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EVENTUAL DISCONJUGACY OF

y(n) + µp(x)y = 0y(n) + µp(x)y = 0y(n) + µp(x)y = 0 FOR EVERY µµµ

URI ELIASAbstra
t. The work characterizes when is the equation y(n)+µp(x)y = 0 eventu-
ally disconjugate for every value of µ and gives an explicit necessary and sufficient
integral criterion for it. For suitable integers q, the eventually disconjugate (and

disfocal) equation has 2-dimensional subspaces of solutions y such that y(i) > 0,

i = 0, . . . , q − 1, (−1)i−qy(i) > 0, i = q, . . . , n. We characterize the “smallest” of
such solutions and conjecture the shape of the “largest” one. Examples demonstrate
that the estimates are sharp.

1. Introduction

Given the differential equation

(1.1) y(n) + µp(x)y = 0

where p(x) is a continuous, one-signed function on [a,∞). In the study of singular
eigenvalue problems on infinite intervals we came to the question when is Equation
(1.1) eventually disconjugate for every value of µ (i.e., disconjugate on some
interval [x0(µ),∞)). We characterize this property and discuss the asymptotic
behaviour of the corresponding solutions.

Theorem 1. (a) Equation (1.1) is eventually disconjugate for every value of µ
if and only if

(1.2)α lim
x→∞

(

xn−α−1

∫

∞

x

sα|p(s)| ds
)

= 0

for some α ≤ n − 1.
(b) If (1.2)α holds for some real α, then (1.2)β holds for every β, β < n − 1.

The convergence of the limit (1.2)α is uniform for α ≤ n − 1− ε0, ε0 > 0.
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For α < n − 1, β = n − 1 the implication (1.2)α → (1.2)β is in general false.

α = n − 1 plays a special role in (1.2)α. Indeed, for α = n − 1, (1.2)α reduces
into the integrability condition

(1.3)

∫

∞

sn−1|p(s)| ds < ∞ ,

which is a well known necessary and sufficient condition for every solution of
Equation (1.1) to be asymptotic to some polynomial. See [Ea, p. 45]. Some
equations which satisfy (1.2)α for all α < n − 1 but do not satisfy (1.3) are

(1.4) y(n) +
µ

xn logq x
y = 0 , 0 < q ≤ 1 ,

since xn−α−1
∫

∞

x
sα (sn logq s)−1 ds ∼ log−q x/(n − α − 1) as x → ∞.

Now we turn to the shape of the solutions of our equation. If Equation (1.1)
is eventually disconjugate then for every solution y there exists an integer k,
(−1)n−kµp(x) < 0, such that

(1.5)
y(i) > 0 , i = 0, . . . , k − 1 ,

(−1)i−ky(i) > 0 , i = k, . . . , n − 1 , x0 ≤ x < ∞ .

This is equivalent to the (k, n − k)-disfocality if Equation (1.1) on [x0,∞). Any
solution which satisfies (1.5) is bounded, of course, by

0 < Axk−1 ≤ y(x) ≤ Bxk , x0 ≤ x < ∞ .

Moreover, it is known that there exists a two dimensional subspace of solutions
which satisfy (1.5), and a basis {yk−1(x), yk(x)} may be chosen so that yk−1/yk →
0 as x → ∞. See [Ki], [E1, Chapter 8]. This is easily observed for the Euler’s
equation y(n)+cx−ny = 0 with small c, where yk−1 = xrk−1 , yk = xrk , respectively,
with k − 1 < rk−1 < rk < k.
When (1.3) happens to hold and all solutions are asymptotically polynomials,

the pair of solutions yk−1, yk are asymptotic to xk−1 and xk, respectively. Here
we estimate the solutions of Equation (1.1) when only (1.2)α holds.

Theorem 2. Suppose that (1.2)α holds for some α and let k, 1 ≤ k ≤ n− 1 be a
fixed integer such that (−1)n−kµp(x) < 0. There exists a solution u = u(x, µ) of
Equation (1.1) such that for every γ > k − 1,

(1.6) 0 < Axk−1 ≤ u(x, µ) ≤ Bxγ , x ≥ x0(γ) .

u is of course the “small” solution which satisfies (1.5). For the “large” solution
we conjecture:

Conjecture. Let (1.2)α hold for some α and let k be a fixed integer such that
(−1)n−kµp(x) < 0. There exists a solution v = v(x, µ) of Equation (1.1) such that
for every δ < k,

(1.7) 0 < Cxδ ≤ v(x, µ) ≤ Dxk , x ≥ x0(γ) .

In spite of the similarity to Theorem 2, we don’t know to prove this conjecture.
The examples of the last section demonstrate that the estimate (1.6), (1.7)

cannot been improved too much.
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2. Proofs

Nonoscillation for every µ has several equivalent appearances:

(a) Equation (1.1) is eventually disconjugate for every value of µ.
(b) For every integer k, 1 ≤ k ≤ n − 1, Equation (1.1) is eventually (k, n − k)-
disfocal for every value of µ.
(c) For some integer k, 1 ≤ k ≤ n − 1, Equation (1.1) is eventually (k, n − k)-
disfocal for every value of µ.

Note that for convenience (b) is formulated for ‘every k’, but practically only
the integers k such that (−1)n−kµp(x) < 0 are relevant. For values of k of the
opposite parity, (k, n − k)-disfocality is trivial.

The equivalence (a) ↔ (b) is well known and (b) → (c) is self evident, so only
(c) → (b) is to be proved. To show this, we utilize the following result ([E2], [E1,
Chapter 7]):

If Equation (1.1) is (k, n − k)-disfocal on an interval I and 1 ≤ ℓ ≤ k, ℓ ≡
k(mod2), then the equation

(2.1) y(n) + µ

(

(

n − 1

k

)

/

(

n − 1

ℓ

)

)

p(x)y = 0

is (ℓ, n− ℓ)-disfocal on the same interval. If n− 1 ≥ ℓ ≥ k, ℓ ≡ k(mod2), then the
equation

(2.2) y(n) + µ

(

(

n − 1

k − 1

)

/

(

n − 1

ℓ − 1

)

)

p(x)y = 0

is (ℓ, n − ℓ)-disfocal there.

By (c), Equation (1.1) is (k, n−k)-disfocal for any µ on some [x0(µ),∞). Apply-
ing the last remark for any ℓ, ℓ ≡ k(mod2), equation (1.1) is also (ℓ, n− ℓ)-disfocal
on some other ray [x0(µ

′),∞), with a suitable µ′ which is determined by (2.1) or
by (2.2). Thus (c) implies (b).

Proof of Theorem 1. We begin with part (b) which explains the relations
among the limits (1.2)α for various values of α.

If (1.2)α holds for some α, (1.2)β evidently holds for β < α since

xn−β−1

∫

∞

x

sβ |p(s)| ds = xn−α−1

∫

∞

x

( s

x

)β−α

sα|p(s)| ds

and
(

s/x
)β−α

≤ 1 for s ≥ x, β < α.

Now we go the opposite way: Given that xn−α−1
∫

∞

x
sα|p(s)| ds < ε for x ≥ x0,

we calculate (1.2)β with β = α + 1, assuming that β = α + 1 < n − 1. For
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every finite b, xn−α−2
∫ b

x
sα+1|p(s)| ds is integrated by parts with f(s) = s, f ′ = 1,

g′(s) = sα|p(s)|, g(s) = −
∫

∞

s
τα|p(τ)| dτ :

xn−α−2

∫ b

x

sα+1|p(s)| ds

= xn−α−2
[

− s

∫

∞

s

τα|p(τ)| dτ
∣

∣

∣

b

s=x
−

∫ b

x

1
(

−

∫

∞

s

τα|p(τ)| dτ
)

ds
]

= xn−α−2
[

− b

∫

∞

b

τα|p(τ)| dτ + x

∫

∞

x

τα|p(τ)| dτ +

∫ b

x

(

∫

∞

s

τα|p(τ)| dτ
)

ds
]

Since xn−α−1
∫

∞

x
sα|p(s)| ds < ε for x ≥ x0, and since n−α−1 > 1, we let b → ∞

and get that for x > x0

xn−α−2

∫

∞

x

sα+1|p(s)| ds

= xn−α−2
[

x

∫

∞

x

τα|p(τ)| dτ +

∫

∞

x

(

∫

∞

s

τα|p(τ)| dτ
)

ds
]

≤ xn−α−2
[

x

∫

∞

x

τα|p(τ)| dτ +

∫

∞

x

ε

sn−α−1
ds
]

< ε+
ε

n − α − 2
= ε

n − β

n − β − 1
.

This verifies (1.2)α → (1.2)β for β = α + 1 < n − 1 and that the convergence of
the limit (1.2)β is uniform for β ≤ n − 1− ε0.
By combining these two types of steps we arrive from any given α to any β,

β < n − 1 .
Now we turn to part (a). According to Theorems 2.8, 2.9 of [KC], if

lim sup
x→∞

(

x

∫

∞

x

sn−2|p(s)| ds
)

> cn

where cn is a certain, explicitly known positive constant, then the equation y(n)+
p(x)y = 0 has an oscillatory solution. If Equation (1.1) has no oscillatory solutions
for any µ, it is necessary that

lim
x→∞

x

∫

∞

x

sn−2|p(s)| ds = 0 .

By virtue of the proved above this implies that (1.2)α holds for every α < n − 1
and the necessity part is proved.
To prove the sufficiency of (1.2)α, recall Lemma 1.6, Lemma 1.18 and Lemma

1.19 of [KC]: If y(n) + P (x)y = 0 is (q, n − q)-disfocal on [x0,∞) and
∫

∞

x
sq−1

|P (s)| ds ≥
∫

∞

x
sq−1|p(s)| ds, then also equation y(n) + p(x)y = 0 is (q, n − q)-

-disfocal there.
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Euler’s equation y(n)+cx−ny = 0 is eventually (q, n−q)-disfocal for well known
values of c. So, with P (x) = cx−n, we get that

(2.3)

∫

∞

x

sq−1|p(s)| ds ≤
|c|

n − q
x−n+q

is a sufficient condition for the eventual (q, n − q)-disfocality of y(n) + p(x)y = 0.
Now, if (1.2)α holds for some α, then it is clear that (1.2)β also holds for

β = q − 1 < n − 1, i.e., xn−q
∫

∞

x
sq−1|p(s)| ds → 0. Consequently (2.3) is satisfied

for large values of x and the sufficiency part of Theorem 1 is completed. �

Proof of Theorem 2. This theorem considers the asymptotic behavior of the
solutions of Equation (1.1) when (1.2)α holds (but not necessarily (1.3)).
The required solution of (1.1) will be obtained as a solution of the integral

equation

(2.4)

y(x) = (x − x1)
k−1 + (−1)n−k−1

∫ x

x1

(x − τ)k−1

(k − 1)!

×
(

∫

∞

τ

(s − τ)n−k−1

(n − k − 1)!
µp(s)y(s) ds

)

dτ .

A straightforward differentiation of (2.4) shows that its solution satisfies Equation
(1.1). Moreover, if y is a positive solution of (2.4) then

(2.5) y(k)(x) = (−1)n−k−1

∫

∞

x

(s − x)n−k−1

(n − k − 1)!
µp(s) y(s) ds > 0 ,

due to (−1)n−k µp(x) < 0. Further differentiations of (2.5) verify that (−1)i−k

y(i) > 0 for i = k, . . . , n− 1 and integrations of (2.5) on [x1, x] show that y(i) > 0,
i = 0, . . . , k − 1. Hence inequalities (1.5) are satisfied.
Take a number γ, k − 1 < γ < k, and let x0 be a fixed point and

M = m(x0) = max
[x0,∞)

(x − x0)
k−1

xγ
.

We choose in (2.4) x1 ≥ x0 > 0 such that

xk−γ

∫

∞

x1

s(n−1)−(k−γ)|p(s)| ds < ε/|µ|M .

The solution of (2.4) on [x1,∞) is obtained as the limit of the iterations

y0(x) = 2Mxγ , yi(x) = T [yi−1] ,

where T [y] denotes the right hand side of (2.4). First,

∣

∣

∣
µ(−1)n−k−1

∫

∞

τ

(s − τ)n−k−1

(n − k − 1)!
p(s)y0(s) ds

∣

∣

∣
≤ 2|µ|M

∫

∞

τ

sn−k−1+γ |p(s)| ds

< 2ετγ−k
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for τ > x1. Therefore

y1(x) = T [y0] ≤ (x − x1)
k−1 +

∫ x

x1

(x − τ)k−1

(k − 1)!
2ετγ−k dτ

= (x − x1)
k−1 +

∫ x

x1

· · ·

∫

2ετγ−k dτ (k integrations )

= (x − x1)
k−1 + 2ε

(x − x1)
γ

(γ − k + 1) · · ·γ

≤
(

M +
2ε

(γ − k + 1) · · ·γ

)

xγ

for x ≥ x1, since m(x1) ≤ m(x0) = M . Finally, we determine ε to be sufficiently
small (perhaps by an additional increase of x1) so that the last bound is not bigger
than 2Mxγ . This completes the estimate

(x − x1)
k−1 ≤ y1(x) ≤ 2Mxγ = y0(x) , x ≥ x1 .

Since T is a positive operator, the next iteration yields y2 = T [y1] ≤ T [y0] = y1
and finally

(x − x1)
k−1 ≤ · · · ≤ y2 ≤ y1 ≤ y0 = 2Mxγ , x ≥ x1 .

A standard argument shows that this sequence converges to some solution u =
u(x, µ, γ) of (1.1) such that 0 < Axk−1 ≤ u(x, µ, γ) ≤ Bxγ for the fixed γ which
we took.
However, we claim more, namely, that there exists a solution u(x, µ) which

satisfies the inequality u(x, µ) ≤ Bxγ for every γ > k − 1 on some suitable
[x0(γ),∞).
For every two solutions y1(x), y2(x) of (1.1), limx→∞ y1(x)/y2(x) exists, finite

or infinite. Otherwise, if L = lim inf y1(x)/y2(x) 6= lim sup y1(x)/y2(x) = M then
for every L < c < M , y1 − cy2 would be an oscillatory solution. In particu-
lar limx→∞ u(x, µ, γ1)/u(x, µ, γ2) exists for every γ1, γ2. The solutions in the set
{u(x, µ, γ) | k − 1 < γ < k} may have at most two different orders of magni-
tude, i.e., there cannot exist three solutions such that u(x, µ, γ1)/u(x, µ, γ2)→ ∞,
u(x, µ, γ2)/u(x, µ, γ3) → ∞. Otherwise each solution in the 3-dimensional sub-
space that they span would satisfy inequalities (1.5) (up to ± sign), which is
known to be impossible. Thus {u(x, µ, γ) | k − 1 < γ < k} consists of at most
two subsets Γ1,Γ2 such that u(x, µ, γ1)/u(x, µ, γ2) → L as x → ∞, 0 < |L| <
∞, when u(x, µ, γ1), u(x, µ, γ2) ∈ Γ1 and when u(x, µ, γ1), u(x, µ, γ2) ∈ Γ2 but
u(x, µ, γ1)/u(x, µ, γ2)→ 0 when u(x, µ, γ1) ∈ Γ1, u(x, µ, γ2) ∈ Γ2 (if Γ2 6= ∅). Now
we choose u(x, µ) = u(x, µ, γ1) as an arbitrary solution in Γ1 and it satisfies (1.6)
for every γ > k − 1 on some suitable [x0(γ),∞). �

Unfortunately we cannot say anything about the other, “large”, solution of
(1.1) which satisfies inequalities (1.5). While in the proof above the solution was
obtained as a fixed point of a contractive map, a similar technique is not available
for the “large” solution. This happens probably because for the “large” solution
the integral

∫

∞

sn−k−1|p(s)|y(s) ds is too close to
∫

∞

sn−1|p(s)| ds which does not
necessarily exist.
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3. Examples

The following examples demonstrate the asymptotic forms of the solutions of
equations which satisfy (1.2)α for α < n−1 and are not asymptotic to polynomials.

Example 1. Equation (1.4) with n = 2,

(3.1) y′′ +
µ

x2 log x
y = 0 , x > 1 ,

is transformed by t = log x into tv′′ − tv′ + µv = 0, which has a solution

v(t, µ) =
∞
∑

k=0

(1− µ)(2 − µ) · · · (k − µ)

k! (k + 1)!
tk+1 .

For a fixed noninteger µ, (1− µ)(2− µ) · · · (k − µ)/k! ∼ ck−µ as k → ∞ by the
Stirling formula, so up to a multiplicative constant

v(t, µ) ∼
∞
∑

k=1

tk+1

kµ (k + 1)!
∼

et

tµ

(see [PSz, Part IV, 70]) and

y(x, µ) =

∞
∑

k=0

(1 − µ)(2− µ) · · · (k − µ)

k! (k + 1)!
(log x)k+1 ∼

x

(log x)µ

as x → ∞. Another solution of (3.1) is

z(x, µ) = y

∫

∞

x

y−2 dx = x(log x)−µ

∫

∞

x

x−2(log x)2µ dx ∼ (log x)µ

(verify by l’Hopital rule). y(x, µ), z(x, µ) are the “large” and “small” solutions of
(3.1), respectively.
It is remarkable that for an integer valued µ, say µ = m, the roles inter-

change and y(x, m) =
∑m−1

k=0
(1−m)(2−m)···(k−m)

k! (k+1)! (log x)k+1 ∼ c(log x)m becomes

the “small” solution while z(x, µ) = y
∫

y−2 dx = (log x)m
∫

(log x)−2m dx ∼
x/(log x)m is the “large” solution.

Example 2. u = xk−1(log x)q satisfies inequalities (1.5) and it is a solution of

(3.2) u(n) + (−1)n−k−1 q (k − 1)! (n − k)! (1 + o(1))

xn log x
u = 0 , 1 < x < ∞ ,

where o(1) is a certain polynomial of (log x)−1.
v = xk/(log x)q satisfies (1.5) as well and it is a solution of another equation,

(3.3) v(n) + (−1)n−k−1 q k! (n − k − 1)! (1 + o(1))

xn log x
v = 0 , 1 < x < ∞ .

(3.2) and (3.3) are verified by direct calculation. Examples 1 and 2 show that
the estimates (1.6), (1.7) are not far away from reality.



200 U. ELIAS

References

[Ea] Eastham, M. S. P., The asymptotic solution of linear differential systems, University Press,
Oxford, 1989.

[E1] Elias, U., Oscillation theory of two-term differential equations, Kluwer Academic Publish-
ers, Dordrecht, 1997.

[E2] Elias, U., Comparison theorems for disfocality and disconjugacy of differential equations,
SIAM J. Math. Anal. 15 (1984), 922–931.

[KC] Kiguradze, I. T., and Chanturia, T. A., Asymptotic properties of solutions of nonau-

tonomous ordinary differential equations, Kluwer Academic Publishers, Dordrecht, 1993.
[Ki] Kim, W. J., Asymptotic properties of nonoscillatory solutions of higher order differential

equations, Pacific J. Math. 93 (1981), 107–114.
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