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QUASILINEAR AND QUADRATIC SINGULARLY
PERTURBED PERIODIC BOUNDARY VALUE PROBLEM

ROBERT VRABEL’

ABsTRACT. The problem of existence and asymptotic behavior of solutions of the
quasilinear and quadratic singularly perturbed periodic boundary value problem as
a small parameter at highest derivative tends to zero is studied.

1. INTRODUCTION

In the paper [3] the author established the sufficient conditions for existence and
uniform convergence of the solutions of semilinear singularly perturbed differential
equation ey’ = f(¢,y) to a solution of the reduced problem f(¢,u) = 0 as the small
positive parameter € tends to zero. The purpose of this paper is an extension of
lemma 1 above cited paper on the more general cases. We will consider periodic
boundary value problem problem

ef) = F(t,y,y), a<t<b,

(PBVP) W@~ (b, =0, (0,0~ (4,0 =0,
where F € C?* ([a,b] x R?) and € is a small positive parameter. The proofs of the
theorems are based upon the method of lower and upper solutions.

As usual, we say that o € C?([a,b]) is a lower solution for (PBVPy) if a(a, €)
—a(b,e) =0, &'(a,€) —a'(b,e) > 0, and ea”(t,€) > F (t,a(t,€),a’(t,€)) for every
t € [a,b]. An upper solution 3 € C?([a,b]) satisfies 3(a,e) — B(b,e) = 0, 3 (a,€)
— ['(be) <0, and 5" (t,€) < F (t,5(t,€), 0 (t,¢€)) for every ¢ € [a,b].

Definition ([2]). We say that the function F' satisfies a Bernstein-Nagumo con-
dition if for each M > 0 there exists a continuous function hy : [0, 00) — [anr, 00)
with aps > 0 and fooo ﬁ(s)ds = oo such that for all y, |y| < M, all ¢ € [a,b] and
all ze R

[E(ty, 2)] < ha(]2]) -
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Remark 1. As a remark we conclude that the functions of the form F (¢, y,v) =
ft,y)y + g(t,y) and F (t,y,9') = f(t,y)y 2 + g(t,y) satisfy Bernstein-Nagumo
condition.

Lemma ([1],[2]). If o, 8 are lower and upper solutions for (PBVPy) such that
a(t,e) < B(t,€) on [a,b] and F satisfies a Bernstein-Nagumo condition, then there
exists a solution y of (PBVPy) with a(t,e) < y(t,e) < B(t,€),a <t <b.

Notation. Let

Ds(u) = {(t,y) e R?:a <t < b, ly —u(t)| <d(t)},
Dsq(u) ={(t,y) eER?:a<t<a+ Sy € R} N Ds(u),

Dsp(u) = {(t,y) €R?:b— 2 <t < b,y € R}N Ds(u),
D;{a(u) ={(t,y) eR?:a <t < by —u(t) >0} N Dsqlu),
Dy ,(u) = {(t,y) eR?:a <t <b,y—u(t) <0} N Dsqy(u),
D;{b(u) ={(t,y) eR*:a <t < b,y —u(t) >0} N Dsp(u),
Dy (u) = {(t,y) eR?:a <t <by—u(t) <0} N Dsy(u),
where d(t) is the positive continuous function on [a, b] such that
5
d(t) = lu(a) —u(b)| + 6 for a§t§a+gand b—§§t§b

and
dit)y=14¢ fora+0<t<b-—9,

d is a small positive constant and u = u(t) is a solution of the reduced problem
F (t,u,u') = 0 defined on [a,b] such that u € C?([a,b]). Next, we use notation
h(t,y) for F(t,y,u'(t)).
2. QUASILINEAR PERIODIC BOUNDARY VALUE PROBLEM
In this section we consider the quasilinear periodic boundary value problem
ey’ =ftyy +9ty), a<t<b,
y(aa 6) - y(b7 6) = 07 y/(a7 6) - y/(b7 E) = 07

where f,g € C* (Ds(u)) . About the behavior of solutions of (PBVP;) for € — 0T
states the following result.

(PBVP;)

Theorem 1. Consider the problem (PBVPy). Let 6, m be the positive constants
such that %’;y) > m for every (t,y) € Ds(u). Let f(t,y) <0 and f(t,y) > 0 for
every (t,y) € Dsq(u) and (t,y) € Dsp(u), respectively. Then there exists & such
that for any e € (0, €9] the problem (PBVPy) has solution satisfying the inequality

—v11 — v — Ce < y(t,e) —u(t) < vz + va + Ce
for u(a) > u(b) and

vi2 — v — Ce < y(t,e) —u(t) < —vig + v2 + Ce
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for u(a) < u(b), where

exp (%)% t— b
vi1(t, €) = (u(a) —u(b)) 1
exp [(%)2 (b— ] 1
ex (%)% a—t
v1a(t,9) = (u(a) - u(®)—
exp [(%)2 (b— ] 1
exp: (E)% t—a) +exp[ (ﬂ)%(b—t)}

va(t, €) = [u'(a) — /()]

ol
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S

|
Q

~—
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~——

(1 — exp [ (m)

and C' is a positive constant.

Proof. For u(a) > u(b) we define the lower solutions

a(t,e) = u(t) — vi1(t,€) — v2(t, e) — I'(e)
and the upper solutions by

B(t,€) = u(t) + via(t,€) + v2(t, €) + ()

(in the case u(a) < u(b) we proceed analogously).

Here I'(e) = <, where v is a constant which will be defined below. One can
easily check that the function «, 3 satisfy the boundary conditions required for
the lower and upper solutions of (PBVP;) and o < 8 on [a, b]. Now we show that
c’(t,€) = f(t,alt €)'t €) + g(t,a(t,€)) and €f”(t,€) < [f(t,B(t,€)) (t,€) +
g(t,B(t,€)) on [a,b]. By Taylor theorem we obtain
e’ — F(t,a,a’) = ed” — (F (t,a,a') — F (t,u,u’))

=ead” — [(F (t,a,u’) — F (t,u,u')) + (F (t,a,a) — F (t,,u”))]
Oh(t,n(t
— e — (’77(’6))(a—u)+f(t,oz)(o/—u’)
dy
Oh(t,n)
dy
> eu” — evf) —evy +m(vin +v2+ I') + f(t, @) (v + vg)
=eu" + ey + f(t,a) (v + v5)
> —elu”|+ ey + f(t,a) (viy + )

=eu” — ev]] — evy + (vi1 +vg + ) + f(t,a) (Vg + vp)

and
F(t,8,0) —ef’ > —e|[u"| + ey + f(t, B) (Vo +15) ,

where (¢,n(t, €)) is a point between (¢, a(t,€)) and (t,u(t)), (¢, n(t,€)) € Ds(u) for
sufficiently small e.
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Let |u/(a) — u/(b)| > 0. From the above assumptions we obtain that
f(t,a) (v +v5) > 0and f(t,B) (vis +v5) >0

on [a,a+ g} U [b — g,b} for € € (0, ¢1] where 5 = min {6,01}, and 41, ¢; are such
that v}, +v} < 0 (vig+vh < 0) (vi;+vh > 0 (viy+vh > 0)on [a,a+ d1] ([b — 01,b])
and (t,a) C Ds(u), (t,8) C Ds(u) for € € (0,€1]. On the interval [a +8.b— %] is
|f(t, ) (vi; + v5)| < cre and |f(t, B) (viy + vh)| < cie for sufficiently small e, for
instance, when € € (0, €], €9 < €1 and suitable positive constant ;.

If |u'(a) —u/(b)] = 0 then vj; < 0 (vi, > 0) and |f(¢,@)vj;| < cie and
|f(t, B)vis| < c1€ on [a—|— b] ([a,b— %])

Thus if we choose a constant v > ¢ + max {|u” (t)|,t € [a,b]} then ea” (¢, €) >

f(t,a(t,e)a'(t €) + g(t,a(t,€)) and €68 (t,€) < [(t,B(t €))F (t,€) + g(t, B(L, €))
on [a,b]. The existence of solution of (PBVP;) satisfying the stated inequalities
follows from lemma. This completes the proof. O

Example. As an illustrative example we consider the (PBVP;) for differential
equation ey’ = yy — (t —3) on [0,1]. General solution of the reduced problem
uu' — (t— 1) = 0is u? =t —t+ k, k € R; however, only u(t) = t — ; satisfies the
assumptions asked on the solution of reduced problem. On the basis of theorem 1,
there is €y such that for every e € (0, €] has the problem solution satisfying

1
vig — vy — Ce < y(t,e) — (t—§> < —wv11 +v9 + Ce

on [0, 1].

3. QUADRATIC PERIODIC BOUNDARY VALUE PROBLEM

Now we will consider the quadratic periodic boundary value problem

ef = ft.y)y +glty), a<t<b,
y(aa 6) - y(b7 6) = 07 y/(a7 6) - y/(b7 E) =0 )
where f,g € C* (Ds(u)) .

In the following theorem we use notation f(¢,y) arb M when we do not impose
any restrictions on the sign of the function f in the set M C .

(PBVP,)

Theorem 2. Consider the problem (PBVP3). Let 6, m be the positive constants
such that ah(t Y > m for every (t,y) € Ds(u). Let u(a) > u(b) and

L f(t.y) S 0,(t,y) € Ds.a(u) (f(t,y) 2 0,(t,y) € Dsp(u))
for 4u/(a) > |[u/(a) — u'(b)| > 0 (4u/(b) > |[u'(a) — u/(b)| > 0).
2. f(t,y) =0,(t,y) € Dy, (u) and f(t,y) <0,(t,y) € D ,(u)
(f(t,y) =20, (t,y)) € Dy, (u) and f(t,y) =0, (t,y) € D5, (u))

)
ty) =0,
for [u'(a) —u/(b)| > 4u'(a) > 0 (Ju'(a) — w/(b)| > 4u/(b ) > 0).
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f(t,y) =0,(t,y) € Dy, (u) and f(t,y) <0, (t,y) € D ,(u)
(f(t,y) 2 0.(t.y) € Dfy(u) and f(t,y) =0, (t,y) € Dy, (u))
for |u'(a) — v/ (b)| = 4u/(a) > 0,44/ (t) < |u/(a) — /' (D)],t € (a,a +w),w >0

(Ju'(a) —w/ (b)] = 4u/(b) > 0,40/ (t) < |u’(a) w'(b)],t € (b—w,b),w > 0).
f(t,y) <0, (t,y) € Dy ,(u) and f(t,y) <0, (t,y) € D5 ,(u)
(f(t,y) > 0,(t,y) € Dy (u) and f(t,y) > 0,(t,y) € D5, (u))
for |u'(a) — v/ (b)| = 4u/(a) > 0,4u/(t) > (| (a) —u'(b)|,t € (a,a+w),w>0
(t,y) € Dj 4 (u)
|

(| (a) — ' (b)| = 4u/(b) > 0,4u'(t) > |u'(a) — v/ (b)|,t € (b —w,b),w > 0).
f(t,y) > 0,(t,y) € Dy, (u) and f(t,y) <0,

(f(t,y) > 0,(t,y) € Dy (u) and f(t,y) < 0,(t,y) € D5, (u))

for |u'(a) — v/ (b)| = 4u/(a) > 0,44/ (t) = |v/(a) — /' (D)],t € (a,a +w),w >0
(| (a) — ' (b)] = 4u/(b) > 0,4u'(t) = |u'(a) — v/ (b)|,t € (b — w,b),w > 0).
f(t,y) =0,(t,y) € Dy ,(u) and f(t,y) <0, (t,y) € D, (u)

(f(t.y) > 0,(t,y) € Df,(u) and f(t,y) =0, (t,y) € Dy, (u))

for |u/(a) — v/ (b)] > 4u/(a) = 0,40/ (t) > 0,t € (a,a + w),w >0

(| (a) — ' (b)| > 4u/(b) = 0,4u'(t) > 0,t € (b— w,b),w > 0).

f(t,y) > 0,(t,y) € DY ,(u) and f(t,y) =0, (t,y) € Dy, (u)

(f(t,y) =0,(t,y) € Dy, (u) and f(t,y) <0,(t,y) € Dy, (u))

for |u'(a) — v/ (b)| > 4u'(a) = 0,40/ (t ) 0,t € (a,a+w),w>0

(| (a) — ' (b)| > 4u/(b) = 0,4u'(t) < 0,t € (b—w,b),w > 0).

f(t,y) = 0,(t,y) € Dy ,(u) and f(t, ) S (t,y) € Dy, (u)

(f(t,y) > 0,(t,y) € Dy, (u) and f(t,y) < 0 (t,y) € Dy, (u))

for [u'(a) — v/ (b)| > 4u/(a) = 0,44/ (t) = 0,t € (a, a—|—w) w>0

(Ju'(a) = w/(b)] > 4u'(b) = 0,4u/(t) = 0,¢ (b w,b),w > 0).

f(t.y) arb Df ,(u) and f(t,y) < 0,(t,y) € D5 ,(u)

(f(t,y) 2 0,(t,y) € D, (u) and f(t,y) arb D, (u))

for |u'(a) — v/ (b)| = 4u'(a) = 0,u(a) # u(b),4u'(t) > 0,t € (a,a+ w),w > 0
(| (a) — /()] = 4u/(b) = 0, u( ) # u(b),4u'(t) > 0,t € (b— w,b),w > 0).
f(t,y) arb Df ,(u) and f(t,y) =0, (t,y) € Dy, (u)

(f(t,y) =0,(t,y) € Dfy(u) and f(t,y) arb Dy, (u))

for |u'(a) — v/ (b)| = 4u/(a) = 0,u(a) # u(b),4u'(t) < 0,t € (a,a+ w),w > 0
(| (a) — ' (b)] = 4u/(b) = 0, u( ) # u(b),4u'(t) < 0,t € (b— w,b),w > 0).
f(t,y) arb D;{a(u) and f(t,y) <0,(t,y) € D5 ,(u)

(f(t,y) > 0,(t,y) € Dy, (u) and f(t,y) arb Dy, (u))

for |u'(a) — v/ (b)| = 4u/(a) = 0,u(a) # u(db ),4u’(t) =0,t€ (g, 6+ w),w>0
(Ju'(a) —u/(b)] = 44/ (b) = O,u(a) # u(b),4u'(t) = 0,t € (b— w,b),w > 0).
f(t.y) arb Df ,(u) and f(t,y) < 0,(t,y) € D5 ,(u)

(f(t,y) 2 0,(t.y) € Dy (u) and f(t,y) arb D, (u))

for 4u/(a) > |[u/(a) — v/ (b)| = 0, u(a) # u(b)
(4u/(b) > |u'(a) —u'(b)] = 0, u(a) # u(b)).
flt,y) = 0,(t,y) € D, (u) and f(t,y) =
0,(t,y) € Dy,(u) and f(t,y) < 0,(t,y) € D

0,(ty) € Ds,(u) (flty) =
sp(w)  for [u'(a) —u/(b)] >0,



7231-

7232.

7233.

R. VRABEL’

uw'(a) <0, u(a) # u(b) (' (a) — «'(b)] > 0,%'(b) < 0,u(a) # u(b)).
f(t,y) > 0,(t,y) € Dy, (u) and f(t,y) =0, (t,y) € Dy, (u)

(f(t.9) =0, (t,9) € Dty (w) and f(t,y) <0, (1) € Dy, (w)

for |u'( w'(b)] > 0,u'(a) <0, v (a) — u'(b)] > —4u'(a), u(a) = u(b)

u'(b)] >0 u’(b) <0, v/ (a) —u(b)] > —4u/ (D), u(a) = u(b)).

>
W)~

Tly) > 0.0t y>eD;a<u> and f(t,y) 2 0,(t,4) € Dy, (u)
<

) € Déb(u) and f(t,y) <0, (t,y) € Ds(u)

b y
for |[u'(a) — u’(b)| >0,u'(a) < 0,|u(a) — /' (b)] < —4u/(a),u(a) = u(b)
(Jw'(a) —u/(b)| > 0,/ (b) < 0, |u'(a) — ' (b)| > —4u'(b), u(a) = u(b)).
fty) > 0,(t,y) € DL(“) and f(t,y) =0, (t,y) € D; ,(u)
((t.y) =0.(t,y) € Df,(u) and f(t,y) <0, (t,y) € Dy ()
for |u/(a) — u'(b)| > 0,vu'(a ) <0, u(a) —u/'(b)] = —4u/(a),
[u'(a) —u'(b)| > —4u'(t ( )t € (a,a+w),w > 0,u(a) =u(b)
([u'(a) = u'(b)[ > 0,u'(b) <0, [u'(a) — /()| = —4u'(D),
[u'(a) —u'(b)| > 4U( )t (b w,b),w > 0,u(a) = u(b)).
ft,y) >0, (t,y) € D}a(u) and f(t,y) >0, (t y) € Déa(u)
(f(t,y) <0,(t,y) € DY, (u) and f(t,y) <0, (t,y) € D5, (u))
for |u/(a) — ' (b)| > 0, )<0|u() W' (b)] = —4u/(a),
[u'(a) —u'(b)| < —4u'(t),t € (a,a +w),w > 0,u(a) = u(b)
(Ju'(a) = u'(b)[ > 0,u'(b )<0 [u/(a) —u/(b)| = —4u'(b),
[u/(a) —u'(b)] < 4U() € (b—w,b),w > 0,u(a) = u(b)).
f(t,y) > 0,(t,y) € Dy, (u) and f(t,y) >0, (t,y) € Dy, (u)
(f(t,y) <0,(t,y) € DY, (u) and f(t,y) <0, (t,y) € D5, (u))
for [u/(a) — u’()|>0u(a)<0|u() o' (b)] = —4u/(a),
[u'(a) — ' (b)| = —4u'(t),t € (a,a +w),w > 0,u(a) = u(b)
(Ju'(a) = u/'(b)[ > 0,u'(b )<0 [u/(a) —u/(b)| = —4u'(b),
[u'(a) — /()| = —4u/(t),t € (b—w,b),w > 0,u(a) = u(b)).
f(t,y) arb D ,(u) and f(t,y) =0, (t.y) € D; ,(u)
(f(t,y) =0,(t,y) € Df,(u) and f(t,y) arb Dy, (u)) for [u'(a) — ' (b)| = 0,

t
W'(a) < 0,u(a) # u(b) (|u'(a) = w'(b)| = 0,u/(b) < 0,u(a) # u(b)).

Then there exists €y such that for any € € (0, 9] the problem (PBVPs) has solution
satisfying the inequality

—v11 —v2 — Ce < y(t,e) —u(t) < vz + va + Ce

on [a, b] where v11,v12 and ve are the functions from theorem 1 and C' is a positive
constant.

Proof. The idea of the proof is essentially the same as of theorem 1. Let us define
the lower solutions by

a(t,e) = u(t) — vi1(t,€) — v2(t,e) — I'(e)

and the upper solutions by

B(t, €) = u(t) + via(t, €) + va(t, €) + I'(e).
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Analogously as in theorem 1 we obtain
e’ — F(t,a,a’) > —e|u"| +ve — f(t, @) (a/2 - u/Q)

= —e[u| + ye+ f(t,a) (viy +v5) (2u" —vyy —v))

and

F(t,5,0) - 8" = —elu’| + e+ f(t,8) (82 - )

= —e|u"| +ve+ f(t,8) (v12 + vp) (2u' + vy + v5) .

Similarly as in previous theorem we conclude that
fta) (Vi +vp) (20 — vy —25) >0

(f(t, B) (vig + v3) (2u + viy + v) > 0)

or
[t a) (V) +v5) (20" — vy — 05)] < cae

(1f(t, B) (Vig + vg) (20" + v}y + vg)| < c2¢)

on [a, b] for some positive constant ¢y and sufficiently small ¢, for instance, when
€ € (0, €o) . Therefore, for v > ¢o + max {|u”(t)|,t € [a,b]} is

e (t,€) > f(t, alt,€))a'2(t, €) 4+ g(t,at,€)) and €8 (t,€) < f(t, B(t, €))52(t, €) +
g(t,B(t,€)) on [a,b]. Hence theorem 2 is proved. O

Remark 2. As a remark we note, that the assumed condition u(a) > wu(b) is
not essential. One can take into consideration the lower and upper solutions for
u(a) < u(b) and reformulated theorem 2 for this case.
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