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ARCHIVUM MATHEMATICUM (BRNO)

Tomus 35 (1999), 245 – 254

GENERALIZED QUASIVARIATIONAL INEQUALITIES ON
FRÉCHET SPACES

Donal O’Regan

Abstract. In this paper generalized quasivariational inequalities on Fréchet
spaces are deduced from new fixed point theory of Agarwal and O’Regan [1]
and O’Regan [7].

1. Introduction

Quasivariational inequalities (or existence theorems for two variable functions)
are discussed in this paper. In particular suppose f : X×Y → R and G : X → 2Y

are upper semicontinuous maps (here 2Y denote the family of nonempty subsets
of Y ) with X and Y closed, convex subsets of a Fréchet space E. Conditions
are put on f , G, X and Y to guarantee that there exists w1 ∈ X, w1 ∈ G(w1)
with f(w1, w1) = supz∈G(w1) f(w1, z) (or f(w1, w1) = infz∈G(w1) f(w1, z)) or
more generally to guarantee that there exists w1, w2 ∈ X, w1 6= w2, w1 ∈
G(w1), w2 ∈ G(w2) with f(w1, w1) = supz∈G(w1) f(w1, z) and f(w2, w2) =
supz∈G(w2) f(w2, z) (or f(w1, w1) = infz∈G(w1) f(w1, z) and f(w2, w2)
= infz∈G(w2) f(w2, z)). The results of this paper are new and they extend and
complement many well known results in the literature [2, 3, 5, 8, 9, 11, 12]. Usu-
ally in the literature Y ⊆ X or more generally ([8]) G(∂ X) ⊆ X ∩ Y . In [5] we
relaxed the condition G(∂ X) ⊆ X ∩ Y using a fixed point theorem of the author
[5] of Furi–Pera type. Recently new fixed point results in Fréchet spaces have been
established by Agarwal and O’Regan in [1] (single fixed point) and by O’Regan [7]
(multiple fixed point). The fixed point theory established in [1, 7] is more general
than the Furi–Pera type theory presented in [4, 5, 6]. Using the results in [1, 7]
we are able to establish new quasivariational inequalities.

We now gather together some well known definitions. Let E1 and E2 be
Fréchet spaces. A mapping F : E1 → 2E2 is upper semicontinuous (u.s.c.) if
the set F−1 (A) = {x ∈ E1 : F (x)∩A 6= ∅} is closed for any closed set A in
E2. Let (X, d) be a metric space and let ΩX the bounded subsets of X. The
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Kuratowski measure of noncompactness is the map α : ΩX → [0,∞] defined by
(here B ∈ ΩX),

α(B) = inf{r > 0 : B ⊆ ∪ni=1 Bi and diam (Bi) ≤ r}.

Let S be a nonempty subset of X and suppose G : S → 2X . Then (i). G :
S → 2X is k–set contractive (here k ≥ 0) if α(G(A)) ≤ kα(A) for all nonempty,
bounded sets A of S, and (ii). G : S → 2X is condensing if G is 1–set contractive
and α(G(A)) < α(A) for all bounded sets A of S with α(A) 6= 0.

2. Quasivariational inequalities

Let N0 = {1, 2, ...}. In this section we assume E is a Fréchet space endowed
with a family of seminorms {| . |n : n ∈ N0} with

|x|1 ≤ |x|2 ≤ ........... for all x ∈ E.

Also for each n ∈ N0 we assume that there are Banach spaces (En, | . |n) with

E1 ⊇ E2 ⊇ ............ and E = ∩∞n=1 En and |x|n ≤ |x|n+1 for all x ∈ En+1.

For each n ∈ N0 let Cn be a cone in En and assume | . |n is increasing with
respect to Cn. In addition assume

C1 ⊇ C2 ⊇ ............ .

For ρ > 0 and n ∈ N0 let

Un,ρ = {x ∈ En : |x|n < ρ} and Ωn,ρ = Un,ρ ∩ Cn.

Notice

∂CnΩn,ρ = ∂EnUn,ρ ∩ Cn and Ωn,ρ = Un,ρ ∩ Cn
(the first closure is with respect to Cn whereas the second is with respect to En).
In addition notice since |x|n ≤ |x|n+1 for all x ∈ En+1 that

Ω1,ρ ⊇ Ω2,ρ ⊇ ....... and Ω1,ρ ⊇ Ω2,ρ ⊇ ....... .

We first state a general result [7] that guarantees that the inclusion

(2.1) y ∈ F y

has two solutions in E.

Definition 2.1. Fix k ∈ N0. If x, y ∈ Ek then we say x = y in Ek if |x−y|k = 0
(i.e. if x− y = 0; here 0 is the zero in Ek).

Definition 2.2. If x, y ∈ E then we say x = y in E if x = y in Ek for each
k ∈ N0.

Definition 2.3. Fix k ∈ N0. We say x ∈ F y in Ek if there exists w ∈ F y with
x = w in Ek.
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Theorem 2.1. Let L, γ, r, R be constants with 0 < L < γ < r < R. Assume
the following conditions are satisfied:

(2.2)

 for each n ∈ N0, Fn : Un,R ∩ Cn → CK(Cn) is a u.s.c. map;
here CK(Cn) denotes the family of nonempty, compact,
convex subsets of Cn

(2.3) for each n ∈ N0, |y|n ≤ |x|n for all y ∈ Fn (x) and x ∈ ∂EnUn,L ∩ Cn

(2.4) for each n ∈ N0, |y|n ≤ |x|n for all y ∈ Fn (x) and x ∈ ∂EnUn,r ∩ Cn

(2.5) for each n ∈ N0, |y|n ≥ |x|n for all y ∈ Fn (x) and x ∈ ∂EnUn,R ∩ Cn

(2.6)

{
for each n ∈ N0, the map Kn : Un,R ∩ Cn → 2Cn given by
Kn y = ∪∞m=n Fm y is k-set contractive (here 0 ≤ k < 1)

(2.7)

{
for every k ∈ N0 and any subsequence A ⊆ {k, k+ 1, .....} if
x ∈ Cn, n ∈ A, is such that R ≥ |x|n ≥ r then |x|k ≥ γ

(2.8)


if there exists a v ∈ E, and for every k ∈ N0 there exists
a subsequence S ⊆ {k + 1, k + 2, .....} of N0 and a sequence
{un}n∈S with un ∈ Un,L ∩ Cn and un ∈ Fn un in En
for n ∈ S and with un → v in Ek as n→∞
in S, then v ∈ F v in E

and

(2.9)


if there exists a z ∈ E, and for every k ∈ N0 there exists
a subsequence P ⊆ {k + 1, k + 2, .....} of N0 and a sequence
{wn}n∈P with wn ∈

(
Un,R \Un,r

)
∩ Cn and wn ∈ Fn wn

in En for n ∈ P and with wn → z in Ek as n→∞
in P, then z ∈ F z in E.

Then (2.1) has at least two solutions x0 and x1 with

x0 ∈ ∩∞n=1

(
Un,L ∩ Cn

)
and x1 ∈ ∩∞n=1

((
Un,R \Un,γ

)
∩Cn

)
.

Remark 2.1. The definition of Kn in (2.6) is as follows. If y ∈ Un,R ∩ Cn
and y /∈ Un+1,R ∩ Cn+1 then Kn y = Fn y, whereas if y ∈ Un+1,R ∩ Cn+1 and
y /∈ Un+2,R ∩ Cn+2 then Kn y = Fn y ∪ Fn+1 y, and so on.

Remark 2.2. If F is defined on E1 with Fn = F |En for each n ∈ N0 then (2.8)
and (2.9) are automatically satisfied.

Using Theorem 2.1 we are able to establish the following quasivariational in-
equality.
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Theorem 2.2. Let L, γ, r, R be constants with 0 < L < γ < r < R. Assume
the following conditions are satisfied:

(2.10) for each n ∈ N0, fn :
(
Un,R ∩ Cn

)
× Cn → R is a u.s.c. function

(2.11)

{
for each n ∈ N0, Gn : Un,R ∩ Cn → C(Cn) is a u.s.c. map; here
C(Cn) denotes the family of nonempty, compact subsets of Cn

and

(2.12)


for each n ∈ N0, the map Mn (marginal function), defined by
Mn(x) = supy∈Gn(x) fn(x, y) for x ∈ Un,R ∩ Cn is lower
semicontinuous (l.s.c.).

For any n ∈ N0, define the map Φn by

Φn(x) = {y ∈ Gn(x) : fn(x, y) = Mn(x)} for x ∈ Un,R ∩ Cn

and the map Φ by

Φ(x) = {y ∈ G(x) : f(x, y) = M (x)} for x ∈ ∩∞n=1

(
Un,R ∩Cn

)
;

here

f : ∩∞n=1

(
Un,R ∩Cn

)
×∩∞n=1 Cn→ R and G : ∩∞n=1

(
Un,R ∩ Cn

)
→ 2∩

∞
n=1Cn

together with

M (x) = sup
y∈G(x)

f(x, y) for x ∈ ∩∞n=1

(
Un,R ∩ Cn

)
.

Also suppose the following conditions hold:

(2.13) for each n ∈ N0, Φn(x) is convex for each x ∈ Un,R ∩ Cn

(2.14) for each n ∈ N0, |y|n ≤ |x|n for all y ∈ Φn (x) and x ∈ ∂EnUn,L∩Cn

(2.15) for each n ∈ N0, |y|n ≤ |x|n for all y ∈ Φn (x) and x ∈ ∂EnUn,r ∩Cn

(2.16) for each n ∈ N0, |y|n ≥ |x|n for all y ∈ Φn (x) and x ∈ ∂EnUn,R∩Cn

(2.17)
{

for each n ∈ N0, the map Rn : Un,R ∩ Cn → 2Cn given by
Rn y = ∪∞m=n Φm y is compact

(2.18)

{
for every k ∈ N0 and any subsequence A ⊆ {k, k + 1, .....} if
x ∈ Cn, n ∈ A, is such that R ≥ |x|n ≥ r then |x|k ≥ γ
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(2.19)


if there exists a v ∈ E, and for every k ∈ N0 there exists
a subsequence S ⊆ {k + 1, k+ 2, .....} of N0 and a sequence
{un}n∈S with un ∈ Un,L ∩ Cn and un ∈ Φn un in En
for n ∈ S and with un → v in Ek as n→∞
in S, then v ∈ Φ v in E

and

(2.20)


if there exists a z ∈ E, and for every k ∈ N0 there exists
a subsequence P ⊆ {k + 1, k+ 2, .....} of N0 and a sequence
{wn}n∈P with wn ∈

(
Un,R \Un,r

)
∩ Cn and wn ∈ Φnwn

in En for n ∈ P and with wn → z in Ek as n→∞
in P, then z ∈ Φ z in E.

Then there exists x0 ∈ ∩∞n=1

(
Un,L ∩ Cn

)
with x0 ∈ G(x0) and f(x0, x0) =

M (x0) (i.e. there exists x0 ∈ ∩∞n=1

(
Un,L ∩ Cn

)
with x0 ∈ G(x0) and f(x0, y) ≤

f(x0, x0) for all y ∈ G(x0)) and x1 ∈ ∩∞n=1

((
Un,R \Un,γ

)
∩ Cn

)
with x1 ∈

G(x1) and f(x1, x1) = M (x1).

Remark 2.3. Conditions (put on fn and Gn) so that (2.13) holds may be found
in [5] (and its references). The definition of Rn in (2.17) is as in Remark 2.1 with
Fm replaced by Φm.

Proof. Fix n ∈ N0. Now since fn is u.s.c. and Gn is a u.s.c., compact valued
map then [2 pp. 473] and (2.12) imply Mn is continuous. In addition [2 pp.
44] implies for each x ∈ Un,R ∩ Cn that Φn(x) is nonempty and compact. This
together with (2.13) implies Φn : Un,R ∩ Cn → CK(Cn). Next we show the
graph of Φn is closed. Let {(xm, ym)}∞m=1 be a sequence in graph (Φn) with
(xm, ym)→ (x, y) in

(
Un,R ∩ Cn

)
× Cn. Then

fn(x, y) ≥ lim sup fn(xm, ym) = lim sup Mn(xm) = lim inf Mn(xm) = Mn(x).

In addition ym ∈ Gn(xm) together with xm → x, ym → y and Gn u.s.c. implies
[10] that y ∈ Gn(x). Thus y ∈ Gn(x) and fn(x, y) ≥Mn(x) = supz∈Gn(x) fn(x, z).
Consequently fn(x, y) = Mn(x) so (x, y) ∈ graph (Φn). Hence Φn : Un,R ∩Cn →
CK(Cn) is a closed map. Now since Φn is a compact map (see (2.17)) we have,
using a standard result [2 pp. 465], that Φn : Un,R ∩ Cn → CK(Cn) is u.s.c.
Now we apply Theorem 2.1 with Fn repaced by Φn to deduce that there exists
x0 ∈ ∩∞n=1

(
Un,L ∩ Cn

)
and x1 ∈ ∩∞n=1

((
Un,R \Un,γ

)
∩ Cn

)
with x0 ∈ Φ(x0)

and x1 ∈ Φ(x1). The result is now immediate. �
Remark 2.4. If (2.10) and (2.17) are replaced by,

(2.21) for each n ∈ N0, fn :
(
Un,R ∩ Cn

)
× Cn → R is a continuous function

and

(2.22)

{
for each n ∈ N0, the map Rn : Un,R ∩ Cn → 2Cn given by
Rn y = ∪∞m=n Φm y is k-set contractive (here 0 ≤ k < 1),

then the result of Theorem 2.2 is again true.
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The result is essentially the same as in Theorem 2.2. The only difference is to
show Φn : Un,R∩Cn→ CK(Cn) is u.s.c. for each n ∈ N0. To see this fix n ∈ N0

and notice
Φn(x) = Gn(x) ∩ Λn(x)

where
Λn(x) = {y ∈ Cn : fn(x, y) = Mn(x)} .

We claim that the graph of Λn is closed. If the claim is true then Gn u.s.c.
with compact values and [2 pp. 470] implies Φn is u.s.c. It remains to prove the
claim. Let {(xm, ym)}∞m=1 be a sequence in graph (Λn) with (xm, ym) → (x, y)
in
(
Un,R ∩Cn

)
× Cn. Then since (2.21) holds,

fn(x, y) = lim sup fn(xm, ym) = lim sup Mn(xm) = Mn(x).

Consequently (x, y) ∈ graph (Λ).

Remark 2.5. Sometimes f(x, y) is defined for all (x, y) ∈
(
U1,R ∩ C1

)
× C1,

G(x) is defined for all x ∈ U1,R ∩ C1, and Φn = Φ|(Un,R∩Cn)×Cn .

Our next result replaces sup in Theorem 2.2 with inf.

Theorem 2.3. Let L, γ, r, R be constants with 0 < L < γ < r < R. Assume
the following conditions are satisfied:

(2.23) for each n ∈ N0, fn :
(
Un,R ∩ Cn

)
× Cn → R is a continuous function

and

(2.24) for each n ∈ N0, Gn : Un,R ∩ Cn → C(Cn) is a u.s.c. map.

For any n ∈ N0, define the map Ψn by

Ψn(x) =
{
y ∈ Gn(x) : fn(x, y) = Nn(x) = inf

z∈Gn(x)
fn(x, z)

}
for x ∈ Un,R ∩Cn

and the map Ψ by

Ψ(x) = {y ∈ G(x) : f(x, y) = N (x)} for x ∈ ∩∞n=1

(
Un,R ∩ Cn

)
;

here

f : ∩∞n=1

(
Un,R ∩Cn

)
×∩∞n=1 Cn→ R and G : ∩∞n=1

(
Un,R ∩ Cn

)
→ 2∩

∞
n=1Cn

together with

N (x) = inf
y∈G(x)

f(x, y) for x ∈ ∩∞n=1

(
Un,R ∩ Cn

)
.

Also suppose the following conditions hold:

(2.25) for each n ∈ N0, Ψn(x) is convex for each x ∈ Un,R ∩ Cn

(2.26) for each n ∈ N0, |y|n ≤ |x|n for all y ∈ Ψn (x) and x ∈ ∂EnUn,L∩Cn

(2.27) for each n ∈ N0, |y|n ≤ |x|n for all y ∈ Ψn (x) and x ∈ ∂EnUn,r ∩Cn
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(2.28) for each n ∈ N0, |y|n ≥ |x|n for all y ∈ Ψn (x) and x ∈ ∂EnUn,R∩Cn

(2.29)
{

for each n ∈ N0, the map Rn : Un,R ∩ Cn → 2Cn given by
Rn y = ∪∞m=n Ψm y is k-set contractive (here 0 ≤ k < 1)

(2.30)
{

for every k ∈ N0 and any subsequence A ⊆ {k, k + 1, .....} if
x ∈ Cn, n ∈ A, is such that R ≥ |x|n ≥ r then |x|k ≥ γ

(2.31)


if there exists a v ∈ E, and for every k ∈ N0 there exists
a subsequence S ⊆ {k + 1, k+ 2, .....} of N0 and a sequence
{un}n∈S with un ∈ Un,L ∩ Cn and un ∈ Ψn un in En
for n ∈ S and with un → v in Ek as n→∞
in S, then v ∈ Ψ v in E

and

(2.32)


if there exists a z ∈ E, and for every k ∈ N0 there exists
a subsequence P ⊆ {k + 1, k+ 2, .....} of N0 and a sequence
{wn}n∈P with wn ∈

(
Un,R \Un,r

)
∩ Cn and wn ∈ Ψn wn

in En for n ∈ P and with wn → z in Ek as n→∞
in P, then z ∈ Ψ z in E.

Then there exists x0 ∈ ∩∞n=1

(
Un,L ∩ Cn

)
with x0 ∈ G(x0) and f(x0, x0) =

N (x0) (i.e. there exists x0 ∈ ∩∞n=1

(
Un,L ∩ Cn

)
with x0 ∈ G(x0) and f(x0, y) ≥

f(x0, x0) for all y ∈ G(x0)) and x1 ∈ ∩∞n=1

((
Un,R \Un,γ

)
∩ Cn

)
with x1 ∈

G(x1) and f(x1, x1) = N (x1).

Proof. Fix n ∈ N0. Now [2 pp. 472, 473] implies Nn is continuous. As in
Theorem 2.2 (with Remark 2.4) it is easy to check that Ψn : Un,R×Cn → CK(Cn)
is u.s.c. Apply Theorem 2.1 with Fn replaced by Ψn. �
Remark 2.6. As in [8, 9], Theorem 2.2 and Theorem 2.3 can be used to obtain
variational–like inequalities (see also [5]).

To conclude this paper we indicate how one could obtain results for closed sets
(which may have empty interior). In this case we establish the existence of a single
solution to variational–like inequalities. Let E be a Fréchet space endowed with
a family of seminorms {| . |n : n ∈ N0} with

|x|1 ≤ |x|2 ≤ ........... for all x ∈ E.

Also for each n ∈ N0 we assume that there are Banach spaces (En, | . |n) with

E1 ⊇ E2 ⊇ ............ and E = ∩∞n=1 En and |x|n ≤ |x|n+1 for all x ∈ En+1.

For each n ∈ N0 let Qn be a closed, bounded, convex subset of En with 0 ∈ Qn
and

Q1 ⊇ Q2 ⊇ .......... .

We now establish a result which guarantees that (2.1) has a solution in E.
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Theorem 2.4. Assume the following conditions are satisfied:

(2.33)


for each n ∈ N0, Fn : Qn → CD(En) is a closed map;
here CD(En)denotes the family of nonempty,
compact, acyclic subsets of En

(2.34)


for each n ∈ N0, if {(xj , λj)}∞j=1 is a sequence
in ∂Qn × [0, 1] converging to (x, λ) with x ∈ λFn(x)
and 0 ≤ λ < 1 then there exists j0 ∈ {1, 2, ....}
with {λj Fn(xj)} ⊆ Qn for each j ≥ j0

(2.35)

{
for each n ∈ N0, the map Kn : Qn → 2En given by
Kn y = ∪∞m=n Fm y (see Remark 2.1) is compact

and

(2.36)


if there exists a v ∈ E, and for every k ∈ N0 there exists
a subsequence S ⊆ {k + 1, k+ 2, .....} of N0 and a sequence
{un}n∈S with un ∈ Qn and un ∈ Fn un in En
for n ∈ S and with un → v in Ek as n→∞
in S, then v ∈ F v in E.

Then (2.1) has at least one solution in E (in fact in ∩∞n=1 Qn).

Proof. Fix n ∈ N0. Now [6] guarantees that y ∈ Fn y has a solution yn ∈ Qn.
Essentially the same reasoning as in [1] establishes the result. �
Remark 2.7. For each n ∈ N0 if we can take sets Qn so that the nearest point
projection rn : En → Qn is 1–set contractive then we can replace (2.35) with:
for each n ∈ N0, the map Kn : Qn → 2En given by Kn y = ∪∞m=n Fm y is
condensing.

We now establish the analogue of Theorem 2.2 for the situation described above.

Theorem 2.5. Assume the following conditions are satisfied:

(2.37) for each n ∈ N0, fn : Qn × En→ R is a u.s.c. function

(2.38) for each n ∈ N0, Gn : Qn → C(En) is a u.s.c. map

and

(2.39)
{

for each n ∈ N0, the map Mn (marginal function), defined by
Mn(x) = supy∈Gn(x) fn(x, y) for x ∈ Qn is l.s.c.

For any n ∈ N0, define the map Φn by

Φn(x) = {y ∈ Gn(x) : fn(x, y) = Mn(x)} for x ∈ Qn
and the map Φ by

Φ(x) = {y ∈ G(x) : f(x, y) = M (x)} for x ∈ ∩∞n=1Qn ;
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here
f : ∩∞n=1 Qn × E → R and G : ∩∞n=1 Qn → 2E

together with
M (x) = sup

y∈G(x)
f(x, y) for x ∈ ∩∞n=1Qn.

Also suppose the following conditions hold:

(2.40) for each n ∈ N0, Φn(x) is acyclic for each x ∈ Qn

(2.41)


for each n ∈ N0, if {(xj, λj)}∞j=1 is a sequence in ∂Qn × [0, 1]
converging to (x, λ) with x ∈ λΦn(x) and 0 ≤ λ < 1 then
there exists j0 ∈ {1, 2, ....}
with {λj Φn(xj)} ⊆ Qn for each j ≥ j0

(2.42)
{

for each n ∈ N0, the map Kn : Qn → 2En given by
Kn y = ∪∞m=n Φm y is compact

and

(2.43)


if there exists a v ∈ E, and for every k ∈ N0 there exists
a subsequence S ⊆ {k + 1, k+ 2, .....} of N0 and a sequence
{un}n∈S with un ∈ Qn and un ∈ Φn un in En
for n ∈ S and with un → v in Ek as n→∞
in S, then v ∈ Φ v in E.

Then there exists x0 ∈ ∩∞n=1 Qn with x0 ∈ G(x0) and f(x0, x0) = M (x0).

Proof. Fix n ∈ N0. As in Theorem 2.2, Mn is continuous and Φn : Qn →
CD(En) is a closed map. Now apply Theorem 2.4 to deduce the result. �
Remark 2.8. The statement (and proof) of the analogue of Theorem 2.3 is also
clear in this situation. We leave the details to the reader.
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