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László Simon

Department of Applied Analysis, Faculty of Science, Eötvös Loránd University
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Abstract. We shall consider weak solutions of initial–boundary value
problems for nonlinear parabolic functional differential equations contain-
ing discontinuous terms in the unknown function. There will be proved the
existence of solutions and formulated some properties of the solutions.
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1. Introduction

We shall consider initial-boundary value problems for the equation

Dtu(t, x) −
n

∑

j=1

Dj [fj(t, x, u(t, x),∇u(t, x))] + f0(t, x, u(t, x),∇u(t, x)) +

+g(t, x, u(t, x)) + h(t, x, [H(u)](t, x)) = F (t, x),

(t, x) ∈ QT = (0, T ) ×Ω

(1)

where Ω ⊂ Rn is a (possibly unbounded) domain with sufficiently smooth bound-
ary, H is a linear continuous operator in Lp(QT ), the functions fj are measurable
in (t, x), continuous with respect to u(t, x), ∇u(t, x) but the functions g, h are
assumed to be only measurable in all variables. Further, fj , g, h have certain poly-
nomial growth in u(t, x), ∇u(t, x). The case when Ω is bounded, was considered,
e.g., in [11] where certain terms were rapidly increasing in u(t, x). In [13] there were
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considered equations of more general form where all the terms were continuous in
u(t, x) and ∇u(t, x).

The problem was motivated by the climate model considered by J.I. D́ıaz and
G. Hetzer in [8] where a particular case of the equation (1) (also with discontin-
uous terms in u) was investigated on the unit sphere in R3 (instead of Ω). Some
qualitative properties of the solutions of the climate model (without delay terms)
were proved in [1] and [7]. Functional partial differential equations arise also in
population dynamics, plasticity, hysteresis (see, e.g., [2], [4], [10], [15]).

The aim of this work is to formulate and prove new results in the case of
unbounded Ω. We shall formulate conditions which imply the existence of weak
solutions of initial-boundary value problems for (1) and to show that in the case
of unbounded Ω, the limit of solutions of problems in large bounded domains is
a solution of the problem in Ω. There will also be proved the boundedness of the
solutions under some conditions and a theorem on the stabilization of the solutions
as t→ ∞. Our results can be easily extended to equations, containing higher order
derivatives with respect to x.

2. Existence theorems

Let Ω ⊂ Rn be a (possibly unbounded) domain with sufficiently smooth boundary,
p ≥ 2. Denote by W 1,p(Ω) the usual Sobolev space with the norm

‖ u ‖=





∫

Ω

(
n

∑

j=1

|Dju|
p + |u|p)





1/p

.

Let V be a closed linear subspace of W 1,p(Ω) and denote by XT = Lp(0, T ;V ) the
Banach space of the set of measurable functions u : (0, T ) → V such that ‖ u ‖p is
integrable. The dual space of Lp(0, T ;V ) is X⋆

T = Lq(0, T ;V ⋆) where 1/p+1/q = 1
and V ⋆ is the dual space of V (see, e.g., [14]).

On functions fj we assume that
A (i) fj : QT × Rn+1 → R are measurable in (t, x) ∈ QT and continuous in

η ∈ R, ζ ∈ Rn;
(ii) |fj(t, x, η, ζ)| ≤ c1(|η|

p−1 + |ζ|p−1) + k1(x) with some constant c1 and a
function k1 ∈ Lq(Ω) (j = 0, 1, ..., n) ;

(iii)
∑n

j=1[fj(t, x, η, ζ) − fj(t, x, η, ζ̃)](ζj − ζ̃j) > 0 if ζ 6= ζ̃;

(iv)
∑n

j=1 fj(t, x, η, ζ)ζj + f0(t, x, η, ζ)η ≥ c2[|ζ|
p + |η|p] − k2(x) with some

constant c2 > 0 and k2 ∈ L1(Ω).

Remark 1. A simple example for fj , satisfying A (i) - (iv) is

fj(t, x, η, ζ) = aj(t, x)ζj |ζj |
p−2, j = 1, ..., n,

f0(t, x, η, ζ) = a0(t, x)η|η|
p−2,
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where aj are measurable functions, satisfying 0 < c0 ≤ aj(t, x) ≤ c′0 with some
constants c0, c

′
0.

On functions g, h we assume that
B (i) g = g1 + g2, gj : QT × R → R and h : QT × R → R are measurable

functions;
(ii) |g1(t, x, η)| ≤ k3(x)|η|

p−1 and g1(t, x, η)η ≥ 0 with some function k3 ∈
L1(Ω) ∪ |L∞(Ω);

(iii)

|g2(t, x, η)| ≤ k3(x)k4(|η|)|η|
p−1 + k5(x), |h(t, x, θ)| ≤ k3(x)k4(|θ|)|θ|

p−1 + k5(x)

where k5 ∈ Lq(Ω) and k4 is a continuous function, satisfying lim∞ k4 = 0.
Further,
C H : Lp(QT ) → Lp(QT ) is a linear and continuous operator such that for

any compact K ⊂ Ω there is a compact K̃ ⊂ Ω with the following property: the
restriction of H(u) to (0, t)×K depends only on the restriction of u to (0, t)× K̃
for all t ∈ (0, T ].

Remark 2. The operator H may have e.g. one of the following forms:

[H(u)](t, x) =

∫ t

0

β0(s, t, x)u(s, x)ds or [H(u)](t, x) = u(τ(t), x)

with some β0 ∈ L∞((0, T ) × QT ) and a continuously differentiable function τ
satisfying τ ′ > 0, 0 < τ(t) ≤ t.

Since g1 is locally bounded, for any ǫ > 0 we may define (with fixed (t, x) ∈ QT )

ḡε
1(t, x, η) = ess sup|η−η̃|<εg1(t, x, η̃),

gε
1
(t, x, η) = ess inf|η−η̃|<εg1(t, x, η̃)

For fixed t, x, η ḡε
1(t, x, η) is nonincreasing and gε

1
(t, x, η) is nondecreasing as ε is

decreasing thus

ḡ1(t, x, η) = lim
ε→0

ḡε
1(t, x, η), g

1
(t, x, η) = lim

ε→0
gε
1
(t, x, η)

exist. Similarly may be defined ḡ2, g2
, h̄, h (by functions g2, h, respectively).

Theorem 1. Assume A (i) - (iv) and B (i) - (iii) and C. Then for each F ∈
X⋆

T , u0 ∈ V there exists u ∈ XT with Dtu ∈ X⋆
T and ϕ1, ϕ2, ψ ∈ Lq(QT ) such that

u(0, ·) = u0,(2)

for arbitrary v ∈ V we have

〈Dtu(t, ·), v〉 +
n

∑

j=1

∫

Ω

fj(t, x, u(t, x),∇u(t, x))Djv(x)dx+

∫

Ω

f0(t, x, u(t, x),∇u(t, x))v(x)dx +

∫

Ω

[ϕ1(t, x) + ϕ2(t, x) + ψ(t, x)]v(x)dx =

〈F (t, ·), v〉 for a.e. t ∈ [0, T ]

(3)
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and for a.e. (t, x) ∈ QT

g
l
(t, x, u(t, x)) ≤ ϕl(t, x) ≤ ḡl(t, x, u(t, x)), l = 1, 2(4)

h(t, x, [H(u)](t, x)) ≤ ψ(t, x) ≤ h̄(t, x, [H(u)](t, x)).

Proof. Consider the function j ∈ C∞
0 (R) supported by [−1, 1] with the properties

j ≥ 0,
∫

R
j = 1 and for any positive integer k define the functions jk by jk(η) =

kj(kη). Then the convolutions (with fixed t, x) gl,k = gl ⋆ jk (l = 1, 2), hk =
h ⋆ jk are smooth functions (of η, θ, respectively). Further, define functions

g̃l,k(t, x, η) = gl,k(t, x, η) if |x| ≤ k, g̃l,k(t, x, η) = 0 if |x| > k

h̃k(t, x, θ) = hk(t, x, θ) if |x| ≤ k, h̃k(t, x, θ) = 0 if |x| > k.

Then we may define operators A,Bk, Ck : XT → X⋆
T by

[A(u), v] =

∫ T

0

〈A(u)(t), v(t)〉dt,

〈A(u)(t), v(t)〉 =
n

∑

j=1

∫

Ω

fj(t, x, u,∇u)Djvdx+

∫

Ω

f0(t, x, u,∇u)vdx,

[Bl
k(u), v] =

∫ T

0

〈Bl
k(u)(t), v(t)〉dt =

∫

QT

g̃l,k(t, x, u)vdtdx, l = 1, 2,

[Bk(u), v] = [B1
k(u), v] + [B2

k(u), v],

[Ck(u), v] =

∫ T

0

〈Ck(u)(t), v(t)〉dt =

∫

QT

h̃k(t, x,H(u))vdtdx, u, v ∈ XT .

By using the assumptions of our theorem, Hölder’s inequality and Vitali’s theo-
rem it is not difficult to show that the operator A+Bk+Ck : XT → X⋆

T is bounded
(i.e. it maps bounded sets of XT into bounded sets of X⋆

T ) and demicontinuous,
i.e.

(ul) → u in XT implies (A+Bk + Ck)(ul) → (A+Bk + Ck)(u) weakly in X⋆
T .

Further, by using compact imbedding theorems we obtain (as in [12]) that
A+Bk + Ck is pseudomonotone with respect to

D(L) = {u ∈ XT : Dtu ∈ X⋆
T , u(0) = 0},

i.e. if ul, u ∈ D(L),

(ul) → u weakly in XT , (Dtul) → Dtu weakly in X⋆
T and

lim sup
l→∞

[(A+Bk + Ck)(ul), ul − u] ≤ 0
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then

(A+Bk + Ck)(ul) → (A+Bk + Ck)(u) weakly in X⋆
T and

lim
l→∞

[(A+ Bk + Ck)(ul), ul − u] = 0.

Finally, we show that A+Bk + Ck is coercive, i.e.

lim
‖u‖→∞

[(A+Bk + Ck)(u), u]

‖ u ‖XT

= +∞.(5)

Assumption A (iv) implies

∫ t

0

〈A(u)(τ), u(τ)〉dτ ≥ c2 ‖ u ‖p
Xt

−t

∫

Ω

k2.(6)

By B (ii)

g̃1,k(t, x, η)η ≥ 0 if |η| > 1, g̃1,k(t, x, η)η ≥ −k3(x) if |η| ≤ 1

thus
∫ t

0

〈B1
k(u)(τ), u(τ)〉dτ ≥ −t

∫

Ω

k3.(7)

Let a > 0 be an arbitrary number. Since lim∞ k4 = 0, there exists b > 0 such
that |η| ≥ b implies k4(|η|) ≤ a. Hence, by using the notation Qb

t = {(τ, x) ∈ Qt :
|u(τ, x)| ≤ b} we obtain from B (iii)

|

∫ t

0

〈B2
k(u)(τ), u(τ)〉dτ | ≤(8)

|

∫

Qb

t

g̃2,k(τ, x, u)udτdx| + |

∫

Qt\Qb

t

g̃2,k(τ, x, u)udτdx| ≤

C(a) + a ‖ k3 ‖L∞(Ω)‖ u ‖p
Xt

+

[

t

∫

Ω

|k5|
q

]1/q

‖ u ‖Xt

with a constant C(a) (not depending on u).
One gets similarly

|

∫ t

0

〈Ck(u)(τ), u(τ)〉dτ | ≤(9)

C(a) + a ‖ k3 ‖L∞(Ω)‖ u ‖p
Xt

+

[

t

∫

Ω

|k5|
q

]1/q

‖ u ‖Xt
.

Choosing sufficiently small a > 0, from (6) - (9) we obtain for all t ∈ [0, T ]

∫ t

0

〈(A+Bk + Ck)(u)(τ), u(τ)〉dτ ≥ c2/2 ‖ u ‖p
Xt

−c′2 ‖ u ‖Xt
−c′3(10)
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(with some constants c′2, c
′
3, not depending on u) which implies (5) since p ≥ 2.

Thus, by Theorem 4 of [3], for any F ∈ X⋆
T , u0 ∈ V there exists uk ∈ XT such

that Dtuk ∈ X⋆
T and

Dtuk + (A+Bk + Ck)(uk) = F,(11)

uk(0) = u0.(12)

Since

〈Dtuk(t), uk(t)〉 =
1

2

d

dt
〈uk(t), uk(t)〉 =

1

2

d

dt
(uk(t), uk(t))L2(Ω)

(see, e.g., [14]), applying both sides of (11) to uk , we find by (10), (12)

1/2 ‖ uk(t) ‖2
L2(Ω) −1/2 ‖ u0 ‖2

L2(Ω) +c2/2 ‖ uk ‖p
Xt

≤(13)

[‖ F ‖X⋆

T
+c′2] ‖ uk ‖Xt

+c′3, t ∈ [0, T ].

This inequality implies that

‖ uk ‖XT
, ‖ uk ‖L∞(0,T ;L2(Ω)) are bounded.(14)

Hence the sequence (A+Bk +Ck)(uk) is bounded in X⋆
T and so (Dtuk) is bounded

in X⋆
T , too.

Consequently, there exist u ∈ XT , w ∈ X⋆
T , ϕl, ψ ∈ Lq(QT ) and a subsequence

of (uk), again denoted by (uk) such that

(uk) → u weakly in XT ,(15)

(uk) → u in Lp((0, T ) ×Ω0) for each fixed bounded Ω0 ⊂ Ω and a.e. in QT ;
(16)

thus by C

(H(uk)) → H(u) a.e. in QT ;(17)

(A+Bk + Ck)(uk) → w weakly in X⋆
T ,(18)

g̃l,k(t, x, uk) → ϕl and h̃k(t, x, uk) → ψ weakly in Lq(QT ).(19)

From (11), (12), (14), (15), (18), (19) it follows (see, e.g., [14]) u(0) = u0,

Dtu+ w + ϕ1 + ϕ2 + ψ = F.(20)

Now we prove w = A(u). Apply (11) to (uk − u)ζ with arbitrary fixed ζ ∈
C∞

0 (Ω) having the properties : ζ ≥ 0, ζ(x) = 1 in a compact subset K of Ω. So
we obtain

[Dtuk −Dtu, (uk − u)ζ]+[Dtu, (uk − u)ζ] + [A(uk), (uk − u)ζ] +

[(Bk + Ck)(uk), (uk − u)ζ] = [F, (uk − u)ζ].
(21)
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For the first term we have

[Dtuk −Dtu, (uk − u)ζ] =1/2

∫ T

0

[

d

dt

∫

Ω

(uk(t) − u(t))2ζdx

]

dt =

1/2

∫

Ω

(uk(T ) − u(T ))2ζdx ≥ 0,

(22)

further, by (15), (16), (19)

lim
k→∞

[Dtu, (uk−u)ζ] = 0, lim
k→∞

[(Bk + Ck)(uk), (uk − u)ζ] = 0,

lim
k→∞

[F, (uk − u)ζ] = 0.
(23)

Thus (21) - (23) imply

lim sup
k→∞

[Ak(uk), (uk − u)ζ] ≤ 0.(24)

Since by A (ii) and (16)

lim
k→∞

∫

QT

f0(t, x, uk,∇uk)(uk − u)ζdtdx = 0,

from (24) we obtain

lim sup
k→∞

n
∑

j=1

∫

QT

fj(t, x, uk,∇uk)(uk − u)ζdtdx ≤ 0.(25)

By using arguments of [5], we obtain from (25)

∇uk → ∇u a.e. in (0, T )×K

(see [13]). Since K can be chosen as any compact subset of Ω, we find

∇uk → ∇u a.e. in QT .(26)

Thus Vitali’s theorem and Hölder’s inequality imply

A(uk) → A(u) weakly in X⋆
T

(see, e.g., [5]), i.e. w = A(u).
In order to show the inequalities (4), one applies arguments of [9], by using

(16), (17). (16) implies that for each positive a there exists a subset ω ⊂ QT with
Lebesgue measure λ(ω) < a such that

(uk) → u uniformly on QT \ ω and u ∈ L∞(QT \ ω).

Thus for any ε > 0 there is k0 such that k0 > 2/ε and k > k0 implies

|uk(t, x) − u(t, x)| < ε/2 if (t, x) ∈ QT \ ω.(27)
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Let k > k0, (t, x) ∈ QT \ω. From 1/k < ε/2, (27) and the definition of g1,k, gε
1
, ḡε

1

it easily follows

gε
1
(t, x, u(t, x)) ≤ g1,k(t, x, uk(t, x)) ≤ ḡε

1(t, x, u(t, x)),

hence for sufficiently large k

gε
1
(t, x, u(t, x)) ≤ g̃1,k(t, x, uk(t, x)) ≤ ḡε

1(t, x, u(t, x)).

Consequently, for any ϕ ∈ C∞
0 (QT ) with ϕ ≥ 0 we have

∫

QT \ω

gε
1
(t, x, u)ϕ ≤

∫

QT \ω

g̃1,k(t, x, uk)ϕ ≤

∫

QT \ω

ḡε
1(t, x, u)ϕ

which implies by (19)

∫

QT \ω

gε
1
(t, x, u)ϕ ≤

∫

QT \ω

ϕ1ϕ ≤

∫

QT \ω

ḡε
1(t, x, u)ϕ.

Since u ∈ L∞(QT \ ω), Lebesgue’s dominated convergence theorem implies as
ε→ 0

∫

QT \ω

g
1
(t, x, u)ϕ ≤

∫

QT \ω

ϕ1ϕ ≤

∫

QT \ω

ḡ1(t, x, u)ϕ.(28)

(28) holds for arbitrary nonnegative ϕ ∈ C∞
0 (QT ), thus we find

g
1
(t, x, u(t, x)) ≤ ϕ1(t, x) ≤ ḡ1(t, x, u(t, x))(29)

for a.e. (t, x) ∈ QT \ ω. Inequality (29) holds true for any a > 0 and ω ⊂ QT with
λ(ω) < a, thus we obtain that (29) is valid a.e. in QT .

Remark 3. In certain particular cases (if some Lipschitz conditions are satisfied)
one can prove uniqueness of the solution (see also [11]).

It is not difficult to prove an existence theorem for the interval (0,∞). De-
note by X∞ and X⋆

∞ the set of functions u : [0,∞) → V, w : [0,∞) → V ⋆,
respectively, such that for any finite T u ∈ Lp(0, T ;V ), w ∈ Lq(0, T ;V ⋆), respec-
tively. Further, define Q∞ = (0,∞) ×Ω and let Lp

loc(Q∞) be the set of functions
v : Q∞ → R such that v ∈ Lp(QT ) for arbitrary finite T .

Theorem 2. Assume that functions

fj : Q∞ ×Rn+1 → R, g, h : Q∞ ×R→ R

satisfy A (i) - (iv), B (i) - (iii) and C for any finite T > 0.
Then for arbitrary F ∈ X⋆

∞ there exists u ∈ X∞ such that for any finite T the
assertion of Theorem 1 holds with some functions ϕl, ψ ∈ Lq

loc(Q∞).
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Theorem 2 is a consequence of Theorem 1, the proof is based on simple and
standard arguments. (Similar arguments can be found e.g. in [12].)

By using arguments of the proof of Theorem 1 we obtain that in the case when
Ω is unbounded, the limit (as k → ∞) of certain problems in ”large” bounded
Ωk ⊂ Ω is a solution in Ω. Now we give the exact formulation of this statement.

Let Ωk ⊂ Ω be bounded domains with sufficiently smooth boundary such that
Bk ∩Ω ⊂ Ωk (Bk = {x ∈ Rn : |x| < k}) and introduce the notations

Vk = W 1,p
0 (Ωk), Xk

T = Lp(0, T ;Vk), (Xk
T )⋆ = Lq(0, T ;V ⋆

k )

where W 1,p
0 (Ωk) is the completion of C∞

0 (Ωk) with respect to the norm of
W 1,p(Ωk). Further, let Mk : Xk

T → XT be the following (extension) operator:

Mkvk(t, x) = vk(t, x) for x ∈ Ωk, Mkvk(t, x) = 0 for x ∈ Ω \Ωk

Define the restriction Fk of F ∈ X⋆
T (to Ωk) by

∫ T

0

〈Fk(t), vk(t)〉dt =

∫ T

0

〈F (t), (Mkvk)(t)〉dt, vk ∈ Xk
T .

Finally, let ϕ ∈ C∞
0 (Rn) be a function with the properties

ϕ(x) = 1 if |x| ≤ 1/2, ϕ(x) = 0 if |x| ≥ 1

and define ϕk by ϕk(x) = ϕ(x/k).

Theorem 3. Assume that the conditions of Theorem 1 are satisfied and the func-
tions uk ∈ Xk

T are solutions of the following problems in Ωk:

uk(0, ·) = ϕku0 (∈ Vk);

Dtuk ∈ (Xk
T )⋆ and for any vk ∈ Vk

〈Dtuk(t, ·), vk〉+
n

∑

j=1

∫

Ωk

fj(t, x, uk(t, x),∇uk(t, x))Djvk(x)dx+

∫

Ωk

f0(t, x, uk(t, x),∇uk(t, x))vk(x)dx+

∫

Ωk

[ϕ1,k(t, x) + ϕ2,k(t, x) + ψk(t, x)]vk(x)dx =

〈Fk(t, ·), vk〉 for a.e. t ∈ [0, T ]

with some functions ϕ1,k, ϕ2,k, ψk ∈ Lq((0, T ) × Ωk) such that for a.e. (t, x) ∈
(0, T ) ×Ωk

g
l
(t, x, uk(t, x)) ≤ ϕl,k(t, x) ≤ ḡl(t, x, uk(t, x)), l = 1, 2

h(t, x, [H(Mkuk)](t, x)) ≤ ψk(t, x) ≤ h̄(t, x, [H(Mkuk)](t, x)).

Then the sequence (Mkuk) is bounded in XT and it has a subsequence which is
weakly convergent in XT to a function u ∈ XT satisfying (2) – (4).
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3. Boundedness and stabilization

Theorem 4. Assume that the conditions of Theorem 2 are satisfied such that c2
and k2 in A (iv) are independent of T , p > 2, ‖ F (t) ‖V ⋆ is bounded,

|g(t, x, η)|q ≤ c⋆4|η|
2 + k⋆

4(x), |h(t, x, θ)|q ≤ c⋆4|θ|
2 + k⋆

4(x)(30)

with some constant c⋆4 and a function k⋆
4 ∈ L1(Ω). Further, for any u ∈ Lp

loc(Q∞)
∫

Ω

|H(u)|2(t, x)dx ≤ const sup
τ∈[0,t]

∫

Ω

|u(τ, x)|2dx.(31)

Then for the solution u the function

y(t) =

∫

Ω

|u(t, x)|2dx

is bounded in (0,∞) and there exist constants c′, c” such that for sufficiently large
T1, T2

∫ T2

T1

‖ u(t) ‖p
V dt ≤ c′(T2 − T1) + c”.

Idea of the proof. Apply (3) to v = u(t, ·) and integrate over (T1, T2). Then one
obtains the inequality

y(T2) − y(T1) + c⋆
∫ T2

T1

[y(t)]p/2dt ≤ const

∫ T2

T1

[sup
[0,t]

|y| + 1]dt

with some constant c⋆ > 0 which implies the assertion of Theorem 4. (See, e.g.,
the proof of Theorem 2 in [12].)

Now we formulate a theorem on the stabilization of the solution as t → ∞.
Assume that the conditions of Theorem 4 are satisfied. Consider a sequence (tl) →
+∞ and define for a solution u

Ul(s, x) = u(tl + s, x), s ∈ (−a, b), x ∈ Ω

with some fixed numbers a, b > 0. By Theorem 4 (Ul) is bounded in Lp(−a, b;V ).

Theorem 5. Let the assumptions of Theorem 4 be satisfied; assume that fj , g, h
are not depending on t, there exists a (finite) ρ such that for sufficiently large
t > 0, [H(u)](t, x) depends only on the restriction of u to (t − ρ, t) × Ω and it is
not depending on t if u is not depending on t. Further, there exists F∞ ∈ V ⋆ such
that

lim
T→∞

∫ T+1

T−1

‖ F (t) − F∞ ‖V ⋆ dt = 0.

Finally,

∃u∞ ∈ Lp(Ω) and (tl) → +∞ such that (Ul) → u∞ weakly

in Lp((−1 − ρ, 1) ×Ω).
(32)
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(u∞ is not depending on t!)
Then there is a subsequence of (tl) (again denoted by (tl)) such that for the

sequence (Ul) (defined by the subsequence (tl))

(Ul) → u∞ weakly in Lp(−1, 1;V ),(33)

(Ul) → u∞ in Lp((−1, 1) ×Ω0)(34)

for each bounded Ω0 ⊂ Ω and a.e. in (−1, 1)×Ω.
Moreover, u∞ is a solution of the stationary problem

n
∑

j=1

∫

Ω

fj(x, u∞(x),∇u∞(x))Djw(x)dx +

∫

Ω

f0(x, u∞(x),∇u∞(x))w(x)dx +

(35)

∫

Ω

[ϕ̃1(x) + ϕ̃2(x) + ψ̃(x)]w(x)dx = 〈F∞, w〉, w ∈ V

with some functions ϕ̃l, ψ̃ ∈ Lq(Ω) satisfying for a.e. x ∈ Ω

g
l
(x, u∞(x)) ≤ ϕ̃l(x) ≤ ḡl(x, u∞(x)), l = 1, 2(36)

h(x, [H(u∞)](x)) ≤ ψ̃(x) ≤ h̄(x, [H(u∞)](x)).

Remark 4. In (36) u∞ means the constant function in t, defined in an interval
(t− ρ, t). By the assumption of our theorem, H(u∞) does not depend on t.

Remark 5. The operators H, defined in Remark 2 satisfy the assumptions of The-
orem 5 if

β0(s, t, x) = β(s− t, x) for max{t− ρ, 0} ≤ s ≤ t,

β0(s, t, x) = 0 for 0 ≤ s ≤ max{t− ρ, 0}

with a function β ∈ L∞((−ρ, 0) ×Ω); t− ρ ≤ τ(t), respectively.

Remark 6. By Theorem 4 (Ul) is bounded in Lp((−1 − ρ) ×Ω) for any sequence
(tl) → +∞, hence a subsequence of (Ul) is weakly convergent to a function U ∈
Lp((−1 − ρ) ×Ω). In (32) we assume that there exists U , not depending on t.

A sufficient condition for (32) is

Dtu ∈ L2(0,∞;L2(Ω)).(37)

For the proof see [11]. In [11] there are given simple sufficient conditions for (37)
which imply a stabilization result in the case when g, h are depending on t and Ω
is bounded. The formulation and proof of this result for unbounded Ω is similar
to the case of bounded Ω.
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The sketch of the proof of Theorem 5. By Theorem 4 (Ul) is bounded in Lp(−2ρ−
1, 1;V ) thus DtUl is bounded in Lq(−ρ−1, 1;V ⋆) which implies by (32) that there
is a subsequence of (Ul) (again denoted by (Ul)) such that

(Ul) → u∞ weakly in Lp(−ρ− 1, 1;V ) and strongly in Lp((−ρ− 1, 1) ×Ω0)
(38)

for any bounded Ω0 ⊂ Ω;

(Ul) → u∞ a.e. in (−1, 1)×Ω.(39)

Define the functions ϕ1,l, ϕ2,l, ψl by

ϕ1,l(s, x) = ϕ1(tl + s, x), ϕ2,l(s, x) = ϕ2(tl + s, x), ψl(s, x) = ψ(tl + s, x).

Since (ϕ1,l), (ϕ2,l), (ψl) are bounded in Lq((−1, 1) ×Ω), we may assume that

(ϕ1,l) → ϕ⋆
1, (ϕ2,l) → ϕ⋆

2, (ψl) → ψ⋆ weakly in Lq((−1, 1) ×Ω).(40)

Finally, we may assume that

Â(Ul(t)) → Y weakly in Lq(−1, 1;V ⋆)(41)

with some Y ∈ Lq(−1, 1;V ⋆) where the operator Â : V → V ⋆ is defined by

〈Â(v), w〉 =
n

∑

j=1

∫

Ω

fj(x, v,∇v)Djw +

∫

Ω

f0(x, v,∇v)w, v, w ∈ V.

Now we apply arguments of [7]. Let

ϕ ∈ C∞
0 (−1, 1), 1 ≥ ϕ ≥ 0,

∫ 1

−1

ϕ = 1, w ∈ V.(42)

Since u is a solution of (3), we have (for sufficiently large l)

∫ 1

−1

∫

Ω

Ulwϕ
′dtdx+

∫ 1

−1

〈Â(Ul(t)), w〉ϕdt +(43)

∫ 1

−1

∫

Ω

(ϕ1,l + ϕ2,l + ψl)wϕdtdx =

∫ 1

−1

〈F (tl + t), w〉ϕdt.

By (38), (40) - (42) we obtain from (43) as l → ∞

∫ 1

−1

〈Y (t), w〉ϕdt +

∫ 1

−1

∫

Ω

(ϕ⋆
1 + ϕ⋆

2 + ψ⋆)wϕdtdx = 〈F∞, w〉.(44)

It is not difficult to costruct fuctions ϕ = ϕj satisfying (42) such that

lim
j→∞

(ϕj) = 1/2 in (−1, 1).
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Applying (44) to ϕ = ϕj , we obtain as j → ∞

1

2

∫ 1

−1

〈Y (t), w〉dt +

∫

Ω

(ϕ̃1 + ϕ̃2 + ψ̃)wdx = 〈F∞, w〉(45)

where

ϕ̃k =
1

2

∫ 1

−1

ϕ⋆
kdt, ψ̃ =

1

2

∫ 1

−1

ψ⋆dt.(46)

Now we show Y = Â(u∞). LetΩ0 ⊂ Ω be any bounded domain and ζ ∈ C∞
0 (Ω)

with the properties: ζ ≥ 0, ζ(x) = 1 for x ∈ Ω0 and denote by K the support of
ζ. By (38) (for a suitable subsequence)

(Ul(t)) → u∞ in L2(K) for a.e. t ∈ (−1, 1),

hence there exist δl, εl > 0 such that (for a suitable subsequence of (Ul))

lim
l→∞

(δl) = 0, lim
l→∞

(εl) = 0, and Ul(−1 + δl) → u∞,

Ul(1 − εl) → u∞ in L2(K).
(47)

By (3) we find

1

2

∫

Ω

|Ul(1 − εl)|
2ζdx−

1

2

∫

Ω

|Ul(−1 + δl)|
2ζdx+

∫ 1−εl

−1+δl

〈Â(Ul(t)), Ul(t)ζ〉dt +

(48)

∫ 1−εl

−1+δl

∫

Ω

(ϕ1,l + ϕ2,l + ψl)Ulζdtdx =

∫ 1−εl

−1+δl

〈F (tl + t), Ul(t)ζ〉dt,

hence by (38), (40), (45) - (47)

lim
l→∞

∫ 1−εl

−1+δl

〈Â(Ul(t)), Ul(t)ζ〉dt =(49)

2〈F∞, u∞ζ〉 −

∫ 1

−1

∫

Ω

(ϕ⋆
1 + ϕ⋆

2 + ψ⋆)u∞ζdtdx =

∫ 1

−1

〈Y (t), u∞ζ〉dt.

By using arguments of [5] we obtain from (49)

∇Ul → u∞ a.e. in (−1, 1) ×Ω0

which implies by (39)

(Â(Ul)) → Â(u∞) weakly in Lq(−1, 1;V ⋆),

i.e. Y = Â(u∞).
Finally, by (39), (40) we get (similarly to the proof of (4))

g
l
(x, u∞(x)) ≤ ϕ⋆

l (t, x) ≤ ḡl(x, u∞(x)), l = 1, 2

h(x, [H(u∞)](x)) ≤ ψ⋆(t, x) ≤ h̄(x, [H(u∞)](x))

Integrating these inequalities over (−1, 1), we obtain (36).
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