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SOME λ–SEQUENCE SPACES DEFINED BY A MODULUS

EBERHARD MALKOWSKY AND EKREM SAVAS

Abstract. The main object of this paper is to introduce and study some

sequence spaces which arise from the notation of generalized de la Vallée–
Poussin means and the concept of a modulus function.

1. Introduction

The notion of a modulus function was introduced by Nakano [7]. Ruckle [8]
used the idea of a modulus function to construct some spaces of complex sequences.
Maddox [5] investigated and discussed some properties of the three sequence spaces
defined using a modulus function f , which generalized the well-known spaces w0,
w and w∞ of strongly summable sequences which were discussed by Maddox [4].

Recently E.Savas [9] generalized the concept of strong almost convergence by
using a modulus function f and examined some properties of the corresponding
new sequence spaces.

Quite recently E.Savas [10] defined almost λ–statistical convergence by using
the notion of (V, λ)–summability to generalize the concept of statistical covergence.

It is quite natural to the expect that the sets of sequences that are strongly
almost summable to zero, strongly almost summable, and strongly almost bounded
by the de la Vallée–Poussin method can be defined by combining the concepts of
a modulus function, the (V, λ) method and strong almost convergence just as the
spaces of sequences that are strongly almost summable to zero, strongly almost
summable and strongly almost bounded with respect to the modulus f were defined
by Savas [9].

The main object of this paper is to study some sequence spaces which arise
from the notation of generalized de la Vallée–Poussin means and the concept of a
modulus function.

Let ω be the set of all complex sequences x = (xk)∞k=1, and l∞, c and c0 denote
the Banach spaces of sequences that are bounded, convergent and convergent to
zero, respectively, normed as usual by ‖x‖∞ = supk |xk|. We write φ for the set of
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all finite sequences. Furthermore, e and e(n) (n = 1, 2, · · ·) are the sequences with
ek = 1 (k = 1, 2, · · ·) and e(n)

n = 1 and e
(n)
k = 0 (k 6= n).

The concept of paranorm is closely related to linear metric spaces. It is a
generalization of that of absolute value. Let X be a linear space. A function
p : X → IR is called paranorm, if

(P.1) p(0) ≥ 0
(P.2) p(x) ≥ 0 for all x ∈ X
(P.3) p(−x) = p(x) for all x ∈ X
(P.4) p(x+ y) ≤ p(x) + p(y) for all x, y ∈ X (triangle inequality)
(P.5) if (λn) is a sequence of scalars with λn → λ (n→∞) and (xn) is a sequence

of vectors with p(xn − x) → 0 (n → ∞), then p(λnxn − λx) → 0 (n → ∞)
(continuity of multiplication by scalars).

A paranorm p for which p(x) = 0 implies x = 0 is called total. It is well known
that the metric of any linear metric space is given by some total paranorm (cf.
[11, Theorem 10.4.2, p. 183]).

A complete linear metric space is said to be a Fréchet space. A Fréchet sequence
space X is said to be an FK space if its metric is stronger than the metric of ω on X,
that is convergence in the sequence space X implies coordinatewise convergence.
(The letters F and K stand for Fréchet and Koordinate, the German word for
coordinate.) Some authors include local convexity in the definition of a Fréchet
space and also of an FK space. We do not, but follow the definition used by
Maddox and Wilansky. An FK space X ⊃ φ is said to have AK if

∑n
k=0 xke

(k) → x
(n→∞) for all sequences x = (xk)∞k=0 ∈ X. (AK stands for Abschnittskonvergenz
(sectional convergence).)

Throughout, let Λ = (λn) be a nondecreasing sequence of positive reals tending
to infinity and λ1 = 1 and λn+1 ≤ λn + 1. The generalized de la Vallée-Poussin
means of a sequence x are defined as

tn(x) =
1
λn

∑
k∈In

xk where In = [n− λn + 1, n] for n = 1, 2, · · · .

We write

[V, λ]0 =

{
x ∈ ω : lim

n→∞

1
λn

∑
k∈In

|xk| = 0

}
,

[V, λ] = {x ∈ ω : x− le ∈ [V, λ]0 for some l ∈ |C}

and

[V, λ]∞ =

{
x ∈ ω : sup

n

1
λn

∑
k∈In

|xk| <∞
}

for the sets of sequences that are strongly summable to zero, strongly summable
and strongly bounded by the de la Vallée–Poussin method. In the special case
where λn = n for n = 1, 2, · · ·, the sets [V, λ]0, [V, λ] and [V, λ]∞ reduce to the
sets w0, w and w∞ introduced and studied by Maddox [3].



SOME λ–SEQUENCE SPACES DEFINED BY A MODULUS 221

Following Ruckle [8] and Maddox [5], a modulus function f is a function from
[0,∞) to [0,∞) such that

(i) f(x) = 0 if and only if x = 0,
(ii) f(x + y) ≤ f(x) + f(y) for all x, y ≥ 0,

(iii) f is increasing,
(iv) f is continuous from the right at zero.
Since |f(x)−f(y)| ≤ f(|x−y|), it follows from condition (iv) that f is continuous
on [0,∞). Furthermore, we have f(nx) ≤ nf(x) for all n ∈ IN from condition (ii),
and so f(x) = f(nx 1

n
) ≤ nf(x/n), hence

1
n
f(x) ≤ f(x/n) for all n ∈ IN .(1.1)

A modulus may be bounded or unbounded. For example, f(x) = xp for 0 < p ≤ 1
is unbounded, but f(x) = x/(1 + x) is bounded.

Maddox [4] introduced and studied the sets

[ĉ]0 =

{
x ∈ ω : lim

n→∞

1
n

n∑
k=1

|xk+m| = 0 uniformly in m

}

and

[ĉ] = {x ∈ ω : x− le ∈ [ĉ]0 for some l ∈ |C}

of sequences that are strongly almost convergent to zero and strongly almost con-
vergent. We combine the concepts of a modulus function, the strong (V, λ) method
and strong almost convergence to define the sets

[V̂ , λ, f ]0 =

{
x ∈ ω : lim

n→∞

1
λn

∑
k∈In

f(|xk+m|) = 0 uniformly in m

}
,

[V̂ , λ, f ] =
{
x ∈ ω : x− le ∈ [V̂ , λ, f ]0 for some l ∈ |C

}
and

[V̂ , λ, f ]∞ =

{
x ∈ ω : sup

m,n

1
λn

∑
k∈In

f(|xk+m|) <∞
}
.

When λn = n for n = 1, 2, · · · , then the sets [V̂ , λ, f ] and [V̂ , λ, f ]0 reduce to the
sets [ĉ(f)] and [ĉ0(f)] defined by Savas [9]. If we put f(x) = x, then [V̂ , λ, f ]0 =
[V̂ , λ]0 and [V̂ , λ, f ] = [V̂ , λ].

2. Some auxiliary results

In this section, we give a few lemmas needed in the proofs of the main results.

Lemma 1. For any modulus f there exists limt→∞ f(t)/t (cf. [6, Proposition 1]).
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Lemma 2. Let f be any modulus with

lim
t→∞

f(t)
t

= α > 0 .(2.1)

Then there is a constant β > 0 such that

f(t) ≥ βt for all t ≥ 0 .(2.2)

Proof. We assume that (2.1) holds. Then there is t0 > 0 such that

f(t) ≥ α

2
t for all t ≥ t0 .(2.3)

Now let 1 ≤ t ≤ t0. Then by condition (iii) of a modulus

f(t) ≥ f(1) =
1
t
f(1)t ≥ f(1)

t0
t .(2.4)

Finally, let 0 < t < 1. Then there is n ∈ IN such that 1/(n+ 1) < t ≤ 1/n, and by
condition (iii) of a modulus and (1.1)

f(t) ≥ f(
1

n + 1
) ≥ 1

n+ 1
f(1) =

n

n+ 1
1
n
f(1) ≥ n

n+ 1
f(1)t ≥ 1

2
f(1)t .

(2.5)

We put β = min{α/2, f(1)/t0, 1/2f(1)} > 0. Then (2.2) follows from (2.3), (2.4)
and (2.5). 2

Lemma 3. Let f be any modulus and 0 < δ < 1. Then

f(x) ≤ 2f(1)δ−1x for all x ≥ δ .(2.6)

Proof. Inequality (2.6) follows by a straightforward computation using the prop-
erties of a modulus function. 2

Lemma 4. Let x ∈ [V̂ , λ, f ]. Then there is a unique complex number l with
x− le ∈ [V̂ , λ, f ]0.

Proof. Let x ∈ [V̂ , λ, f ] and x − le, x − l′e ∈ [V̂ , λ, f ]0. Then given ε > 0 there
is n ∈ IN such that

1
λn

∑
k∈In

f(|xk − l|) < ε/2 and
1
λn

∑
k∈In

f(|xk − l′|) < ε/2 .

This implies

f(|l − l′|) ≤ 1
λn

∑
k∈In

f(|xk − l|) +
1
λn

∑
k∈In

f(|xk − l′|) < ε .

Since ε > 0 was arbitrary, this implies l = l′ by conditions (i) and (iv) of a modulus.
2

Now we give some inclusions.

Lemma 5. Let f be any modulus. Then

(a) [V̂ , λ, f ]∞ = l∞(f) = {x ∈ ω : (f(|xk|))∞k=1 ∈ l∞};

(b) [V̂ , λ, f ]0 ⊂ [V̂ , λ, f ] ⊂ [V̂ , λ, f ]∞.
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Proof. (a) Let x ∈ [V̂ , λ, f ]∞. Then there is a constant M > 0 such that

1
λ1
f(|x1+m|) ≤ sup

m,n

1
λn

∑
k∈In

f(|xk+m|) ≤M for all m,

and so (f(|xk|))∞k=1 ∈ l∞.
Conversely, let x ∈ l∞(f). Then there is a constant M > 0 such that f(|xj|) ≤M
for all j, and so

1
λn

∑
k∈In

f(|xk+m|) ≤M
1
λn

∑
k∈In

1 ≤M for all m and n .

Thus x ∈ [V̂ , λ, f ]∞.
(b) Obviously [V̂ , λ, f ]0 ⊂ [V̂ , λ, f ].

Let x ∈ [V̂ , λ, f ]. Then there are a complex number l and a positive integer n0

such that
1
λn

∑
k∈In

f(|xk+m − l|) ≤ 1 for all n ≥ n0 and for all m ∈ IN ,

and so
1
λn

∑
k∈In

f(|xk+m|) ≤
1
λn

∑
k∈In

f(|xk+m − l|) +
1
λn

∑
k∈In

f(|l|)

≤ 1 + f(|l|) for all n ≥ n0 and for all m ∈ IN .

Furthermore
1
λn0

f(|xn0+m|) ≤
1
λn0

∑
k∈In0

f(|xk+m|) ≤ 1 + f(|l|) for all m ∈ IN ,

hence f(|xn0+m|) ≤ λn0(1 + f(|l|)) for all m. Thus x ∈ l∞(f). 2

3. The main results

In this section we prove the main results.

Theorem 1. The spaces [V̂ , λ, f ]0 and [V̂ , λ, f ] are paranormed FK spaces with
the paranorm p defined by

p(x) = sup
m,n

1
λn

∑
k∈In

f(|xk+m|) ,(3.1)

[V̂ , λ, f ]0 has AK, and every sequence x = (xk)∞k=1 ∈ [V̂ , λ, f ] has a unique repre-
sentation

x = le +
∞∑
k=1

(xk − l)e(k)(3.2)

where l ∈ |C is such that x− le ∈ [V̂ , λ, f ]0 .
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Proof. First we show that [V̂ , λ, f ] is a paranormed FK space with p defined in
(3.1). The proof for [V̂ , λ, f ]0 is exactly the same.
By Lemma 5 (b), p is defined on [V̂ , λ, f ]. Obviously p(x) ≥ 0 for all x ∈ [V̂ , λ, f ].
Furthermore, p(x) = 0 implies f(|xj|) = 0 for all j, and so x = 0 by condition (i)
of a modulus. Obviously p(−x) = p(x) for all x ∈ [V̂ , λ, f ]. Let x, y ∈ [V̂ , λ, f ].
Then by conditions (iii) and (ii) of a modulus

p(x+ y) ≤ sup
m,n

1
λn

∑
k∈In

(f(|xk+m|) + f(|yk+m|))

≤ sup
m,n

1
λn

∑
k∈In

f(|xk+m|) + sup
m,n

1
λn

∑
k∈In

f(|yk+m|) ≤ p(x) + p(y) .

Now let p(x(r)) → 0 and µr → µ (r → ∞). Then the sequence (µr) is bounded,
|µr| ≤M ∈ IN for all r, say. By conditions (iii) and (i) of a modulus

p(µrx(r)) = sup
m,n

1
λn

∑
k∈In

f(|µrx(r)
k+m|) ≤ sup

m,n

1
λn

∑
k∈In

f(M |x(r)
k+m|)

≤M sup
m,n

1
λn

∑
k∈In

f(|x(r)
k+m|) = M · p(x(r))→ 0 (r →∞) .

Finally, let x ∈ [V̂ , λ, f ] be given and µr → 0 (r → ∞). Given ε > 0, there is
n0 ∈ IN such that

1
λn

∑
k∈In

f(|xk+m − l|) < ε/2 for all n > n0 and for all m .(3.3)

Since x ∈ l∞(f) by Lemma 5 (a) and since f is continuous, we can choose r0 ∈ IN
such that for all r ≥ r0

1
λn

∑
k∈In

f(|µrxk+m|) < ε(3.4)

for all n with 1 ≤ n ≤ n0 and for all m .

Now let n > n0. By the continuity of f and since µr → 0 (r→∞), there is r1 ∈ IN
such that

f(|µrl|) < ε/2 and |µr| < 1 for all r ≥ r1 .(3.5)

Then, by (3.3) and (3.5), for all r ≥ r1

(3.6)
1
λn

∑
k∈In

f(|µrxk+m|) ≤
1
λn

∑
k∈In

f(|µrl|) +
1
λn

∑
k∈In

f(|µr(xk+m − l)|) ≤

≤ f(|µrl|) + ([|µr|] + 1)
1
λn

∑
k∈In

f(|xk+m − l|) < ε/2 + ε/2 = ε for all m.

We choose r2 = max{r1, r0}. Then, by (3.4) and (3.6), p(µrx) ≤ ε for all r ≥ r2,
that is p(µrx)→ 0 for r →∞. Thus we have shown that p is a total paranorm.
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Now we show that [V̂ , λ, f ] is complete. Let (x(r))∞r=0 be a Cuachy sequence in
[V̂ , λ, f ]. Then given ε > 0 there is r0 ∈ IN0 such that

1
λn

∑
k∈In

f(|x(r)
k+m − x

(s)
k+m|) < ε(3.7)

for all r, s ≥ r0 and for all m and n .

This implies

f(|x(r)
j − x

(s)
j |) < ε for all r, s ≥ r0 and for each j .(3.8)

Consequently, for each fixed j, the sequence (x(r)j )∞r=0 is a Cauchy sequence in
|C, hence convergent, xj = limr→∞ x

(r)
j , say. For if (x(r)

j0
)∞r=0 were not a Cauchy

sequence for some j0 then there would be subsequences (x(rk)
j0

)∞k=1 and (x(sk)
j0

)∞k=1

such that for some c > 0 we have |x(rk)
j0
− x(sk)

j0
| ≥ c for all k, and so f(|x(rk)

j0
−

x
(sk)
j0
|) ≥ f(c) > 0 for all k, a contradiction to (3.8).

Fixing r ≥ r0 and letting s tend to infinity, we obtain from (3.7) by the continuity
of f that

1
λn

∑
k∈In

f(|x(r)
k+m − xk+m|) ≤ ε for all r ≥ r0 and for all m and n ,(3.9)

that is

p(x(r) − x) ≤ ε for all r ≥ r0 .(3.10)

Furthermore, for each r there exists nr ∈ IN such that
1
λn

∑
k∈In

f(|x(r)
k+m − l(r)|) < ε for all n ≥ nr and for all m .(3.11)

Now let r, s ≥ r0 and n0 = max{nr, ns}. Then by (3.7) and (3.11),

f(|l(r) − l(s)|) =
1
λn0

∑
k∈In0

f(|l(r) − l(s)|)

≤ 1
λn0

∑
k∈In0

f(|x(r)
k+m − l(r)|) +

1
λn0

∑
k∈In0

f(|x(s)
k+m − l(s)|)

+
1
λn0

∑
k∈In0

f(|x(r)
k+m − x

(s)
k+m|)

< ε + ε + ε for all m,

and again this implies l(r) → l (r → ∞), say. From this, (3.10) and (3.11), we
obtain

1
λn

∑
k∈In

f(|xk+m − l|) ≤
1
λn

∑
k∈In

f(|xk+m − x(r0)
k+m|) +

1
λn

∑
k∈In

f(|x(r0)
k+m − l(r0)|)

+
1
λn

∑
k∈In

f(|l − l(r0)|) < 4ε for all sufficiently large n and for all m ,
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hence x ∈ [V̂ , λ, f ]. This shows that [V̂ , λ, f ] is complete.
Now we show that p(x(r) − x)→ 0 (r →∞) implies x(r)

j → xj (r →∞) for each
j. Let p(x(r) − x)→∞ (r →∞). Then, given ε > 0, there is r0 ∈ IN0 such that

1
λn

∑
k∈In

f(|x(r)
k+m − xk+m|) < ε for all r ≥ r0 and for all m and n .

This implies f(|x(r)
j − xj|) < ε for all r ≥ r0 and for each j, and again, as above,

this implies x(r)
j → xj (r →∞) for each j.

This completes the proof that [V̂ , λ, f ] is a paranormed FK space.
To show that [V̂ , λ, f ]0 has AK, let x ∈ [V̂ , λ, f ]0 and ε > 0 be given. Then we
can choose n0 ∈ IN0 such that

1
λn

∑
k∈In

f(|xk+m|) < ε for all n ≥ n0 and for all m .

Now we choose r1 ∈ IN such that r1 − λr1 + 1 ≥ n0. Let r ≥ r1 and x[r] =∑r
k=1 xke

(k). Then

p(x[r] − x) ≤ sup
n≥r0,m

1
λn

∑
k∈In

f(|xk+m|) ≤ ε .

Finally, let x = (xk)∞k=1 ∈ [V̂ , λ, f ] be given. By Lemma 4, there is a unique
complex number l such that y = x − le ∈ [V̂ , λ, f ]0. Since [V̂ , λ, f ]0 has AK
y =

∑∞
k=1 yke

(k) =
∑∞
k=1(xk − l)e(k) and so x = le +

∑∞
k=1(xk − l)e(k). 2

Theorem 2. (a) For any modulus f , [V̂ , λ] ⊂ [V̂ , λ, f ] and [V̂ , λ]0 ⊂ [V̂ , λ, f ]0.
(b) If limt→∞ f(t)/t = α > 0 then [V̂ , λ, f ] = [V̂ , λ] and [V̂ , λ, f ]0 = [V̂ , λ]0.

Proof. (a) Let f be a modulus and x ∈ [V̂ , λ]. Given ε > 0, there is n0 ∈ IN
such that

1
λn

∑
k∈In

|xk+m − l| < ε for all n ≥ n0 and for all m .

Since f is continuous, we may choose δ with 0 < δ < 1 such that f(t) < ε for all
t ∈ [0, δ]. Then, by Lemma 3,

1
λn

∑
k∈In

f(|xk+m − l|) =
1
λn

∑
k∈In

|xk+m−l|≤δ

f(|xk+m − l|) +
1
λn

∑
k∈In

|xk+m−l|>δ

f(|xk+m − l|)

< ε+ 2f(1)δ−1 1
λn

∑
k∈In

|xk+m − l|

< ε(1 + 2f(1)δ−1) for all n ≥ n0 and for all m .

Thus x ∈ [V̂ , λ, f ].
The inclusion [V̂ , λ]0 ⊂ [V̂ , λ, f ]0 is shown in exactly the same way.
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(b) Let x ∈ [V̂ , λ, f ]. By Lemma 1, the limit lim t→∞ f(t)/t exists, and by
Lemma 2, there is β > 0 such that f(t) ≥ βt for all t ≥ 0, and so

1
λn

∑
k∈In

|xk+m− l| ≤
1
βλn

∑
k∈In

f(|xk+m − l|) for all n and for all m .

Thus x ∈ [V̂ , λ].
The part concerning the sets [V̂ , λ, f ]0 and [V̂ , λ]0 is shown in exactly the same
way. 2

The idea of statistical convergence was introduced by Fast [2], and has been
studied in number theory [1] and trigonometric series [13]. A sequence x is said
to be statistically convergent to a number l ∈ |C if for every ε > 0,

lim
n→∞

1
n
|{k ≤ n : |xk − l| ≥ ε}| = 0 ,

where for each set M , |M | denotes the cardinality of M . In this case we write
s − limx = l or xk → l(s), and s denotes the set of all statistically convergent
sequences. In [10] the definition of statistical convergence was extended to the
concept of almost λ–statistical convergence. A sequence x is said to be almost
λ–statistically convergent to the number l if for every ε > 0,

lim
n→∞

1
λn
|{k ∈ In : |xk+m− l| ≥ ε}| = 0 uniformly in m.

In this case we write ŝλ − limx = l or xk → l(ŝλ) and ŝλ = {x ∈ ω : ŝλ − limx =
l for some l ∈ |C}. If λn = n, this definition reduces to the concept of almost
statistical convergence which was defined in Savas [10].

We establish a relation between the sets ŝλ and [V̂ , λ, f ].

Theorem 3. The inclusion ŝλ ⊂ [V̂ , λ, f ] holds if and only if f is bounded.

Proof. We assume that f is bounded and x ∈ ŝλ. Then there is a constant M
such that f(x) ≤ M for all x ≥ 0. Let ε > 0 be given. We choose η, δ > 0 such
that Mδ + f(η) < ε. Since x ∈ ŝλ, there are l ∈ |C and n0 = n0(η, δ) ∈ IN such
that

1
λn
|{k ∈ In : |xk+m − l| ≥ η}| < δ for all n ≥ n0 and for all m .

Therefore
1
λn

∑
k∈In

f(|xk+m − l|) =
1
λn

∑
k∈In

|xk+m−l|≥η

f(|xk+m − l|) +
1
λn

∑
k∈In

|xk+m−l|<η

f(|xk+m − l|)

≤M
1
λn
|{k ∈ In : |xk+m− l| ≥ η}|+ f(η)

< Mδ + f(η) < ε for all n ≥ n0 and for all m,

hence x ∈ [V̂ , λ, f ].
Conversely we assume that f is unbounded. Then there exists a positive sequence
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(vk)∞k=1 with f(vk) = k2 for k = 1, 2, · · · . We define the sequence x by xi = vk if
i = k2 and xi = 0 otherwise for (i = 1, 2, · · ·). Then

1
λn
|{k ∈ In : |xk+m| ≥ ε}| ≤ 1

λn

√
λn−1 for all n and m ,

and so x ∈ ŝλ. But obviously x /∈ [V̂ , λ, f ]. 2
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