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THE ASYMPTOTIC PROPERTIES OF THE SOLUTIONS OF

THE N–TH ORDER NEUTRAL DIFFERENTIAL EQUATIONS

DÁŠA LACKOVÁAbstra
t. The aim of this paper is to deduce oscillatory and asymptotic behavior
of the solutions of the n−th order neutral differential equation

(x(t) − px(t − τ))(n) − q(t)x(σ(t)) = 0 ,

where σ(t) is a delayed or advanced argument.

We consider the n−th order differential equation with a deviating argument of
the form

(1) (x(t) − px(t − τ))(n) − q1(t)x(σ1(t)) = 0 ,

where

(i) n is even,
(ii) p and τ are positive numbers,
(iii) q1(t), σ1(t) ∈ C(R+, R+), q1(t) is positive, lim

t→∞

σ1(t) =∞.

By a solution of Eq. (1) we mean a function x : [Tx,∞)→ R which satisfies (1)
for all sufficiently large t. Such a solution is called oscillatory if it has a sequence
of zeros tending to infinity; otherwise it is called nonoscillatory. Eq. (1) is said to
be oscillatory if all its solutions are oscillatory.

We introduce the notation

(2) Qj(t) = qj(t)

m
∑

i=0

pi , where m is a positive integer, j = 1, 2 .
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Lemma 1. Let z(t) be an n times differentiable function on R+ of constant sign,

z(n)(t) 6≡ 0 on [T0,∞) which satisfies z(n)(t)z(t) ≥ 0. Then there is an integer l,

0 ≤ l ≤ n and t1 ≥ T0 such that n+ l is even and for all t ≥ t1

(3)
z(t)z(i)(t) > 0, 0 ≤ i ≤ ℓ ,

(−1)i−ℓz(t)z(i)(t) > 0, ℓ ≤ i ≤ n .

Lemma 1 is a well-known lemma of Kiguradze [5].
A function z(t) satisfying (3) is said to be a function of degree l. The set of all

functions of degree l is denoted by Nl. If we denote by N the set of all functions
satisfying z(n)(t)z(t) ≥ 0 then the set N has the following decomposition

N = N0 ∪ N2 ∪ · · · ∪ Nn .

Lemma 2. Let y(t) be a positive function of degree ℓ, ℓ ≥ 2. Then

(4) y(t) ≥

t
∫

t1

y(ℓ−1)(s)
(t − s)ℓ−2

(ℓ − 2)!
ds .

The proof of this lemma is immediate from integration the identity y(l−1)(t) =
y(l−1)(t).

Theorem 1. Assume that m is a positive integer. Let

(5) σ1(t) < t − τ , σ1(t) ∈ C1 , σ′

1(t) ≥ 0 .

Further assume that the differential equation

(6) y(n)(t) +
1

p
q1(t)y(σ1(t) + τ) = 0

is oscillatory and the differential inequality

(7) z(n)(t)− Q1(t)z(σ1(t)) ≥ 0

has no solution of degree 0. Then every nonoscillatory solution of Eq. (1) tends
to ∞ as t → ∞.

Proof. Without loss of generality let x(t) be an eventually positive solution of
Eq. (1) and define

(8) z(t) = x(t) − px(t − τ) .

It is easy to see that

(9) z(t) < x(t) .
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From Eq. (1) we have z(n)(t) > 0 for all large t, say t ≥ t0. Thus z(i)(t) are
monotonous, i = 0, 1, . . . , n − 1. If z(t) < 0 eventually, then we set u(t) = −z(t).
In the view of (8)

x(t − τ) >
1

p
u(t) ,

that is

x(t) >
1

p
u(t+ τ) .

One gets that u(t) is a positive solution of the inequality

u(n)(t) +
1

p
q1(t)u(σ1(t) + τ) ≤ 0

and by Kusano and Naito [1] the corresponding equation

u(n)(t) +
1

p
q1(t)u(σ1(t) + τ) = 0

has a positive solution u(t). This contradicts that (6) is oscillatory.
Therefore z(t) > 0. According to Lemma 1 we have two possibilities for z′(t) :

(a) z′(t) > 0, for t ≥ t1 ≥ t0,
(b) z′(t) < 0, for t ≥ t1.

For case (a) by Lemma 1 we obtain z(t) > 0, z′(t) > 0, z′′(t) > 0. It implies
that lim

t→∞

z(t) =∞ and from (9) also lim
t→∞

x(t) =∞.

For case (b) Eq. (1) can be written in the form

z(n)(t)− q1(t)x(σ1(t)) = 0 .

Using (8) we have

z(n)(t)− q1(t)z(σ1(t))− pq1(t)x(σ1(t)− τ) = 0 .

Repeating this procedure m−times we arrive at

z(n)(t)− q1(t)

m
∑

i=0

piz(σ1(t)− iτ)− pm+1q1(t)x(σ1(t)− (m+ 1)τ) = 0 .

Since z(t) is decreasing, we get

z(n)(t)− q1(t)z(σ1(t))

m
∑

i=0

pi ≥ 0 .

In the view of (2) we have

(10) z(n)(t)− Q1(t)z(σ1(t)) ≥ 0 .

Hence z(t) is a solution of degree 0 of the inequality (10). This is a contradiction.
�
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Corollary 1. Let m be a positive integer. Further assume that (5) holds, differ-
ential equation (6) is oscillatory and there exists k ∈ {0, 1, . . . , n − 1} such that

(11) lim sup
t→∞

1

k!(n − k − 1)!

t
∫

σ1(t)

[s − σ1(t)]
k
[σ1(t)− σ1(s)]

n−k−1
Q1(s) ds > 1 .

Then every nonoscillatory solution of Eq. (1) tends to ∞ as t → ∞.

Proof. By [2, Theorem 1] it follows from (11) that the differential inequality (7)
has no solution of degree 0. Our assertion follows from Theorem 1. �

Let us consider the n−th order differential equation with an advanced argument
of the form

(12) (x(t) − px(t − τ))(n) − q2(t)x(σ2(t)) = 0 ,

where (i), (ii) holds and moreover

(iv) q2(t), σ2(t) ∈ C(R+, R+), q2(t) is positive, lim
t→∞

σ2(t) =∞.

We introduce the notation

(13) Aℓ(t) =

∞
∫

t

q2(s)
(s − t)n−ℓ−1

(n − ℓ − 1)!
×







σ2(s)
∫

t

(t − u)ℓ−2

(ℓ − 2)!
du






ds ,

for ℓ = 2, 4, . . . , n − 2 .

Theorem 2. Assume that m is a positive integer and

(14) σ2(t)− mτ > t , σ2(t) ∈ C1 , σ′

2(t) ≥ 0 , 0 < p < 1 .

Further assume that

(15) Aℓ(t)(t − t1) > 1 for ℓ = 2, 4, . . . , n − 2

and the differential inequality

(16) z(n)(t)− Q2(t)z(σ2(t)− mτ) ≥ 0

has no solution of degree n. Then every nonoscillatory solution of Eg. (12) is
bounded.

Proof. Without loss of generality let x(t) be an eventually positive solution of
Eq. (12) and define

(17) z(t) = x(t) − px(t − τ) .
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From Eq. (12) we have z(n)(t) > 0 for all large t, say t ≥ t0. Thus zi(t) are
monotonous, i = 0, 1, . . . , n − 1. If z(t) < 0 eventually, then

x(t) < px(t − τ) < p2x(t − 2τ) < · · · < pkx(t − kτ)

for all large t, which implies lim
t→∞

x(t) = 0.

If z(t) > 0, then according to a Lemma 1 we have two possibilities for z′(t) :

(a) z′(t) > 0, for t ≥ t1 ≥ t0,
(b) z′(t) < 0, for t ≥ t1.

For case (a) we have two possibilities:

(i) ∃ ℓ ∈ 2, 4, . . . , n − 2, such that z(t) ∈ Nℓ,
(ii) ℓ = n, i.e. z(t) ∈ Nn.

For case (i) Eq. (12) can be written in the form

z(n)(t) = q2(t)x(σ2(t)) .

Integrating this equation from t to ∞ n − ℓ times and taking Lemma 2 into
account, one gets

z(ℓ)(t) >

∞
∫

t

q2(s)x(σ2(s))
(s − t)n−ℓ−1

(n − ℓ − 1)!
ds >

∞
∫

t

q2(s)z(σ2(s))
(s − t)n−ℓ−1

(n − ℓ − 1)!
ds

>

∞
∫

t

q2(s)
(s − t)n−ℓ−1

(n − ℓ − 1)!
×







σ2(s)
∫

t1

z(ℓ−1)(u)
(t − u)ℓ−2

(ℓ − 2)!
du






ds

Taking into account that σ2(t) is nondecreasing, t ≥ t1 and z(ℓ−1)(t) is increasing,
the above inequalities led to

(18) z(ℓ)(t) ≥ z(ℓ−1)(t)Aℓ(t) .

Integration of the identity z(ℓ)(t) = z(ℓ)(t) from t1 to t provides

z(ℓ−1)(t) >

t
∫

t1

z(ℓ)(s) ds > z(ℓ)(t)(t − t1), t ≥ t1 ,

which in the view of (18) implies

1 ≥ (t − t1)Aℓ(t) .

This contradicts (15).
For case (ii) Eq. (12) can be written in the form

z(n)(t)− q2(t)x(σ2(t)) = 0 .
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Using (17) we have

z(n)(t)− q2(t)z(σ2(t))− pq2(t)x(σ2(t)− τ) = 0 .

Repeating this procedure m−times we arrive at

z(n)(t)− q2(t)

m
∑

i=0

piz(σ2(t)− iτ)− pm+1q2(t)x(σ2(t)− (m+ 1)τ) = 0 .

Since z(t) is increasing, we get

z(n)(t)− q2(t)z(σ2(t)− mτ)

m
∑

i=0

pi ≥ 0 .

In the view of (2) we have

(19) z(n)(t)− Q2(t)z(σ2(t)− mτ) ≥ 0 .

Hence z(t) is a solution of degree n of the inequality (19). This is a contradiction.
For case (b) we have z(t) > 0, z′(t) < 0. Hence there exists

(20) lim
t→∞

z(t) = c ≥ 0 .

If x(t) is unbounded eventually, then we can define the sequence {tn} where tn →
∞ as n → ∞ as follows. Let us choose tm for every m ∈ N such that

x(tm) = max{x(s), t0 ≤ s ≤ tm} .

Since

x(tm − τ) = max{x(s), t0 ≤ s ≤ tm − τ} ≤ max{x(s), t0 ≤ s ≤ tm} = x(tm) ,

we have

z(tm) = x(tm)− px(tm − τ) ≥ x(tm)− px(tm) = (1− p)x(tm) .

This implies lim
t→∞

z(t) =∞. This contradicts (20). �

Corollary 2. Let m be a positive integer. Further assume that (14) and (15) hold
and there exists k ∈ {0, 1, . . . , n − 1} such that

(21) lim sup
t→∞

1

k!(n − k − 1)!

σ2(t)
∫

t

[σ2(s)− σ2(t)]
k
[σ2(t)− s]

n−k−1
Q2(s) ds > 1 .

Then every nonoscillatory solution of Eq. (12) is bounded.

Proof. By [2, Theorem 4] it follows from (21) that the differential inequality (16)
has no solution of degree n. Our assertion follows from Theorem 2. �

Now we want to extend our previous results to more general differential equa-
tion. So let us consider the n−th order differential equation with both arguments
(advanced and delayed) of the form

(22) (x(t) − px(t − τ))(n) − q1(t)x(σ1(t))− q2(t)x(σ2(t)) = 0 ,

where (i), (ii), (iii), (iv) hold.
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Theorem 3. Let m be a positive integer. Further assume that (5), (14) and
(15) hold, differential equality (6) is oscillatory, differential inequality (7) has no
solution of degree 0 and differential inequality (16) has no solution of degree n.

Then every solution of Eg. (22) is oscillatory.

Proof. Without loss of generality let x(t) be an eventually positive solution of
Eq. (22). Then x(t) is solution of the inequality

(x(t) − px(t − τ))(n) − q1(t)x(σ1(t) ≥ 0 .

Using the same arguments as in Theorem 1 we can prove that x(t) tends to ∞ as
t → ∞.
On the other hand, x(t) is also solution of the inequality

(x(t) − px(t − τ))(n) − q2(t)x(σ2(t) ≥ 0 .

Now arguing exactly as in the proof of Theorem 2 we get that x(t) is bounded.
This is a contradiction. �

In a paper [2, Theorem 7] Kusano has presented conditions when the functional
differential equation

y(n)(t)− q1(t)y(σ1(t))− q2(t)y(σ2(t)) = 0

is oscillatory. We have extended these conditions also for the neutral differential
equation of the form (22). In a paper [6] Džurina and Mihaĺıková have presented
sufficient conditions for all bounded solutions of the second order neutral differen-
tial equation with a delayed argument to be oscillatory. We have extended these
conditions also for the n-th order neutral differential equation involving both de-
layed and advanced arguments.
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