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DISCRETE ANALOGUES OF WIRTINGER’S
INEQUALITY FOR A TWO-DIMENSIONAL ARRAY

JARMILA NOVOTNA, Praha

(Received December 20, 1977)

In [4], G. PoLYA and G. SZEGO studied the inequality

(*) ‘U (ff+f,2)dxdygA2fJf2dxdy,
D D

where f = 0 on the boundary C of the domain of integration D. In [2], H. D. BLock
dealt with the corresponding discrete problem. The inequality is given for the two-
-dimensional array

{xij}g=1,...,m .

Jj=1,...,n

In [3] we have shown a new, simpler proof of the discrete analogues of Wirtinger's
inequality in case of n numbers x,, ..., x,. The proof was based on the use of trigono-
metric polynomials (see [1], pp. 13—20). The paper contains also some sharpenings
of the inequalities obtained.

In the present paper, we establish the two-dimensional analogues of trigonometric
polynomials. Using them we prove the discrete variations of (*) in a similar way as
in [3] To simplify the proofs, the inequalities are studied for arrays of the form
{x:;}1j=1. The results for

could be proved in the same way.
Using the results established in [3] we prove some inequalities for the “‘asym-
metrical” case, i.e. inequalities involving the series

Y Yxi; and Z”: i(xij—xwu)z-

i=1 j=1 i=1 j=1

1. LIST OF THEOREMS FROM [3] USED IN THE PAPER
Theorem 1.1. Let x, ..., x, be n real numbers such that
n
(1.1) Z xi = O .
i=1
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Let us define x,+1 = X1 Then

(1.2) Z(x — X;41)% 2 4sin’ = Zx .

ni=
The equality in (1.2) holds if and only if
21:

2mi
(1.3) X; —ACOS—+B , i=1,...,n, A, B= const.
n n

Theorem 1.2. If x4, ..., X, are n real numbers and x; = 0, then

n—1
1.4 X; — X; 2> 4sin2 — x?.
(14) & +1) 2(2n — 1) Z,

The equality in (1.4) holds if and only if
(1.5) xi=Asin(l—_1)—n, i=1,....,n, A = const.
n

Theorem 1.3. If x,, ..., X, are n real numbers, then

(1.6) éo(xi - X;41)? 2 4sin? ———— Z

2(n + 1)
where X, = X,., = 0. The equality in (1.6) holds if and only if

(1.7) x; = Asin I , i=1,...,n, A = const.
n+1

Theorem 1.4. Let x,, ..., X, be n real numbers satisfying (1.1). Then

n—1 n
(1.8) Y (% — Xi41)? 2 4sin = ¥ x?,
i=1 2ni=1
The equality in (1.8) holds if and only if
(1.9) x;=A cos(?'l——l)—Tt , i=1,..,n, A= const.

2n

2. SYMMETRICAL CASE

Notation. To simplify the form of inequalities, we shall write D?x;; instead of
(%57 = Xis1,0)? + (g = x50 0)™

The basic theorem in this article is Theorem 2.1, the two-dimensional analogue
of Theorem 1.1. Theorems 2.2 through 2.4 are analogues of Theorems 1.2 through
1.4. Theorem 2.5 is a sharpening of Theorem 2.1 and Theorem 2.6 is a sharpening
of Theorem 2.4.

Theorem 2.1. Let {x;}] ;=1 be n* real numbers such that

@.1) < 5 :Zx"” 0.

-
s
[
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Let us define x; ,11 = X1, Xp41,i = X345, 3 = 1,...,n. Then
(2.2) . Z 2 4sin? - Z Z PH

The equality in (2.2) holds if and only if

(2.3) xi,-=Acosm+Bsin@+Ccos@+Dsinzﬂ,
n n n n

lIMa

ihj=1,...,n, A,B,C, D = const.

The proof of Theorem 2.1 will be given in Section 4.

Theorem 2.2. Let {x;;}; -, be n® real numbers such that x;; = x,; =0, i =
= 1,...,n. Then (putting X,y j = Xpj Xjns1 = Xjn)
n

(2.4) S S D, zdsinto— 3 Tl

i=1 2(2n - 1)i=2=2
The equality in (2.4) holds if and only if

[\/] 3
IIV

W
-

(25) X;;=A sjnu + Bsin (J — 1)
2n -1 n—1"

i,j=1,..,n, A,B = const.

Proof. We apply Theorem 2.1 to a new array {y,}ri=; " (analogously to the

proof of Theorem 2 in [3]) defined as follows (schematically written in the form of
a matrix):

x“,..., xl,,, Xl,,,..., xlz, —xu,..., —xl,,, —xl,,,..., “xlz

x,,l, seey x,m, XM’ ceey ,xnz, -—x,,l, sey —x,,,,, ——x,,,,, ey —xnz
x,,l, ceey x,,,,, x,,,,, ceny x,'z, '—x,,l, ceey “xmn —x,,,,, eeey —-x,,z

le, ceny x2”, XZ,., sy x22, _xll’ ooy "‘in, ~x2,,, ceny —sz
—x“, DERTY —xl,,, —xlll’ seey “xlz, x“, ceey xl,,, Xl,,, ceey x12

—-x,,l, ooy -—x,,,,, —x,,,,, ooy —x,,z, x,,l, sy x,,,,, x,,,,, coey xnz
—Xp1s cvos T Xpns —Xnms o-ey —Xp2s Xn1s +os Xnns Xnps + o5 Xn2

—le, seey "'in, —xz,,, ooy —sz, le, LRRY) X2", Xz", sy x;: 'Y
Van-1,0= Yian-1 = 0.

(2.5) follows from (2.3) for y,; and from the equalities

Y11 = Yan,15 Y11 = V1,20 -
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Theorem 2.3. Let {x;;}; ;- be n* real numbers such that xo; = Xp11,; = Xjo =
= Xjn+1 = 0,j = 1,...,n. Then

(2:6) L Y Dy 2z 8sin® o —= 3, ¥, xij -
i=0j=0 2(n )|=0 j=0
The equality in (2.6) holds if and only if

(2.7 xy; = Asin T gin 2" , ih,j=1,...,n, A = const.
n+1 n+1

Remark. 1. (2.6) is a discrete analogue of (*) for a special case D = (0, &) x (0; m),
? = 2. This inequality can be derived from (2.6).

2. Using the method of the proof of Theorem 2.2 with {y,,} 7" defined as follows
(analogously to the proof of Theorem 3 in [3]):

0,0, ..,0, 0, 0 .. 0
0, Xy +oXgm 0, 0, ..., 0

0, X, oy Xew 0, O, ..., O
0,0, ..,0, 0 0 .. 0
0,0, .0, 0, —Xy5.e —%p,

0,0, .0, 0, =Xy e %o,

Van+3,q = Yi,20+3 = 0, we could derive an inequality similar to (2.6) with the con-
stant 4 instead of 8 at the right hand side and with the equality achieved only for x;;
=0,i,j=1,.

Proof. Choosing i fix, 1 £ i < n, we can apply Theorem 1.3 to the numbers x;;,
j=1,...,n. Adding these inequalities for i, 1 < i < n, and applying similarly

Theorem 1.3 to the numbers x;;, i = 1,...;/n, for j fix, 1 £ j < n, we obtain (2.6),

@.7).

Theorem 2.4. Let {x:;}3,j=1 be n? real numbers satisfying (2.1). Then (putting
xn+1_l—xnj’ jnt+1 _‘xn

(2.8) ; y Z 4sin’ 2 )

The equality in (2.8) holds if and only if

uM:

2i — )=

(2.9) x;; =Acos ( y—Ym

+ Bcos(—, i,j=1,...,n, A, B = const.
2n 2n
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Proof. Let us apply Theorem 2.1 to a new array { y,‘,},f,",=1 defined as follows
(analogously to the proof of Theorem 4 in [3]):

x“, “eey xl,,, xl,,, ey x“

Xn1s coos Xuns Xpps + 5 Xpn1

Xp1s coos Xnps Xpny =5 Xp1

X115 o205 X1py Xps +v05 X115

Yan+1,4 = Vi,2n+1 = Vi1, Which also satisfies (2.1). Then (2.8), (2.9) follow from
(2.2), (2.3).

Theorem' 2.5 (sharpening of Theorem 2.1 for n even) Let n =2m, n = 4. Let
{xu}” , be n? real numbers sattsfymg (2.1). Let us define Xppipe; = Xy i Jj =
=1,...,m. Then

(2.10) Z": 2x;; 2 % sin? - Z Z(x,, + Xitmj+m)’ + 4sin? = Z in,

ni=1j=1 ni=1j=

nM:

The equality in (2.10) holds if and only if x,; satisfy (2.3).
The proof of Theorem 2.5 will be given in Section 4.

3. ASYMMETRICAL CASE

Here we shall study inequalities involving Z Z x%; and Z Z (x5 = X341,
i=1j= i=1

To simplify the form of inequalities, we shall denote APx;; = (x,-j Xi+1,) To
derive these inequalities we shall use Theorems 1.1 through 1.4.

Theorem 3.1. Let n = 2m. Let {x;;}] ;=4 be n® real numbers such that x;, =
= Xims1 =0 i =1,..,n, and

(3.1) ;

Let us define Xp41,; = %15 = 1,...,n. Then

n[\/]-

n n
(3.2) z z Ay 2 4sin? = Y 3 xly + anic? sin? Ly
ni=1j= n

The equality in (3.2) holds if and only if

c+Aisin(]—_—-1—);1-t, ji=4L..,m, i=1..,n,
m

(3.3) xU= ..
c+B,sinQ;m;DJ, j=m4+1,..,n, i=1,..,n,

m
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where the numbers A;, B; do not depend on j and satisfy the relation
T n

(34 n*c + cotg= Y (4, + B;) = 0.
ni=1

Proof. Take i fix, 1 £i £ n. Let us define one-dimensional arrays {y,‘}z;o,
{zi}i=o as follows: y, = X; 441 — € Z} = Xjmsr+s — C. Then yo = y, = zo =
= z,, = 0; applying Theorem 1.3 to the arrays {y,}icy, {z}roi and adding the

obtained relations for i, 1 < i £ n, we obtain the statement of Theorem 3.1.

Theorem 3.2. Let {x;;}} ;-1 be n® real numbers satisfying (3.1) and such that
Xy =c,i=1,...,n Then

n n—1

3.5 A%x;; = 4sin? iy x% + 4n%c?sin®? — .,
(3) .Zuz 7= 2(2n - 1)i=1 ; ! 2(2n - 1)
The equality in (3.5) holds if and only if
(3.6) X = ¢+ A;sin (=1= ,

2n -1

where the numbers A; do not depend on j and satisfy the relation
2 r “ ’
3.7 2n“c + cotg——— ) A;=0.
(3.7) g2(2n - 1) igl
Proof is similar to the previous one, but we apply Theorem 1.2 to the one-
-dimensional array {y}r=1, ¥x = Xy — ¢, i fixed .

Theorem 3.3. Let {x;;}} ;- satisfy the assumption of Theorem 3.2. Let us define
Xp41,; =X1;=2¢ j=1,...,n Then

(3.8) Y ¥ A%x,; 2 4sin? — Z Zx,j+4nc sin? —
i=1 j=1 2n i=1 j= 2n
The equality in (3.8) holds if and only if
(3.9) xu=c+Aisin(J;1)it, ij=1,..n,
n

where the numbers A; do not depend on j and satisfy the relation

(3.10) n%c + cotg£ Y A4,=0.
2n i=1

Proof. Theorem 3.3 follows from Theorem 1.3 in a similar way as the previous
two theorems or from Theorem 3.1 when defining the two-dimensional array
{yi}ih=1 as follows:
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Xg1s eees Xims X115 eves X1n

‘ Xnts ++s Xnns Xnts ++os Xpn
xll’ ooy xl,,, x“, ey xl"

Xp1s +ovs Xnms Xnis «+vs Xon -

In the previous three theorems the assumption (3.1) was very important. Now we
shall show two more theorems without using this assumption. However, we have
to assume that the constant ¢ = 0. Theorems follow from Thorem 3.1 in a way
analogous to the proofs in Section 2. We shall only define new arrays in the schematlc
form of a matrix.

Theorem 3.4. Let {xi;}1 j=1 be n* real numbers such that x;; =0, i =1,.
Then

n n—1 n n

(3.11) y ZAzxu 2 4sin? DI

i=1j=1 2("—1);=11=2
The equality in (3.11) holds if and only if

(3.12) x;; = 4;sin (—;——1)113 , iLj=1,...,n, A;donotdependonij.
" — i

Proof. {ykl}:(lznl D

x“, ceey xl", xl,,, sy xlz, —x“, ceey —xln, _'xl", cey —xlz

x,,l, ey x,,,,, xm', seny X,,z, —x,,l, seey '—x"", —x,,,,, ey —X,,z
0,
Yan-1 11 = Y15 then ¢ = 0, n, = 2(2" - 1).

Theorem 3.5. Let {x,}7 ;-1 be n®? real numbers such that x;, = X;,., = 0,
i=1,...,n. Then

A?x,; = 4sin® — Sy x% .
= 2(n + 1) i; jzzo !

The equality in (3.13) holds if and only if

(3.13)

™M=
it

i

[}

1j

(3.14) x;; = A;sin JT T i,j=1,...,n, A;do notdependonj.
n+

Proof. {yu}25sd:
0, x“ ...,‘.xl,,, 0, —xu, ] -xl,,

0, Xpgs coes Xpms 0y —Xpgy eees —Xpn
. 0’

Yan+3,10 = V1 then ¢ = 0, hy = 2(n + 1).
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4. PROOFS OF THEOREMS 2.1 AND 2.5

show that for any array {x,-j}',-',,-=1 there exist such numbers &o, £,, &5, 1, 11y, P =
=1,...,m, by

In a way analogous to the introduction of trigonometric polynomialsin [ 1] we can
m 'gst’ l()st’ HUses ”:ta s,t=1,..., m, that
(4.1)

2n L2 .2
g=2¢& + 21 <€pcospi—n—+ & smpt—n-n+ 1, €0 pj — +
o=

+ 1, sin pj ) i 2’(

2n . .2¢
9, cos si —sintj — 4
s=1t=1 n n
* . .27
+ 3¢, sin si — cos tj — + pg, cos si—cos tj — +
n n

hn

2n 21:) .
+ p¥ sin si == sin tj = i, Jj

=1,.
n n

L hn,
n

- n
Y Yxi=nG+

i=1j=1

(4.2)

1(52 + 52‘2 + ’7p + "pz) +
=

+ —‘Z Z(‘gfr + ‘9::2 + .u'st + ﬂsr )
4 5=11¢=1
(4.3)

n n
21 Z szij = 2n’ Z (fp 622 + '7p + ’7112) sin’ p +
i=1 j=1 =1

+ n?

s

™Ms
nMs ’v

1 (%+9 + ok + ).
t

( T ., n)

siIn“s— 4+ st —|).
n n

From (2.1) it follows that

(4.4)

£ =0.

Theorem 2.1 follows immediately from (4.1)—(4.4)
Using (4.1) and (4.2) we derive

(4.5)

i=1j=1

Z Z(X,] + xt+mj+m) =
Y@+ ) [ (<)

42 ,Z:(gft”?‘ g+ ) [+ (1) + (1) + (=)

Theorem 2.5 is a consequence of (4.1)—(4.5) in an analogous way as in [3] (the proof
of Theorem 2.5).
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