uv 
is a forest with exactly two components. We denote by T(w, v) or T(v, w) the compo­
nent of T — uv which contains w or v, respectively. 

^ 

vp-n(ntђ 

Un+i,n 

Ччц FІЄ- J-

Let T be a tree, and let w 6 V(T). We shall say that W c V(T) is a w-set in T, if 
either W= {w} or there exist distinct components T1? ...,Tf (i — 1) of T — w such 
that either JV= V(TX) u ... u V(Tf) or JV = {w} u V(Tt) u ... u V(Tf). 

Lemma 1. Let The a tree of an order p > n + 1, where n ^ 1. Then there exists 
u 6 V(T) and disjoint usets W' and W" in T such that 

(1) W' u W" =j= V(T) and T - (W u W") is a tree; 

(2) \W'\ ^ n and \W"\ ^ n; 

(3) n < \W' KJW"\; 

(4) if\W'v W"\ * n + 1, then \W u W"\ is even. 

Proof. Since p > n + 1, there exist adjacent vertices w and v such that 
|V(T(w,v))| > n and 

|V(T(w, w))| = n for every vertex w + t) such that ww e E(T) . 

(Otherwise, in T we can construct an infinite sequence of distinct vertices beginning 
in an arbitrary vertex of degree one, which contradicts the finiteness of V(T)). 

Let Tl9..., Tt (i — 1) be all the components of T— w which are different from 
T(v, w). Denote Mt = V(TX),..., Mt = V(Tt) and m = \MX\ + ... + (M^. Clearly, 
m = |V(T(w, v))\ — 1. Without loss of generality we assume that 

n = ^ 1 = ... ^ \Mi\ > 0. 

Since |V(T(w, t;))| > n, we have m = n. We shall construct disjoint w-sets W' and W" 
with the properties (1)—(4). We distinguish the following cases and subcases: 

1. m = n. We put W' = Mt u ... u Mt and W" = {w}. 
2. m > n. It is obvious that there exists an integer/, 1 g / < i, such that 
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(n + l)/2 = |Afx| + ... + \Mf\ = n. 

Denote mt = JM^ + ... + \Mf\. 
2.1. m — mt ^ n. If m is even, then we put W = Mt u ... u M / and W" = 

= M / + 1 u ... u Mf. Assume that m is odd. If mx < m — m1? then we put W = 
= \u\ u Mx u .. . u M / and W" = M / + 1 u ... u M{. li m — ml < m1? then we 
put W = Mx u .. . u Mf and W" = {w} u M / + 1 u . . , u M , , 

2.2. m — m1> n. Then there exists g,/ < g < i, such that 

(n + l ) / 2 ^ | M / + 1 | + ... + | M , | g n . 

Denote m2 = | M / + 1 | + ... + \Mg\. 
2.2.L mi + m2 is even. Then we put W = M± u ... u M r and W" = M / + 1 u ... 

. . . u M r ' 
2.2.2. m1 + m2 is odd. 
2.2.2.L m - (m1 + m2) = n. 
2.2.2.LL m — mx is even. Then we put TV' = M / + 1 u ... u Mg and W" = 

= M , + 1 u .. . u M j . 
2.2.2.1.2. m — mx is odd. Then m — m2 is even. 
2.2.2.L2.1. m - m2> n. Then m1 + (m - (mx + m2)) > w. We put W = 

= Mx u . . . u M ; a n d W" = M^+ 1 u . . . u M f . 
2.2.2.L2.2. m - m2 ^ n. If m is even, then we put W = Mx u ... u Mf u 

u M f f+1 u ... u Mt and TV" = M / + 1 u ... u M r Assume that m is odd. If m2 < 
< m — m2, then we put IV' = Mx u ... u M 7 u Mg+1 u ... u Mf and TV7' = 
= {w} u M / + 1 u .. . u Mg. If m2 > m — m2, then we put W = {w} u M1 u .. . 
. . . u My u Mg+x u ... u M{ and IV" = Mf+1 u ... u M r 

2.2.2.2. m — (mi + m2) > n. Then there exists an integer h, g <h < i, such that 

(n + l)j2S\Mg+1\ + ... + \Mh\Sn. 

Denote m3 = |Mff+1 | + ... + \Mh\. 
2.2.2.2.1. m3 + mx is even. Then we put IV' = M1 u ... u Mf and PV" = 

= Mg+1 u .. . u Mh. 
2.2.2.2.2. m3 + mj is odd. Then m3 + m2 is even. We put IV' = M / + 1 u .. . 

. . . uMg and IV" = M a + 1 u ... u Mh. 
The proof of the lemma is complete. 

Remark 1. Let Tbe a tree, u e V(T), n = 1, and let Wu ...,Wk(k^ 2) be disjoint 
w-sets such that \Wt\ ^ n,..., \Wk\ ^ n. Then every set Wh, 1 ^ h ^ k, can be ar­
ranged into a sequence w M , ..., Wh,\wh\

 s u c ^ that, for every g, 1 ^ g ^ \Wh\, 

if « G Wh , then ^ ( w ^ , u) < g , and if u $ Wh , then dT(wh,g, u) ^ g . 

This means that if u e Wh, then w M = w. 
Let h' and h" be arbitrary integers such that 1 =" h' < h" S k. Assume that g' 

and g" are integers such that 1 S g' S \Wh*\ and 1 = g" g |Wi»| and that u e IV,,, u 

54 



u Wh„ implies g' + g" ^ n + 2, and u $ Ww u JyV implies g' + g" _i n + 1. 
Then dT(ww,g,, wh„t9„) = dr(wfc.fir, w) + dT(wh„f9„, «) _ » + 1. 

Denote w_ = w„,>m,, w2 = w„.fm.__, ..., wm> = w„%1, wm, + 1 = wh»A, wm, + 2 = 
^ W/.»j2, ..., wm = wft">m«, where m' = |JV,y|, m" = \Wh»\, and m = m' + m". Thus 
the set JV,., u PYV has been arranged into the sequence 

w_, ..., wm. 

Let 1 __ i __./ __ m, and let I — i __ n. If j __ m' or i > m', then dT(wh Wj) __ n. 
If i __ m' and m' < j , then dr(wt., wy) = dT(wWtTn,_i + l, wh»j-m) = 
= dT(wWttn,_i+1, u) + d^w,,. ,,•_„,,, u) g (m' - i + 1) + (_i - m') = _/ - f + 1 __ 
__ w + 1. Thus we have that if 1 __ i < j __ m and j — i f_ n, then dr(wf, w,) ^ 
__ n + 1. 

Let W be a finite nonempty set. Then we denote by K(W) the complete graph 
whose vertex set is W. 

Remark 2. Let Tbe a tree, n _̂  1, and let w_, ..., wm be a sequence of distinct 
vertices in T which has been obtained in the way described in Remark 1. Let m be 
even and n + 1 _ m _ 2n. Denote 

FO = {w_W ( m / 2 ) + 1- W1W(m/2) + 2 , . . . , WiW^t , 

W2W(m/2) + 2> W2W(m/2) + 3 , . . . , W2W„+2 , 

W. i/2Wm' Wm / 2Wm + 1 , . . . , Wm/2W/J + ( m / 2 ) } , 

where every index i > m is to be replaced by the index i — (m/2). We denote by F 
the graph with V(F) = {w_, ..., wm} and 

F(F) = __(__({w_, .... wm/2})) u F(K({w(m/2) + 1, ..., wm})) u Fo • 

Then Fis an n-factor of the graph <{w_, ..., wm}>r„. _. 

Remark 3. Let m and n be integers such that 0 < m < n. It follows from 
Theorems 9.1 and 9.6 in [3] that Kn has an m-factor if and only if at least one of the 
integers m and n is even. 

Lemma 2. Let T be a tree of an order p ^ n + 1, where n ^ 1. Assume that if n 
is odd, then p is even. Then Tn+1 has an n-factor. 

Proof. If p = n + 1, then Tn+1 = K(V(T)) and thus T n + 1 is a regular graph 
of the degree n. Assume that p > n + 1, and that for every tree T* of an order p*, 
where (i)n + 1 5_ _?* < p, and (ii) if n is odd, then p* is even, it is proved that (T*)"+1 

has an n-factor. Since p > n + 1, it follows from Lemma 1 that there exists u e V(T) 
and disjoint w-sets W and FV" which fulfil ( l ) - (4 ) . Clearly, if n is odd, then |V(T)| 
and \W u W"\ are even, and therefore |V(T) - (W u W")\ is also even. 
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First, assume that |V(T) - (W u W")\ ^ n + 1. The induction assumption 
yields that (T - (W u W"))n+1 has an n-factor. If \W u W"\ = n + 1, then 
<IV' u W"}Tn+i = K(W u IV") and thus Tn+1 has an n-factor. Let |lV' u JV"| > 
> n + 1. Then IV' u IV" is even. The set IV' u IV" can be arranged into a sequence 
wl9 ..., wm described in Remark 1. From this fact and from Remark 2 it follows 
that there exists an n-factor of the graph < IV' u IV">r„+1. Hence, Tn+1 has an n-factor. 

We now assume that |V(T) — (IV' u IV")| ^ n. We distinguish the following 
cases and subcases: 

1. There exist disjoint w-sets Wx and IV2 such that \WX\ S \W2\ = n and that 
Wt u IV2 = V(T) - {w}. 

1.1. p is even. Then \WX\ < \W2\ and \W± u {w}| = n. The set {w} u Wx u IV2 

can be arranged into a sequence wl9 ..., wm (where m = p) described in Remark 1. 
Since n + 2 ^ m ^ 2n and m is even, it follows from Remark 2 that there exists 
an n-factor Tn+1. 

1.2. p is odd. Then n is even. The set Wx u IV2 can be arranged into a sequence 
wi> ••> wm (where m = p — 1) described in Remark 1. Since n is even, we have 
that n + 2 ^ m gj 2n. Consider the graph F defined in Remark 2. Since m j _ 
_- n + 2, there exist positive even integers i ^ m/2 andj ^ m/2 such that i + jf = n. 
Let F' be the graph obtained from the graph 

F - {wxw2, w3w4,..., w^w,, w(m/2) + 1w(m/2) + 2 , 

W(m/2) + 3W(m/2) + 4> •••» W(m/2)+ j - lw(m/2)+ /} 

by adding the vertex w and the edges uw1,uw2,...,uwi, ww(m/2) + 1, ww(m/2)+2,... 
..., ww(m/2)+J-. Then F' is an n-factor of Tn+1. 

2. For arbitrary disjoint w-sets Wx and IV2 such that \WX\ ̂  n and |lV2| S n it 
holds that Wt u IV2 # V(T) - {w}. Since |lV'| g n, |lV"| ^ n, and |V(T) -
— (IV' u W")\ ̂  n, we conclude that there exist disjoint w-sets A, B and C such that 
\A\ ^ n, |B| g n, |C| ^ n, |A u JBJ > n, |J5 u C| > n, |A u C| > n, and A u £ u 
u C = V(T) - {w}. Denote a = |A|, b = |B|, and c = |C|. Without loss of general­
ity we assume that a = b = c. 

2.1. Either a + 6 is odd or c < fc. If a + b is odd, then n ^ a > b, and we put 
Z = A, B = J5 u {w} and C = C; if a + b is even, then c < b, and we put A = A, 
B = £ and C = C u {w}. Denote a = |A|, E = |B| and c = |C|. Thus n ^ a ^ 
^. E gz. c, E + c > n, and a + 5 is even. In accordance with Remark 1 the set C 
can be arranged into a sequence zl5 ...zd such that for every g, 1 ^ g S c, ueC 
implies dT(zg, u) < g and u$C implies dT(zg, u) ^ g (hence ,if w e C, then zx = w). 
Analogously we can arrange the sets A and B. Moreover, in accordance with Remark 
1, the set A u B can be arranged into a sequence w l9..., wm (where m = a + 5) 
with the properties described in Remark 1 and such that wx,..., wg e A and wg+1,... 
..., wmeB (if w eB, then w5+1 = w). According to Remark 1, for 1 :g i _- c and 
1 => j ^ 5, the inequality i + jf ^ n + 2 implies dT(z,:, w5+J) ^ n + 1. Let F be 
the regular graph constructed in Remark 2. Thus V(F) = {w1?..., wm}. 
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Let c be odd; since p = a + B + c and a + B is even, we have that p is odd and 
therefore n is even. This means that at least one of the integers c and n is even. Thus 
at least one of the integers c and n — c + 1 is even. 

2.1.1. c < (n + l)/2. Since 5 + c _ n + 1, we have m — a = 5 _ r n — c + 
+ 1 > c. It follows from Remark 3 that K({w5+1,..., w5+1+w_-.}) has a c-factor, 
say Hj. This means that the graph obtained from the graphs F — E(Ht) and K(C) 
by adding the edges 

z c W a + l > z c W a + 2> •••> zcWa+l+n-c > 

z c - l W a + l > z c - l W a + 2> •••> Z c - l W a + l + n - c > 

Z l W a + l > Z l W a + 2> •••> Z l W a + l + n - č 

is an n-factor of Tn+1. 
2.L2. c > (n + l)/2. Then n - c + 1 < c _ 5. According to Remark 3, 

K({w5+1,..., w5+-.}) has an (« — c + l)-factor, say H2. The graph obtained from 
the graphs F — E(H2) and K(C) by adding the edges 

Z c W a + 1> • • •> Z c W 5 + 1 +n-c > 

Z c - l W a + 2> •••> z c - l W 5 + 2 + « - c > 

z l W a + c> •••> z l w a + n > 

where every index i > a + c is to be replaced by the index i — c, is an n-factor 
of Tn+1. 

2.L3. c = (n + l)/2. Then n is odd, and thus c is even. Obviously, c = n — c + 1. 
We denote by d the integer a if w $ B, or the integer a + 1 if u e B. Obviously, 
m — d _̂  c. We denote by a" that of the integers d — 1 and d which has the same 
parity as m/2. It is not difficult to see that d! _i c. For every i, 1 ?_ i _i c, we have 
rfr(zf, wd^_-+1) ^ ^T( Z J , w d - i - c + i ) _i » + 1. The graph obtained from the graphs 
K(C) and 

F - F(K({wd+1,..., wd+a}) - {wd,wd,_!, wd,_2wd,_3,..., wd,_-+2wd,_-+1} 

by adding the edges 
z c w d + l > •••> z c w d + c - l > 

z l w d + c> •••> z l w d + 2 c - 2 > 

where every index i > d + c means i — c, and the edges 

z c W d ' > z c - l w d ' - l > •••> z l w d ' - c + l > 

is an n-factor of Tn+1. 
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2.2. a + b is even and c = b. Thus c ^ (n + l)/2. Since p = a+2c + l9p + c 
is odd. This means that if c is even, then n is even. The set A u B can be arranged 
into a sequence w^-..., wm (where m = a + c) with the properties described in Re­
mark 1 and such that wl9 ..., wa e A and wa+1, ..., wm e B. The set C can be arranged 
into a sequence Zl9 ..., Zc such that dT(zi9 u) 5̂  i for every i9 1 g / _ c. Let F be the 
graph defined in Remark 2. Hence V(F) = {wl9..., wm}. 

2.2.1. n is even. Then c + (n + l)/2. This means that c > (n + l)/2 and therefore 
n — c + 1 < c. This means that either c or n — c + 1 is even. It follows from Re­
mark 3 that K({wa+1, ..., wa+c}) has an (n — c + l)-factor, say H[. Let Fx be the 
graph obtained from the graphs K(C) and F — E(H[) by adding the edges 

Zcwa+U •••> ZcWa + n-c+l » 

zlWa + o •••> z l v v a + n > 

where every index i > a + c means i — c. It is easy to see that Ft is an n-factor of 
(V(T — w)>-„+i. Since m/2 ^ c > (n + l)/2, there exist positive even integers j _i 
:g m/2 and k ^ c such that j + k = n. The graph obtained from the graph 

F! - {WXW2, W3W49 . . . , Wy^W,., Z!Z2, Z3Z4, . . . , Zfe-iZJ 

by adding the vertex u and the edges 

uwl9 uw29..., uwj9 uzl9 uzl9 ..., uzk 

is an n-factor of Tn+1. 
2.2.2. n is odd. Then c is odd and therefore n — c is even. Since c ^ (n + l)/2, 

we have n — c < c. Since n — c is even, we have that K({wa+1, ..., wa+c}) has an 
(n — c)-factor, say H2. Let F2 be the graph obtained from the graphs F — E(H2) 
and K(C) by adding the edges 

zcwa+l> •••> zcwa + n-c ? 

^lWfl + o •••> z l W a + « - l > 

where every index i > a + c means j — c. Therefore, every vertex wj9 1 ^ j ^ m , 
has the degree n in F2, and every vertex zk9 1 ^ k ^ c, has the degree n — 1 in F2. 
Obviously, n — c < m/2. The graph obtained from the graph 

F2 - {wxw29 w3w4,..., w„_c_1wM_c} 
by adding the edges 

uwl9 ...9uwn_C9uzl9 ...9uzc 

is an n-factor of Tn+1. 
Thus the lemma is proved. 
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Proof of Theorems 1 and 2. Let G be a graph satisfying the conditions of Theorems 
1 or 2. Then G is connected, and thus there exists a spanning tree of G, say T. Accord­
ing to Lemma 2, Tn+1 has an n-factor. Thus Gw+1 has an n-factor,which completes 
the proof. 
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