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Abstract. In the present paper the differential equation

ẏ(t) = α(t)[y(t) − y(t − τ (t))]

with positive coefficient α and with positive bounded delay τ (which can
have the property τ (+∞) = 0) is considered. Explicit tests for convergence
of all its solutions (for t → +∞) are proved.
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1. Introduction

We will deal with the linear homogeneous differential equation with delay

ẏ(t) = α(t) [y(t) − y(t − τ(t))] ,(1)

where α ∈ C(I,R+ ), I = [t0,∞), t0 ∈ R, R+ = (0,+∞), τ ∈ C(I,R+ ); τ(t) ≤ τ0 =
const and the difference t−τ(t) is increasing on I. Let us denote I1 = [t0+τ(t0),∞).

A function y is called a solution of Eq. (1) corresponding to initial point t∗ ∈ I
if y is defined and is continuous on [t∗ − τ(t∗),∞), differentiable on [t∗,∞) and
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satisfies (1) for t ≥ t∗. By a solution of (1) we mean a solution corresponding
to some initial point t∗ ∈ I. We denote y(t∗, ϕ)(t) a solution of Eq. (1) which
is generated by continuous initial function ϕ : [t∗ − τ(t∗), t∗] 7→ R and which
corresponds to initial point t∗ ∈ I.

In the case of the linear Eq. (1) the solution y(t∗, ϕ)(t) is unique on its maximal
existence interval [t∗,∞) ([13]). We say that a solution of Eq. (1) corresponding
to initial point t∗ is convergent or asymptotically convergent if it has a finite limit
at +∞.

The main goal of this paper is to formulate and prove several explicit tests for
convergence of all solutions of Eq. (1).

Problems concerning asymptotic constancy of solutions, asymptotic convergen-
ce of solutions or existence of so called asymptotic equilibrium of various classes
of retarded functional differential equations were investigated, e.g., by O. Arino,
I. Györi and M. Pituk [1], O. Arino and M. Pituk [2], F.V. Atkinson and
J.R. Haddock [3], R. Bellman and K.L. Cooke [4], I. Györi and M. Pituk
[11], [12], K. Murakami [17], and T. Krisztin [14]–[16].

So called nonconvergence case (i.e. the case when there exists a monotone
increasing divergent solution of Eq. (1)) was considered e.g. by S.N. Zhang [18]
and by J. Dibĺık [10]. Some closely connected questions were discussed in the
cycle of recent papers by J. Čermák [5]–[8] as well.

In the paper [9] the equation

ẏ(t) =
n

∑

j=1

αj(t)[y(t) − y(t − τj(t))],(2)

was considered, where αj ∈ C(I,R+ ),
∑n

j=1 αj(t) > 0 on I, τj ∈ C(I,R+ ),
functions t − τj(t), j = 1, 2, . . . , n are increasing on I and τj are bounded on I.

The following theorem is the main result of [9]:

Theorem 1. For the convergence of all solutions of Eq. (2), corresponding to the

initial point t0, a necessary and sufficient condition is that there exist functions

ki ∈ C(I,R+ ), i = 1, 2, . . . , n satisfying the system of integral inequalities

1 + ki(t) ≥ exp





∫ t

t−τi(t)

n
∑

j=1

αj(s)kj(s) ds



 , i = 1, 2, . . . , n

on interval I1.

In this paper the following partial case of this result with respect to Eq. (1)
will be used:

Theorem 2. All solutions of Eq. (1), corresponding to the initial point t0, con-

verge if and only if there exists a function k ∈ C(I,R+ ), such that

1 + k(t) ≥ exp

[

∫ t

t−τ(t)

α(s)k(s) ds

]

(3)
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on the interval I1.

Theorem 2 serves as a source for several explicit convergence tests. In the sequel
we will prove one test which uses the values of the function α(t) itself (point test)
and two tests which use an integral weighted average of the function α(t). Note
that the case τ(+∞) = 0 is not excluded from our investigation.

2. Point test of convergence

Theorem 3. If for a sufficiently large t

α(t) ≤
1

τ(t)
−

L

t
,(4)

where L > 1/2 is a constant, then each solution of Eq. (1) is convergent.

Proof. Without loss of generality, let us suppose t sufficiently large. Let us put

k(t) ≡
ε

t
·

(

1

τ(t)
−

L

t

)

−1

,(5)

where ε is a positive number (then k(t) > 0 for t → +∞), and verify inequality
(3). Develop the asymptotic expansion L(t) of the left hand side of (3). We get

L(t) = 1 + k(t) = 1 +
ε

t
·

(

1

τ(t)
−

L

t

)

−1

= 1 +
ετ(t)

t(1 − Lτ(t)/t)
=

1 +
ετ(t)

t
·

(

1 +
Lτ(t)

t
+

L2τ2(t)

t2
· (1 + o(1))

)

.

Here and throughout this paper “o” is the Landau symbol “small” o. The symbol
“O” used in the sequel is the Landau symbol “big” O. These symbols are used in
the neighbourhood of the point t = ∞.

Now estimate the right hand side R(t) of (3). With the aid of (4) and (5) we
get

R(t) = exp

[

∫ t

t−τ(t)

α(s)k(s)ds

]

≤

exp

[

∫ t

t−τ(t)

(

1

τ(s)
−

L

s

)

ε

s
·

(

1

τ(s)
−

L

s

)

−1

ds

]

=

exp

[

ε

∫ t

t−τ(t)

1

s
ds

]

= exp

[

ε ln
t

t − τ(t)

]

=

(

t − τ(t)

t

)

−ε

=

(

1 −
τ(t)

t

)

−ε

=

1 +

(

−ε

1

)(

−
τ(t)

t

)

+

(

−ε

2

)(

−
τ(t)

t

)2

· (1 + o(1)) =

1 +
ετ(t)

t
+

ε(ε + 1)

2
·
τ2(t)

t2
· (1 + o(1)).
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We conclude that (3) will hold (supposing t0 sufficiently large) if

L(t) = 1 +
ετ(t)

t
+

εLτ2(t)

t2
+

εL2τ3(t)

t3
· (1 + o(1)) ≥

1 +
ετ(t)

t
+

ε(ε + 1)

2
·
τ2(t)

t2
· (1 + o(1)) ≥ R(t).

Comparing corresponding terms, we can see that this will hold when L > (ε+1)/2.
Since ε is a positive number and may be chosen arbitrarily small, we get L > 1/2.
Theorem 3 is proved.

3. Integral tests of convergence

Theorem 4. If for a sufficiently large t

(6)
1

τ(t)
·

∫ t

t−τ(t)

τ(s)α(s)ds ≤ 1 −
τ(t)

t − τ(t)
−

τ(t)

(t − τ(t)) ln(t − τ(t))
−

Lτ(t)

(t − τ(t)) ln(t − τ(t)) ln2(t − τ(t))
,

with L > 1, L = const and ln2 t = ln ln t, then each solution of Eq. (1) is conver-

gent.

Proof. Without loss of generality, let us suppose t sufficiently large. Let us put

k(t) ≡
τ(t)

t ln t(ln2 t)ε
,

where ε > 1 is a constant. Obviously, the inequality (3) will be valid if

L(t) ≡ 1 + k(t) ≥ R(t) ≡ exp

[

∫ t

t−τ(t)

α(s)k(s) ds

]

, t ∈ I1.(7)

We estimate the expression R(t). With the aid of the inequality (6), we have

R(t) ≤ exp(R⋆(t))

where

R⋆(t) ≡
τ(t)

(t − τ(t)) ln(t − τ(t))(ln2(t − τ(t)))ε
·

(

1 −
τ(t)

t − τ(t)
−

τ(t)

(t − τ(t)) ln(t − τ(t))
−

Lτ(t)

(t − τ(t))(ln(t − τ(t)))(ln2(t − τ(t)))

)

.

Let us develop the asymptotic expansion of the expression R⋆(t). At first, it is
trivial to verify that the following asymptotic expansions hold:

1

t − τ(t)
=

1

t

(

1 +
τ(t)

t
+

τ2(t)

t2
+ o

(

τ2(t)

t2

))

,
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1

ln(t − τ(t))
=

1

ln t

(

1 +
τ(t)

t ln t
+

τ2(t)

2t2 ln t
+ o

(

τ2(t)

t2 ln t

))

and

1

ln2(t − τ(t))
=

1

ln2 t

(

1 +
τ(t)

t ln t ln2 t
+

τ2(t)

2t2 ln t ln2 t
+ o

(

τ2(t)

t2 ln t ln2 t

))

.

Thus

R⋆(t) =
τ(t)

t ln t(ln2 t)ε
·

(

1 +
τ(t)

t
+

τ2(t)

t2
+ o

(

τ2(t)

t2

))

×

(

1 +
τ(t)

t ln t
+

τ2(t)

2t2 ln t
+ o

(

τ2(t)

t2 ln t

))

×

(

1 +
ετ(t)

t ln t ln2 t
+

ετ2(t)

2t2 ln t ln2 t
+ o

(

τ2(t)

t2 ln t ln2 t

))

×

[

1 −
τ(t)

t
−

τ2(t)

t2
+ o

(

τ2(t)

t2

)

−
τ(t)

t ln t

(

1 +
τ(t)

t
+ o

(

τ(t)

t

))

×

(

1 +
τ(t)

t ln t
+ o

(

τ(t)

t ln t

))

−

Lτ(t)

t ln t ln2 t

(

1 +
τ(t)

t
+ o

(

τ(t)

t

))

·

(

1 +
τ(t)

t ln t
+ o

(

τ(t)

t ln t

))

×

(

1 +
τ(t)

t ln t ln2 t
+ o

(

τ(t)

t ln t ln2 t

))]

=

τ(t)

t ln t(ln2 t)ε
·

(

1 +
ετ(t) − Lτ(t)

t ln t ln2 t
−

τ2(t)

t2
+ o

(

τ2(t)

t2

))

.

At the end we get

exp(R⋆(t)) = 1 +
τ(t)

t ln t(ln2 t)ε
·

(

1 +
ετ(t) − Lτ(t)

t ln t ln2 t
−

τ2(t)

t2
+ o

(

τ2(t)

t2

))

+

τ2(t)

2t2 ln2 t(ln2 t)2ε
·

(

1 +
ετ(t) − Lτ(t)

t ln t ln2 t
−

τ2(t)

t2
+ o

(

τ2(t)

t2

))2

· (1 + o(1)) =

1 +
τ(t)

t ln t(ln2 t)ε
+

ετ2(t) − Lτ2(t)

t2 ln2 t ln1+ε
2 t

+
τ2(t)

2t2 ln2 t ln2ε
2 t

+ o

(

τ3(t)

t3

)

.

For the validity of the inequality (7) it is sufficient to suppose that (for sufficiently
large t)

L(t) ≥ exp(R⋆(t)),

i.e. that

1+
τ(t)

t ln t(ln2 t)ε
≥ 1+

τ(t)

t ln t(ln2 t)ε
+

ετ2(t) − Lτ2(t)

t2 ln2 t ln1+ε
2 t

+
τ2(t)

2t2 ln2 t ln2ε
2 t

+o

(

τ3(t)

t3

)

.
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This will hold (we take into account the supposition ε > 1) if L > ε. Since ε may
be chosen arbitrarily close to 1 – this assumption is necessary for the asymptotic
dominance of the third term in the right-hand side in above inequality, we obtain
L > 1. Theorem 4 is proved.

Theorem 5. If for sufficiently large t

1

τ(t)
·

∫ t

t−τ(t)

τ(s)α(s)

sm
ds ≤

τ(t)

(t − τ(t))m
−

Lτ(t)

(t − τ(t))m+1
,

where m,L = const,m ≥ 1, L > m then each solution of Eq. (1) is convergent.

Proof. Without loss of generality, let us suppose t sufficiently large. Let us put

k(t) ≡
τ(t)

tm+p
,

where p is a positive constant. Obviously, the of inequality (3) will be valid if, as
above, inequality (7) holds. Let us develop (suppposing t sufficiently large) the
asymptotic expansion of R(t). We get

R(t) ≡ exp

[

∫ t

t−τ(t)

τ(s)α(s)

sm+p
ds

]

≤ exp

[

1

(t − τ(t))p

∫ t

t−τ(t)

τ(s)α(s)

sm
ds

]

≤

exp

[

τ(t)

(t − τ(t))m+p
−

Lτ2(t)

(t − τ(t))m+p+1

]

=

1 +
τ(t)

(t − τ(t))m+p
−

Lτ2(t)

(t − τ(t))m+p+1
+

τ2(t)

2(t − τ(t))2(m+p)
(1 + o(1)) =

1 +
τ(t)

tm+p

(

1 −
τ(t)

t

)

−(m+p)

−
Lτ2(t)

tm+p+1

(

1 −
τ(t)

t

)

−(m+p+1)

+ O

(

τ2(t)

t2(m+p)

)

=

1 +
τ(t)

tm+p

(

1 +
(m + p)τ(t)

t
+ O

(

τ2(t)

t2

))

−

Lτ2(t)

tm+p+1

(

1 + O

(

τ(t)

t

))

+ O

(

τ2(t)

t2(m+p)

)

=

1 +
τ(t)

tm+p
+

(m + p)τ2(t) − Lτ2(t)

tm+p+1
+ O

(

τ3(t)

tm+p+2

)

+ O

(

τ2(t)

t2(m+p)

)

.

Now, for

L(t) ≡ 1 +
τ(t)

tm+p
≥

1 +
τ(t)

tm+p
+

(m + p)τ2(t) − Lτ2(t)

tm+p+1
+ O

(

τ3(t)

tm+p+2

)

+ O

(

τ2(t)

t2(m+p)

)

≥ R(t)

is m + p > 1 (this assumption is necessary for the asymptotic dominance of the
third term in the right-hand side in above inequality) and L > (m + p) sufficient.
Since p may be arbitrarily small positive number, we have L > m. Theorem 5 is
proved.
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4. Concluding remarks

4.1. Sharpness of Theorem 3.

Let Eq. (1) has the form

ẏ(t) =
(

t −
a

t

)

[y(t) − y(t − 1/t)](8)

with a > 1/2, a =const; i.e. α(t) = t − a/t and τ(t) = 1/t. Note that τ(+∞) = 0.
It is easy to see that the inequality (4) holds since the inequality

α(t) = t −
a

t
≤ t −

L

t
=

1

τ(t)
−

L

t

is valid for 1/2 < L ≤ a. In accordance with Theorem 3, each solution of Eq. (8)
is convergent.

In the sequel we will show that the interval a > 1/2 is the best possible. Namely,
we will show that the property of convergence of all solutions of equation (8) is not
valid for a = 1/2. In paper [10] (see Theorem 2 in [10]), the following is proved:

Theorem 6. Equation (1) has a solution y(t) with property y(+∞) = +∞ if and

only if the inequality

ω̇(t) ≤ α(t) [ω(t) − ω(t − τ(t))]

has a solution ω(t) with property ω(+∞) = +∞.

So, it is sufficient to show that, in the case of equation (8) with a = 1/2, the
inequality

ω̇(t) ≤

(

t −
1

2t

)

[ω(t) − ω(t − 1/t)](9)

has a solution ω(t) with the property ω(+∞) = +∞. It is easy to verify that the
function

ω(t) = ln t

is such solution of inequality (9).

4.2. A comparison with Atkinson – Haddock’s results.

Let us use the equation (8) as a concrete example of the equation (1) again and let
us show with its aid that our convergence results are in some sense more general
than the results given in [3].

Really, by Theorem 3.3 in [3] all solutions of equation (1) will converge if for a
sufficiently large t

∫ t+r

t

α(s)ds ≤ 1 −
r

t
−

K

t ln t
(10)
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with some K > r where r is a positive constant which bounds delay. In the case
of the equation (8) the left hand side of the inequality (10) equals

∫ t+r

t

α(s)ds =

∫ t+r

t

(

s −
a

s

)

ds =

[

1

2
s2 − a ln s

]t+r

t

= rt +
r2

2
− a ln

(

1 +
r

t

)

and

lim
t→+∞

∫ t+r

t

α(s)ds = ∞.

So inequality (10) does not hold for a positive r. Nevertheless in this case our
Theorem 4 holds for a > 1 since the left hand side of inequality (6)

1

τ(t)
·

∫ t

t−τ(t)

τ(s)α(s)ds = t

∫ t

t−1/t

1

s

(

s −
a

s

)

ds = 1 −
a

t2 − 1

is not greater than the right hand side of inequality (6) which equals

1 −
1

t2 − 1
−

1

(t2 − 1) ln(t − 1/t)
−

L

(t2 − 1) ln(t − 1/t) ln2(t − 1/t)
.

Note that, except this, Theorem 4 generalizes Theorem 3.3 even in the case when
the delay is constant, i.e. in the case when τ(t) ≡ τ0 > 0.

4.3. Comparisons with sufficient conditions of convergence given in
[9].

Sufficient conditions of convergence given in [9] (Theorems 8 – 10 in [9]), with
respect to the equation (1), are:

Theorem 7. If for a sufficiently large t

α(t) ≤
1

τ0
−

M1

t

where M1 > 1/2 is a constant, then each solution of Eq. (1) is convergent.

Theorem 8. If for a sufficiently large t

∫ t+τ0

t

α(s)ds ≤ 1 −
τ0

t
−

τ0

t ln t
−

M2

t ln t ln2 t

where M2 > τ0,M2 =const, then each solution of Eq. (1) is convergent.

Theorem 9. If for a sufficiently large t

∫ t+τ0

t

α(s)

sm
ds ≤

1

tm
−

M3

tm+1

where m,M3 =const, m > 1,M3 > τ0m, then each solution of Eq. (1) is conver-

gent.
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The Theorems 7, 8, 9 are at the same time consequences of our Theorems 3, 4,
5 if the delay is constant. Really, putting τ(t) ≡ τ0 > 0 and L = M1 in Theorem
3; L = M2/τ0 in Theorem 4, and L = M3/τ0 in Theorem 5 we get (after the shift
t → t + τ0), consequently, Theorems 7, 8, 9.
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