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PARTIAL DENSITIES ON THE GROUP OF INTEGERS

HARALD NIEDERREITER AND NORRIS SOOKOO

Conditions are obtained under which a partial density on the group of
integers with the discrete topology can be extended to a density.

1. Introduction

Berg and Rubel (1969) investigated densities on locally commpact abelian
(LCA) groups and Neiderreiter and Sookoo [4] obtained conditions under which a
partial density on an LCA group can be extended to a density.

In this paper, we obtain additional conditions when the LCA group is the
group of integers with the discrete topology. In Section 2, we present notations
and definitions and in Section 3 the additional conditions in question.

2. Definitions and Notations

For a compact, Hausdorff space X, u.d. can be defined with respect to a non-
negative, regular, normed Borel measure (c.f. Kuipers and Niederreiter (1974)).

Notation. (i) Let µB be a nonnegative, regular, normed, Borel measure on X.
(ii) Let R(X) denote the set of all continuous, real-valued functions on X.

Definition. The sequence (xn) is u.d. in X with respect to µB if

lim
N→∞

N∑
n=1

f(xn) =
∫
X

f dµB ∀ f ∈ R(x)

A density (c.f. Berg and Rubel (1969)) on an LCA group G is a system of
measures on subgroups of compact index of G satisfying compatibility conditions.
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Definition. A closed subgroup H of an LCA group G is said to be of compact
index if G/H is compact.

Notation. (i) Let {Hα|α ∈ A} be the set of all subgroups of G of compact index,
where A is a suitable index set.

(ii) Let {Gα|α ∈ A} be the set of compact quotients of G, where Gα = G/Hα

for each α ∈ A.

Definition. A system D of measures given by

D = {µα|µα is a probability measure on Gα, α ∈ A}
is called a density on G if it satisfies the following compatibility condition:

If ψ : Gβ → Gα is the natural homomorphism from Gβ to a quotient Gα of Gβ,
then for any Borel set B in Gα, µα(B) = µβ(ψ−1(B)).

We next define a partial density (c.f. Niederreiter (1975)).

Definition. Let G be an LCA group and {Hα|α ∈ A} be the set of all subgroups
of compact index of G. For a subset B of A, let

P = {µα|µα is a probability measure on Gα, α ∈ B}
be a system of measures satisfying the following compatibility condition:

If
Hα ⊇ Hβ1 and Hα ⊇ Hβ2 ,

where α ∈ A, β1 ∈ B and β2 ∈ B, then µβ1 and µβ2 induce the same measure on
Gα. Then P is called a partial density on G.

Notation. Let Zbe the group of integers with the discrete topology, and R(Z)
the set of continuous, real-valued functions on Z.

3. Conditions for the Extension of a Partial Density

Lemma 3.1. If gcd(m1,m2) = 1, µ1 is a measure on Z/m 1Zand µ 2 a measure
on Z/m 2Z, then there exists a measure µ on Z/m 1m2Zwhich induces µ 1 and µ2.

Proof. Let µ be the measure on the direct product (Z/m 1Z)× (Z/m 2Z) given by
µ = µ1 × µ2; that is, µ is the direct product of µ1 and µ2.

If A ∈ (Z/m 1Z), then

µ(A × Z/m 2Z) = µ 1(A)µ2(Z/m 2Z)
= µ1(A)

Continuing like this, we see that µ induces µ1 and µ2.
Also Z/m 1m2Z ∼= (Z/m 1Z)× (Z/m 2Z) because of the following result:
Let a, b be integers. Then X ≡ a mod m1 and X ≡ b mod m2 if and only if

X ≡ r mod m1m2, where r is an integer uniquely determined mod m1m2 by a
and b. (This result can be deduced from the Chinese Remainder Theorem.)

Hence µ can be considered as a measure on Z/m 1m2Z, and we know that µ is
compatible with µ1 and µ2. �
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Lemma 3.2. If µ1 is a measure on Z/m 1Zand µ 2 is a measure on Z/m 2Zsuch
that {µ1, µ2} is a partial density on Z, then there exists a measure µ on Z/IZ
which induces µ1 and µ2 where I is the L.C.M. of m1 and m2.

Proof. If d = gcd(m1,m2), we can reduce the problem to d simpler problems.
In each case, we will have two relatively prime numbers, as in Lemma 3.1. The
equations involving the measures of the cosets i + 0, i + d, i + 2d, . . . , i + (I −
d) would not have terms involving the measures of any other cosets, where i ∈
{0, 1, 2, . . . , d− 1}. (For a nonnegative integer p less than I, p denotes the coset
. . . ,−I + p, p, I + p, . . . of IZin Z/IZ).

We show this as follows. Let µ1 take the values x0, x1, . . . , xm1−1 and µ2 take
the values y0, y1, . . .ym2−1. We wish to find a measure µ on Z/IZsatisfying the
equations

µ(0) + µ(m1) + · · ·+ µ(I −m1) = x0

µ(1) + µ(m1 + 1) + · · ·+ µ(I −m1 + 1) = x1

...

µ(m1 − 1) + µ(2m1 − 1) + · · ·+ µ(I − 1) = xm1 − 1

and
µ(0) + µ(m2) + · · ·+ µ(I −m2) = y0

µ(1) + µ(m2 + 1) + · · ·+ µ(I −m2 + 1) = y1

...

µ(m2 − 1) + µ(2m2 − 1) + · · ·+ µ(I − 1) = ym2−1

Because of the compatibility condition on µ1 and µ2,

x0 + xd + · · ·+ xm1−d = y0 + yd + · · ·+ ym2−d

= α , say .

The set S of eguations involving µ(0), µ(d), µ(2d), . . . , µ(I − d) does not involve
any other unknowns, so they can be solved separately.

If α = 0, we let µ(i) = 0 for i ∈ {0, d, 2d, . . . , I − d}.
If α > 0, we multiply x0, xd, . . . , xm1−d, y0, yd, . . . , ym2−d by 1/α.
Now consider this problem:
Let ν1 be a measure on Z/ m1

d
Zhaving values x0

α
, xd
α
, . . . ,

xm1−d
α

and let ν2 be a

measure on Z/ m2
d
Zhaving values y0

α
, yd
α
, . . . , ym−2−d

α
.

Then ν1 and ν2 are probability measures and m1
d and m2

d are relatively prime.
Hence from Lemma 3.1, there exists a measure ν on Z/ I

d
Zwhich induces ν 1

and ν2. Hence, if we multiply each equation in S by 1/α, and then replace µ(i)
by ν( i

d
), the new set of equation has at least one solution such that ν(i

d
) ≥ 0, for

i ∈ {0, d, 2d, . . ., I − d}.
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Similarly, the equations involving

µ(j), µ(j + d), µ(j + 2d), . . . , µ(j + I − d), j ∈ {1, 2, . . ., d− 1} ,

have nonnegative solutions.
Hence our original set of equation have nonnegative solutions. Hence there

exists a measure µ which induces µ1 and µ2.

Lemma 3.3. Let {µmi |i = 1, 2, . . . , p} be a partial density on Z. Then there exists
a measure on Z/(L.C.M. of m 1,m2, . . . ,mp)Zwhich induces µ mi for each i in
{1, 2, . . . , p}, if the following condition is satisfied for each element a in {1, 2, . . ., p−
1}:

Let R = L.C.M. of m1,m2, . . . ,ma. Then gcd(R,ma+1) is a divisor of at least
one of m1,m2, . . . ,ma.

Proof. Let the L.C.M. of m1,m2, . . . ,ma be I12...a. There is a measure µI12 on
Z/I 12Zwhich induces µ m1 and µm2 , according to Lemma 3.2.

Now, Ṫ = gcd(I12,m3) is a divisor of at least one of m1 and m2. Hence uI12

and µm3 are compatible with respect to the greatest common divisor, Ṫ . Therefore
there exists a measure uI123 on Z/I 123Zcompatible with µ m1 , µm2 , µm3 .

Now gcd(I123,m4) is a divisor of at least one of m1, m2, m3. Hence there exists
a measure on Z/I 1234Zcompatible with µ m1 , µm2 , µm3 and µm4 .

Continuing like this, we obtain a measure µI12...p on Z/I 12...pZcompatible with
µmi for each i in {1, 2, . . . , p}. �
Theorem 3.4. Let P = {µmi |i ∈ B} be a partial density on Z. Then P can be
extended to a density on Zif the following condition is satisfied:

Let Im1m2...ma be the L.C.M. of m1,m2, . . . ,ma for arbitrary a in B. Then
gcd(Im1m2...ma ,ma+1) is a divisor of at least one of m1,m2, . . . ,ma, for each a in
B.

Proof. Let Nmi be the set of continuous, real-valued functions on Zhaving period
mi for each i in B, and let M be the space of finite linear combinations of elements
of the Nmi over |R, i ∈ B. Define L on M as follows:

If f ∈M , then

f =
n∑
i=1

kifi

for some fi ∈ Nmi i = 1, 2, . . . , n and ki ∈ |R i = 1, 2, . . . , n.
Let

L(f) =
n∑
i=1

∫
Z/m iZ

kifi dµmi

where µmi is the measure on Z/m iZin P ; i ∈ {1, 2, . . ., n}.
Now let f ∈M such that f ≥ 0. Then f = f1 + f2 + · · ·+ fa for some a in B,

where fi has period mi, i ∈ {1, 2, . . . , a}. Lemma 3.3 implies that there is a prob-
ability measure µ on Z/I m1m2...maZsuch that µ is compatible with µ 1, µ2, . . . , µa.
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Hence

L(f) =
a∑
i=1

∫
Z/m iZ

fi dµmi

=
a∑
i=1

∫
Z/I m1m2...maZ

fi dµ

=
∫
Z/I m1m2...maZ

f dµ ≥ 0

since f ≥ 0.
Hence L is positive; therefore Theorem 3.4 of [4] implies that P can be extended

to a density on Z.
If the measures in a partial density satisfy a certain condition, then the partial

density can be extended to a density on Z. In this case the partial density can be
defined for any set of subgroups of Z. The following theorem gives this condition.
First we need a definition. �
Definition. Let m1,m2, . . . ,mn be positive integers greater than one and let I
be their LCM. If

S = {να|α = 1, . . . , n; να is a signed measure on Z/m αZ}

satisfies the usual condition for a partial density, and ‖S‖ = 1, we call S a signed
partial density .

Theorem 3.5. Let I,m1,m2, . . . ,mn be as above.

Suppose that

P = {µα|µα is a probability measure on Z/m αZ; α = 1, 2, . . ., n}

is a partial density on Zsuch that

µα =
να + (2n+1 − 1)Iµα

(2n+1 − 1)I + 1

where {να|α = 1, 2, . . . , n} is a signed partial density and µα is the Haar measure
on Z/m αZ, α = 1, 2, . . ., n, I. Then P can be extended to a density on Z. In
particular, if

µα ≥
(2n+1 − 1)Iµα

(2n+1 − 1)I + 1

for each α in {1, 2, . . ., n}, then P can be extended to a density on Z.

Proof. We define a linear functional L on the set M of linear combinations over
|R of functions from R(Z/m αZ), α = 1, 2, . . . , n as follows:

If f = f1 + f2 + · · ·+ fn, fα ∈ R(Z/m αZ), α ∈ {1, 2, . . . , n}
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then

L(f) =
n∑
α=1

∫
Z/m αZ

fα dνα

where R(Z/m αZ) is the set of real valued, continuous functions on Z/m αZ. We
define another linear functional Q on M for each α in {1, 2, . . . , n} as follows:

Q(f) =
L(f) + (2n+1 − 1)I

∫
Z/IZ f dµI

(2n+1 − 1)I + 1

Then

Q(f) =
n∑
α=1

∫
Z/m αZ fα dνα + (2n+1 − 1)I

∫
Z/m αZ fα dµα

(2n+1 − 1)I + 1

=
n∑
α=1

∫
Z/m αZ

fα d

(
να + (2n+1 − 1)Iµα

(2n+1 − 1)I + 1

)

=
n∑
α=1

∫
Z/m αZ

fα dµα

Since {να|α = 1, 2, . . ., n} is a signed partial density, Lemma 3.3 of [4] implies

|L(f)| ≤ (2n+1 − 1) for each f ∈M such that ‖f‖ ≤ 1.

If L is positive, then Q is positive. If L is not positive, let f0 be the element of
M for which L is minimum with 0 ≤ f0 ≤ 1. Then f0 must take the value 1 on at
least one element of Z/IZ, otherwise there would be a positive multiple f 1 of f0

such that L(f1) < L(f0).
Now µI(P ) ≥ 1

I for each P in Z/IZand so∫
Z/IZ

f0 dµI ≥
1
I
.

Since

|L(f0)| ≥ (2n+1 − 1)

Q(f0) ≥ 0

∴ Q(f) ≥ 0 , ∀ f ∈M such that 0 ≤ f ≤ 1 .

Since any positive function inM is a multiple of some g0 ∈M for which 0 ≤ g0 ≤ 1,
Q is positive. Since L is bounded, Q is bounded and so continuous. Hence Q can
be extended to a positive, continuous linear functional L1 on R(Z). L 1 induces on
G a density which is an extension of P .

Suppose now that

µα ≥
(2n+1 − 1)Iµα
(2n+1 − 1)I + 1

;
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then µα can be expressed in the form

να + (2n+1 − 1)Iµα
(2n+1 − 1)I + 1

where {να|α = 1, 2, . . ., n} is a partial density, and the result follows as before.
In the general case, we cannot use a method similar to the one used in Lemma

3.1. The following case illustrates this.
Let µ4 and µ6 be measures on Z/4Zand Z/6Zrespectively. Let also µ a(i+ bZ)

be the measure of the coset i+bZof bZin Z/bZwhere a and b are positive integers
greater than 1, µa is some measure defined on Z/bZ, and i ∈ {0, 1, 2, . . ., b − 1}.
Suppose that

µ6(0 + 6Z) =1/6

µ6(1 + 6Z) =0/6

µ6(2 + 6Z) =2/6

µ6(3 + 6Z) =0/6

µ6(4 + 6Z) =2/6

µ6(5 + 6Z) =1/6

µ4(0 + 4Z) =5/6

µ4(1 + 4Z) =1/6

µ4(2 + 4Z) =0/6

µ4(3 + 4Z) =0/6

We see that {µ4, µ6} is a partial density on Z.
We have measures µ4 on Z/4Zand µ 3 on Z/3Z, where µ 6 induces µ3.

µ3(0 + 3Z) =1/6

µ3(1 + 3Z) =2/6

µ3(2 + 3Z) =3/6

We define µ12 on Z/12Zby µ 12 = µ4×µ3. µ4 and µ6 induce µ2 on Z/2Zwhere

µ2(0 + 2Z)=5/6

µ2(1 + 2Z)=1/6

But µ12 induces µ6 on Z/6Z, where µ 6 takes the values

1/6× 5/6 = 5/36

1/6× 1/6 = 1/36

2/6× 5/6 =10/36

2/6× 1/6 = 2/36

3/6× 5/6 =15/36

3/6× 1/6 = 3/36
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where
µ6(0 + 6Z) =5/36

µ6(1 + 6Z) =2/36

µ6(2 + 6Z) =15/36

µ6(3 + 6Z) =1/36

µ6(4 + 6Z) =10/36

µ6(5 + 6Z) =3/36

since µ6 nust induce µ3 and µ2. We see that µ6 is different from µ6. Hence, while
µ12 is compatible with µ2 and µ3 it is not compatible with µ6.

Therefore the method used in Lemma 3.1 is not suitable in the general case.

Remark. The following result can be shown using some of the previous theorems.
Let G be an LCA group such that the periodic characters form a countable

subgroup of Ĝ. Let S and I be collections of subgroups of compact index of G
such that:

(i) Finite intersections of members of S U I are in S U I.
(ii) For each H in S, µH is the Haar measure on G/H.

If, for each K in I, there exists a probability measure (other than the Haar mea-
sure) on G/K, such that {µH |H ∈ S} U{µk|K ∈ I} is a partial density on G,
then there exists a sequence (gn) in G such that (gnH) is u.d. in G/H for each H
in S, but (gnK) is not u.d. in G/K for any K in I.

This can be shown as follows:
The partial density can be extended to a density on G. By Theorem 5 of [3],

there exists a sequence (gn) in G such that (gnH) is u.d. in G/H with respect to
µH for each H in S and (gnK) is u.d. in G/K with respect to µK for each K in I.
Hence (gnH) is u.d. in G/H (with respect to Haar measure on G/H) for each H
in S and (gnK) is not u.d. in G/K (with respect to the Haar measure on G/K)
for each K in I.
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