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MULTIPLE SOLUTIONS FOR NONLINEAR PERIODIC
PROBLEMS WITH DISCONTINUITIES

NIKOLAOS S. PAPAGEORGIOU AND NIKOLAOS YANNAKAKIS

Abstract. In this paper we consider a periodic problem driven by the one

dimensional p-Laplacian and with a discontinuous right hand side. We pass
to a multivalued problem, by filling in the gaps at the discontinuity points.

Then for the multivalued problem, using the nonsmooth critical point theory,
we establish the existence of at least three distinct periodic solutions.

1. Introduction

In recent years there have been several works dealing with differential equations
involving the one dimensional p-Laplacian. Most of them study the Dirichlet prob-
lem and prove mainly existence results and in some cases also multiplicity results.
We refer to the papers of Boccardo-Drábek-Giachetti-Kučera [1], De Coster [5], Del
Pino-Elgueta-Manasevich [6] and Zhang [18]. Periodic problems have been con-
sidered by Dang-Oppenheimer [4], Del Pino-Manasevich-Murua [7], Fabry-Fayyad
[9], Guo [11], Manasevich-Mawhin [14] and Papageorgiou-Yannakakis [15]. We
should point out that the last two works consider vector valued problems and
in addition Manasevich-Mawhin [14] employ a more general differential operator,
which is not necessarily homogeneous of some order and which includes as a spe-
cial case the one-dimensional p-Laplacian. The problem of existence of multiple
periodic solutions was investigated only by Del Pino-Manasevich-Murua [7], who
using conditions on the interaction of the vector field f with the Fuč́ık spectrum
of the operator, proved the existence of multiple solutions when (t, x) → f(t, x)
is continuous. For the semilinear case (p = 2) multiple periodic solutions were
proved by Drábek-Invernizzi [8] and Fabry-Mawhin-Nkashama [10].

In this paper we consider a scalar nonlinear periodic problem with a discontinu-
ous right hand side, driven by the one dimensional p-Laplacian. Using a variational
approach based on the nonsmooth critical point theory of Chang [2], we prove the
existence of at least three periodic solutions.

2000 Mathematics Subject Classification: 34C25.
Key words and phrases: multiple solutions, periodic problem, one-dimensional p-Laplacian,

discontinuous vector field, nonsmooth Palais-Smale condition, locally Lipschitz function, gener-
alized subdifferential, critical point, Saddle Point Theorem, Ekeland variational principle.

Received August 29, 2000.



172 N. S. PAPAGEORGIOU AND N. YANNAKAKIS

2. Preliminaries

Let T = [0, b] and consider the following periodic problem:{
(|x′(t)|p−2x′(t))′ = f(t, x(t)) a.e. on T
x(0) = x(b) , x′(0) = x′(b) , 2 ≤ p <∞ .

}
(1)

We do not assume that f(t, ·) is continuous. So in order to develop an existence
theory, we need to pass to a multivalued version of (1) by, roughly speaking, filling
in the gaps at the discontinuity points of f(t, ·). For this purpose we define

f1(t, x) = limy→xf(t, y), f2(t, x) = limy→xf(t, y)

and
f̂ (t, x) = [f1(t, x), f2(t, x)] .

Then instead of (1) which need not have solutions, we consider the following
periodic second order differential inclusion:{

(|x′(t)|p−2x′(t))′ ∈ f̂ (t, x(t)) a.e. on T
x(0) = x(b) , x′(0) = x′(b) , 2 ≤ p <∞ .

}
(2)

We study (2) using the nonsmooth critical point theory of Chang [2]. Chang’s
theory is based on the subdifferential of Clarke [3] for locally Lipschitz functions.
Let X be a Banach space. A function

ϕ : X → IR

is said to be “locally Lipschitz”, if for every bounded set B ⊆ X, there exists
kB > 0 such that

|ϕ(x)− ϕ(y)| ≤ kB‖x− y‖
for all x, y ∈ B. The function

ϕ0 : X ×X → IR

defined by

ϕ0(x;h) = lim sup
y→x
λ↓0

ϕ(y + λh)− ϕ(y)
λ

is called the generalized directional derivative of ϕ. It is easy to check that ϕ0(x; ·)
is sublinear and continuous. So by the Hahn-Banach theorem ϕ0(x; ·) is the sup-
port function of a nonempty, convex and w∗-compact set ∂ϕ(x) ⊆ X∗ given by

∂ϕ(x) =
{
x∗ ∈ X∗ : (x∗, h) ≤ ϕ0(x;h) for all h ∈ X

}
.

The multifunction
∂ϕ : X → 2X

∗ \ {∅}
is called the generalized or Clarke subdifferential of ϕ. If

ϕ, ψ : X → IR

are locally Lipschitz functions, then

∂(ϕ + ψ)(x) ⊆ ∂ϕ(x) + ∂ψ(x)
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and
∂(λϕ)(x) = λ∂ϕ(x) for all λ ∈ IR .

If ϕ is also convex, then the generalized subdifferential of ϕ coincides with the
subdifferential in the sense of convex analysis. Also if ϕ ∈ C1(X, IR), then

∂ϕ(x) = {ϕ′(x)} .
A point x ∈ X is a critical point of ϕ, if

0 ∈ ∂ϕ(x) .

If x is a local extremum of ϕ, then x is a critical point of ϕ.

The smooth critical point theory, uses a compactness condition, known as the
“Palais-Smale condition”(PS-condition). In the present nonsmooth setting this
condition takes the following form:

“every sequence {xn}n≥1 such that
• |ϕ(xn)| ≤M for all n ≥ 1

and
• m(xn) = inf[‖x∗‖ : x∗ ∈ ∂ϕ(xn)]→ 0,
has a strongly convergent subsequence.” We will call this the “nonsmooth PS-

condition”.

The following extension of the “Saddle Point Theorem” is essentially due to
Chang [2] (see also Hu-Papageorgiou [13], Theorem III.6.19, p. 312).

Theorem 1. If X is a reflexive Banach space, X = Y ⊕ V with dimY <∞
ϕ : X → IR

is locally Lipschitz, satisfies the nonsmooth PS-condition and there exist constants
β1 < β2 and a neighborhood U of 0 in Y such that

ϕ|∂U ≤ β1 and ϕ|V ≥ β2 ,

then ϕ has a critical point x ∈ X and ϕ(x) ≥ β2.

Our hypotheses on the discontinuous nonlinearity f(t, x) are the following:

H(f) : f : T × IR→ IR is a measurable function such that
(i) f1, f2 are N -measurable functions (i.e. for all x : T → IR measurable, t →

fk(t, x(t)), k = 1, 2, are measurable);
(ii) there exist a, γ ∈ Lq(T ) (1

p + 1
q = 1) and c > 0 such that for almost all t ∈ T

and all x ∈ IR we have

γ(t) ≤ f(t, x) ≤ a(t) + c|x|p−1 ;

(iii) there exists 0 < c1 <
1
pbp

such that for almost all t ∈ T and all x ∈ IR,

F (t, x) ≥ −c1|x|p

where F (t, x) =
∫ x

0
f(t, r)dr (the potential function corresponding to f);

(iv) lim|r|→∞
∫ b

0
F (t, r) dt = +∞;
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(v) there exists ρ > 0 such that for almost all t ∈ T and all |x| = ρ, we have

F (t, x) < 0 ;

(vi) there exist
g : IR→ IR

bounded below, continuous at 0 and γ-subadditive (i.e. g(x+ y) ≤ γ(g(x) +
g(y)), γ > 0, x, y ∈ IR), h ∈ L1(T ) with

∫ b
0 ( 1

γh
+(t) − γh−(t)) dt ≥ 0 and

M1 > 0 such that for almost all t ∈ T and all |x| ≥M1,

F (t, x) ≥ g(x)h(t) .

Remark 1. If f is time-invariant, then because f1 is lower semicontinuous and f2

is upper semicontinuous, hypothesis H(f) (i) is satisfied. This is is also the case
if f(t, ·) is monotone nondecreasing, because then

f1(t, x) = lim
n→∞

f(t, x − 1
n

) and f2(t, x) = lim
n→∞

f(t, x +
1
n

)

and so f1, f2 are both measurable, in particular then N -measurable. It is well
known that the eigenvalue λ1 > 0 is simple and isolated. Hypothesis H(f) (iv)
is a coercivity condition on the averaged potential and finally hypothesis H(f)
(vi) was first used by Tang [17] in the context of smooth semilinear second order
periodic systems. The functions

g(x) =
1

1 + |x| and g(x) = |x|r + β, r ≥ 1, β ≥ 0

are γ-subadditive.

3. Auxiliary results

Let
W 1,p

per(T ) =
{
x ∈W 1,p(T ) : x(0) = x(b)

}
and consider the energy functional

ϕ : W 1,p
per(T )→ IR

defined by

ϕ(x) =
1
p
‖x′‖pp +

∫ b

0

F (t, x(t)) dt .

We know that ϕ is locally Lipschitz (see Chang [2]).

Proposition 1. If hypotheses H(f) hold, then ϕ is bounded below.

Proof. From hypotheses H(f) (ii) and (vi), we have that for almost all t ∈ T
and all x ∈ IR

F (t, x) ≥ g(x)h(t) − γ1(t)

with γ1 ∈ L1(T ) (in fact γ1(t) = M1|γ(t)| + max0≤x≤M1(g(x)h(t))). Note that

W 1,p
per(T ) = IR⊕ V ,
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where

V =

{
x ∈W 1,p

per(T ) :
∫ b

0

x(t) dt = 0

}
(i.e. if x ∈ W 1,p

per(T ), then x = x+ v with x ∈ IR and v ∈ V ; see Hu-Papageorgiou
[13], Proposition IV.7.8, p. 502). Exploiting the γ-subadditivity of g we have∫ b

0

F (t, x(t)) dt

≥
∫ b

0

g(x(t))h(t) dt−
∫ b

0

γ1(t) dt

≥
∫
h≥0

(
1
γ
g(x) − γg(−v(t))

)
h(t) dt+

∫
h<0

γ(g(x) + g(v(t)))h(t) dt − ‖γ1‖1

≥ g(x)
∫ b

0

(
1
γ
h+(t)− γh−(t)

)
dt−

∫ b

0

γg(−v(t))h+(t) dt

−
∫ b

0

γg(v(t))h−(t) dt− ‖γ1‖1 .

From Tang [17] (see inequality (7), p. 302), we know that for all x ∈ IR,

g(x) ≤ β3(1 + |x|)
for some β3 > 0. Hence we obtain

ϕ(x) ≥ 1
p
‖x′‖pp + g(x)

∫ b

0

(
1
γ
h+(t) − γh−(t)) dt− 2β3(1 + ‖v‖∞)‖h‖1 − ‖γ1‖1

≥ 1
p
‖x′‖pp − β4(1 + ‖x′‖p) − β5 , for some β4, β5 > 0 .(3)

Here in obtaining the last inequality, we have used the fact that g(·) is bounded
below and the Poincarè-Wirtinger inequality which says that ‖v‖∞ ≤ β0‖x′‖p for
some β0 > 0 and all x ∈W 1,p

per(T ). From (3) it follows that ϕ is bounded below on
W 1,p

per(T ).

Proposition 2. If hypotheses H(f) hold, then ϕ satisfies the nonsmooth PS-
condition.

Proof. Let
{xn}n≥1 ⊆ W 1,p

per(T )
be such that

|ϕ(xn)| ≤M2

for all n ≥ 1 and
m(xn)→ 0 as n→∞ .

Let
x∗n ∈ ∂ϕ(xn)

be such that
‖x∗n‖ = m(xn) .
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Its existence is guaranteed by the fact that ∂ϕ(xn) ⊆W 1,p
per(T )∗ is w-compact and

the norm functional is weakly lower semicontinuous. Let

A : W 1,p
per(T )→W 1,p

per(T )∗

be the nonlinear operator defined by

〈A(x), y〉 =
∫ b

0

|x′(t)|p−2x′(t)y′(t) dt

for all x, y ∈W 1,p
per(T ) (here by 〈·, ·〉 we denote the duality brackets for the pair

(W 1,p
per(T ),W 1,p

per(T )∗)) .

Using the elementary inequality which says that if a1, a2 ∈ R and p ≥ 2, we have
that

(|a1|p−2a1 − |a2|p−2a2)(a1 − a2) ≥ 22−p|a1 − a2|p

we see that A is monotone. Clearly it is also demicontinuous (i.e. strong to weak
sequentially continuous), hence A is maximal monotone (see Hu-Papageorgiou [12],
Corollary III. 1.35, p. 309). We have

x∗n = A(xn) + un

with un ∈ Lq(T ), f1(t, xn(t)) ≤ un(t) ≤ f2(t, xn(t)) a.e. on T n ≥ 1 (see Chang [2]
or Hu-Papageorgiou [13], pp. 316-317). From the choice of the sequence {xn}n≥1

we have that ∣∣∣〈A(xn), y〉 −
∫ b

0

un(t)y(t) dt
∣∣∣ ≤ εn‖y‖(4)

for all y ∈ W 1,p
per(T ) with εn ↓ 0. Let y ≡ 1. We obtain∣∣∣ ∫ b

0

un(t) dt
∣∣∣ ≤ β6 for all n ≥ 1 and some β6 > 0

⇒
∣∣∣ ∫ b

0

u+
n (t)− u−n (t) dt

∣∣∣ ≤ β6

⇒
∫ b

0

u+
n (t) dt ≤ β6 +

∫ b

0

u−n (t) dt ≤ β6 +
∫ b

0

γ−(t) dt ≤ β6 + ‖γ‖1 = β7 .

So we deduce that {un}n≥1 ⊆ L1(T ) is bounded.

Next let
xn = xn + vn ,

with xn ∈ IR (xn = 1
b

∫ b
0
xn(t) dt) and vn ∈ V . In (4) let y = vn. We obtain

‖v′n‖pp −
∫ b

0

un(t)vn(t) dt ≤ εn‖vn‖ ,

⇒ ‖v′n‖pp − ‖un‖1‖vn‖∞ ≤ εn‖vn‖ .
From the Poincarè-Wirtinger inequality, we know that ‖v‖∞ ≤ β0‖v′‖p for some
β0 > 0 and all v ∈ V . So

‖v′n‖pp − β8‖v′n‖p ≤ ε′n‖v′n‖p
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for some β8 > 0, ε′n > 0 with ε′n ↓ 0. From this inequality it follows that

{v′n = x′n}n≥1 ⊆ Lp(T )

is bounded. We claim that
{xn}n≥1 ⊆ C(T )

is bounded. Suppose not. Then we must have

Ln = max
T

xn → +∞ or ln = min
T
xn →−∞

as n→∞. Suppose the first holds (the analysis is similar if the second possibility
is in effect). We have

1
p
‖x′n‖pp +

∫ b

0

∫ Ln

0

f(t, r) dr dt+
∫ b

0

∫ xn(t)

Ln

f(t, r) dr dt ≤M2 .(5)

By hypothesis H(f) (ii) we have∫ b

0

∫ xn(t)

Ln

f(t, r) dr dt ≥
∫ b

0

∫ xn(t)

Ln

γ(t) dr dt =
∫ b

0

γ(t)(xn(t) − Ln) dt

≥ −‖γ‖1‖xn − Ln‖∞

⇒−
∫ b

0

∫ xn(t)

Ln

f(t, r) dr dt ≤ ‖γ‖1‖xn − Ln‖∞ .

Let tn ∈ T be such that xn(tn) = Ln, n ≥ 1. We have

xn(tn)− xn(t) =
∫ tn

t

x′n(s) ds , t ∈ T

⇒ |Ln − xn(t)| ≤ ‖x′n‖1 ≤ β9 ,

for all n ≥ 1, all t ∈ T and some β9 > 0,

⇒−
∫ b

0

∫ xn(t)

Ln

f(t, r) dr dt ≤ β10 for some β10 > 0 .

Therefore returning to (5), we see that∫ b

0

F (t, Ln) dt ≤ β11

for all n ≥ 1 and some β11 > 0. But because Ln → +∞, from hypothesis H(f)
(iv), we have that ∫ b

0

F (t, Ln) dt→ +∞ ,

a contradiction. This proves that

{xn}n≥1 ⊆ C(T )

is bounded and so we infer that

{xn}n≥1 ⊆ W 1,p
per(T )

is bounded. By passing to a subsequence if necessary, we may assume that

xn
w→ x in W 1,p

per(T )
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and
xn → x in Lp(T ) .

Denoting by (·, ·)pq the duality brackets for the pair

(Lp(T ), Lq(T )) ,

we have

lim[〈A(xn), xn − x〉 − (un, xn − x)pq] ≤ limεn‖xn − x‖ = 0

(here ‖xn − x‖ is the Sobolev norm of xn − x ∈W 1,p
per(T ))

⇒ lim〈A(xn), xn − x〉 ≤ 0 .

This inequality follows from the fact that (un, xn − x)pq → 0 (since {un}n≥1 ⊆
Lq(T ) is bounded and xn → x in Lp. But A being maximal monotone, is general-
ized pseudomonotone (see Hu-Papageorgiou [12], p. 365) and so

‖x′n‖pp = 〈A(xn), xn〉 → 〈A(x), x〉 = ‖x′‖pp .

But Lp(T ) is uniformly convex. So

x′n → x′ in Lp(T )

(Kadec-Klee property, see Hu-Papageorgiou [12], Lemma I.1.74, p. 28) and from
this we infer that

xn → x in W 1,p
per(T ) .

Therefore ϕ satisfies the nonsmooth PS-condition.

Proposition 3. If hypotheses H(f) hold, then

ϕ|V ≥ 0 .

Proof. Let v ∈ V . Using hypothesis H(f) (iii) and since by the Wirtinger
inequality (see Mawhin-Willem [19], p. 8)

‖v‖pp ≤ bp‖v′‖pp for all v ∈ V ,

we obtain

ϕ(v) ≥ 1
p
‖v′‖pp − c1‖v‖pp ≥

1
p
‖v′‖pp −

c1
bp
‖v′‖pp

(recall c1 < 1
pbp ).

4. The multiplicity theorem

In this section we state and prove our theorem on the existence of multiple
solutions for (2).

Theorem 2. If hypotheses H(f) hold, then problem (2) has at least three distinct
solutions.
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Proof. Let

U± =
{
x ∈W 1,p

per(T ) : x = c+ v , with c > 0 (resp. c < 0) , v ∈ V
}
.

We claim that ϕ attains its infimum on both open sets U+, U−. To this end let

m+ = inf[ϕ(x) : x ∈ U+] = inf[ϕ(x) : x ∈ U+ ] .

Let

ϕ(x) =
{
ϕ(x) if x ∈ U+

+∞ otherwise

It is clear that ϕ is lower semicontinuous and bounded below on W1,p
per(T ) (see

Proposition 1). So we can apply the Ekeland variational principle (see for example
Hu-Papageorgiou [12], p. 519), to obtain

{xn}n≥1 ⊆ U+

such that ϕ(xn) = ϕ(xn) ↓ m+ and

ϕ(xn) ≤ ϕ(y) + εn‖xn − y‖ for all y ∈W 1,p
per(T ) , with εn ↓ 0

⇒ ϕ(xn) ≤ ϕ(y) + εn‖xn − y‖ for all y ∈ U+ .

Let w ∈ W 1,p
per(T ) and λ > 0. Since U+ is open in W 1,p

per(T ) and xn ∈ U+, we
can find δ > 0 (depending on n ≥ 1) such that for all λ ∈ [0, δ], xn + λw ∈ U+.
Hence we have for all λ ∈ (0, δ]

−εn‖w‖ ≤
ϕ(xn + λw)− ϕ(xn)

λ
⇒−εn‖w‖ ≤ ϕ0(xn;w) .

Invoking lemma 1.3 of Szulkin [16], we can find

y∗n ∈ W 1,p
per(T )∗ ,

with ‖y∗n‖ ≤ 1 such that

〈εny∗n, w〉 ≤ ϕ0(xn;w) for all w ∈W 1,p
per(T )

⇒ x∗n = εny
∗
n ∈ ∂ϕ(xn) , n ≥ 1 , and ‖x∗n‖ → 0 .

By virtue of Proposition 2, we may assume that

xn→ y1 in W 1,p
per(T ) .

Then
ϕ(xn)→ ϕ(y1) = m+

and y1 ∈ U+. If y1 ∈ ∂U+ = V , then from Proposition 3 we have

0 ≤ ϕ(y1) ,

while from hypothesis H(f) (v) we have that

ϕ(y1) = m+ < 0 ,

a contradiction. So
y1 ∈ intU+ = U+
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and this proves that y1 is a local minimum of ϕ on W 1,p
per(T ), hence

0 ∈ ∂ϕ(y1) .

Similarly we obtain y2 ∈ U− with

0 ∈ ∂ϕ(y2) .

Evidently y1 6= y2.

Moreover, hypothesis H(f) (v), together with Propositions 2 and 3, allow the
application of Theorem 1, which gives y3 ∈W 1,p

per(T ) such that

0 ∈ ∂ϕ(y3)

and
ϕ(y3) ≥ 0 .

Since ϕ(y1) = m+ < 0, ϕ(y2) = m− < 0, we see that y3 6= y1, y3 6= y2.

Now let y = yk, k = 1, 2, 3. Since 0 ∈ ∂ϕ(y), we have

A(y) + u = 0 with u ∈ Lq(T ), f1(t, y(t)) ≤ u(t) ≤ f2(t, y(t))

⇒ 〈A(y), θ〉 + (u, θ)pq = 0 for all θ ∈ C∞0 (T )

⇒
{
−(|y′(t)|p−2y′(t))′ + u(t) = 0 a.e. on T

y(0) = y(b)

}
(by the definition of distributional derivative).

Also we have
〈A(y), w〉 + (u,w)pq = 0

for all w ∈ W 1,p
per(T ). From Green’s identity (integration by parts), we have

〈A(y), w〉 =
∫ b

0

|y′(t)|p−2y′(t)w′(t) dt

=|y′(b)|p−2y′(b)w(b)− |y′(0)|p−2y′(0)w(0)

−
∫ b

0

(|y′(t)|p−2y′(t))′w(t) dt

=|y′(b)|p−2y′(b)w(b)− |y′(0)|p−2y′(0)w(0)− (u,w)pq

⇒ |y′(0)|p−2y′(0)w(0) = |y′(b)|p−2y′(b)w(b) .
Let w ∈ W 1,p

per(T ) be such that w(0) = w(b) = 1. We have

|y′(0)|p−2y′(0) = |y′(b)|p−2y′(b)

and since the map r→ |r|p−2r is a homeomorphism on IRN , we conclude that

y′(0) = y′(b) .

Therefore y1, y2, y3 are three distinct solutions of (2).

Remark 2. Clearly y1, y2, are nonzero, while y3 is nonzero, provided that
f(t, 0) 6= 0 for all t ∈ T0, |T0| > 0 (| · | denotes the Lebesgue measure on T ).
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As a simple example consider the following locally Lipschitz but nonsmooth
potential function F (x) (for simplicity we drop the t-dependence)

F (x) =
{

−c1|x|p, |x| ≤ 1
|x|p − (c1 + 1), |x| > 1

where 0 < c1 < 1
pbp

. Clearly hypotheses H(f) (i) → (iv) are satisfied. Also
if p = 1, then hypothesis H(f) (v) also holds. Finally let 0 < ε ≤ c1 + 1 and
M1 = (c1+1

ε )
1
p . Then for |x| ≥ M1 we have |x|p − (c1 + 1) ≥ (1 − ε)|x|p = g(x)

and clearly g is 2p−1-subadditive.

Acknowledgement. The authors wish to thank a very knowledgeable referee for
his corrections and remarks.
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