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ARCHIVUM MATHEMATICUM (BRNO)Tomus 34 (1998), 467 { 476ASYMPTOTIC PROPERTIES OF THE SOLUTIONSOF THE SECOND ORDER DIFFERENCE EQUATIONMa lgorzata Migda, Janusz MigdaAbstract. Asymptotic properties of the solutions of the second order nonlineardi�erence equation (with perturbed arguments) of the form�2xn = an'(xn+k)are studied.In this paper we are concerned with the di�erence equation(E) �2xn = an'(xn+k) ; n = 1; 2; : : : ; k = 0; 1; 2; : : :where � is the forward di�erence operator, i.e.,�xn = xn+1 � xn; �2xn = �(�xn) ;(an) is a sequence of real numbers and ' is a real function. Throughout this paperN denotes the set of positive integers, R denotes the set of real numbers.Some qualitative properties of the solutions of second order nonlinear di�er-ence equations have been investigated in many papers, for instance, in [4], [6],[7]. In this paper the asymptotic behaviour of solutions will be considered. Theresults obtained here (Theorems 1,2,3) generalize some results of A.Drozdowiczand J.Popenda [2], [3].We �rst mention a useful lemma.Lemma. Assume the series 1Pn=1njanj is convergent and rn = 1Pj=naj. Then theseries 1Pn=1 rn is absolutely convergent and1Xn=1 rn = 1Xn=1nan :1991 Mathematics Subject Classi�cation : 39A10.Key words and phrases: di�erence equation, asymptotic behaviour.Received November 1, 1997.



468 M. MIGDA, J. MIGDAProof. Since the series 1Pn=1nan is absolutely convergent we havea1 + (a2 + a2) + (a3 + a3 + a3) + (a4 + a4 + a4 + a4) � � � == (a1 + a2 + a3 + : : : ) + (a2 + a3 + a4 + : : : ) + (a3 + a4 + a5 + : : : ) + � � � == r1 + r2 + r3 + : : : : �Theorem 1. If the series 1Pn=1njanj is convergent and ' : R! R is a continuousfunction then for every c 2 R and for all k 2 N there exists a solution (xn) of theequation (E) such that limxn = c :Proof. Let c 2 R and choose a real number a > 0. Then there exists a constantM > 0 such that(1) j'(t)j < M for every t 2 [c� a; c+ a] :Let us denote(2) rn = 1Xj=n jajj for n 2 N :Using Lemma one can see that the series 1Pn=1 rn is convergent. Let us denote(3) %n = 1Xj=1 rj for n 2 N :There exists an index m 2 N such that M%n < a for every n � m. Let `1 denotethe Banach space of all real bounded sequences equipped with sup norm. LetT = fx 2 `1 : x1 = � � � = xm = c and jxn � cj � M%n for n � mg :Obviously, T is a convex and closed subset of the space `1. Let " > 0. It is easyto construct a �nite "-net for the set T . Hence T is compact.If x 2 T then xn 2 [c� a; c+ a] for each n 2 N . Hence j'(xn)j < M for everyx 2 T , n 2 N .Let x 2 T . Since j'(xn)j < M for every n 2 N , the series 1Pj=1aj'(xj+k) isabsolutely convergent. Denotingun = 1Xj=n aj'(xj+k); n 2 N(4)



469by (2) we have junj � 1Xj=n jajjM = Mrn :(5)Since the series 1Pj=1 jrjj is convergent, the series 1Pj=1 jujj is convergent, too. Now,we de�ne the sequence A(x) byA(x)(n) = � c for n < m ;c+P1j=n uj for n � m:If n � m then jA(x)(n)� cj = ������ 1Xj=nuj������ � 1Xj=n jujj :By (3), (5) we have jA(x)(n)� cj �M 1Xj=n rj = M%n :Hence A(x) 2 T for every x 2 T , and we get a map a : T ! T .Let x 2 T , " > 0. The function ' is uniformly continuous on the interval[c� a; c+ a]. Hence there exists a constant � > 0 such that if t; s 2 [c � a; c+ a]and jt � sj < � then j'(t) � '(s)j < ". Let z 2 T and let kx � zk < �. Thenjxn � znj < � for every n 2 N . Hence(6) j'(xn) � '(zn)j < " for each n 2 N :Let us denote(7) vn = 1Xj=naj'(zj+k); for n 2 N :Using (4) and (7) we getkA(x)� A(z)k = supn�m ������ 1Xj=nuj � 1Xj=nvj������ � 1Xj=m juj � vjj :By (6) one yields juj � vj j = ������ 1Xi=j ai'(xi+k)� 1Xi=j ai'(zi+k)������ �� 1Xi=j jaij j'(xi+k) � '(zi+k)j � " 1Xi=j jaij = "rj :



470 M. MIGDA, J. MIGDAHence kA(x)�A(z)k � 1Xj=m "jrjj = "%m :This shows that A is a continuous map.By Schauder's theorem there exists z 2 T such that A(z) = z. Then zn =c+ 1Pj=nvj for all n � m. Hence�zn = c+ 1Xj=n+1 vj � c� 1Xj=nvj = �vn :Therefore�2zn = �vn+1 + vn = � 1Xj=n+1aj'(zj+k) + 1Xj=n aj(zj+k) = an'(zn+k)for every n � m.Since the series 1Pj=1 vj is convergent and zn = c+ iPj=nnftyvj we get limzn = c.For every sequence (xn) the following equality holds�2xn = xn+2 � 2xn+1 + xn :Hence zn+2 � 2zn+1 + zn = an'(zn+k)for every n � m. Therefore(8) zn = 2zn+1 + an'(zn+k)� zn+2for each n � m. Using (8) one can change successively all the termszm�1; zm�2; : : : ; z1 of the sequence (zn) to obtain a solution (zn) of the equation(E) such that limzn = c. �Theorem 2. Assume that k = 0, the series 1Pn=1njanj is convergent and ' : R! Ris a continuous function such thatfor every �; x 2 R there exists a constant t 2 R such that(*) t� �'(t) = x :



471Then for every c 2 R there exists a solution (xn) of the equation (E) with limxn =c.Proof. If c 2 R then, as in Theorem 1, we can show that there exist m 2 N anda sequence (xn) such thatlimxn = c and �2xn = an'(xn)for every n � m.The equation (E) can be rewritten in the formxn+2 � 2xn+1 + xn = an'(xn) :Hence xn � an'(xn) = xn+2 � 2xn+1 :Using (*) we can calculate successively all the terms xm�1; xm�2; : : : ; x1 to obtaina solution (xn) of the equation (E) which satisfy the condition limxn = c. �Remark 1. It is easy to show that if ' : R ! R is a continuous and boundedfunction or if it is a polynomial of degree 2k + 1, k 2 N then ' satis�es thecondition (*).Theorem 3. It the series 1Pn=1njanj is convergent and ' : R ! R is a boundedand uniformly continuous function then for every c 2 R and for any k = 0; 1; 2; : : :there exists a solution (xn) of the equation (E) which possesses the asymptoticbehaviour xn = cn + o(1) :Proof. Let c 2 R. Let us choose a constant M > 0 such that j'(t)j < M for eacht 2 R. Similarly as in the proof of Theorem 1 for n 2 N we denote rn, %n by (2),(3).Let ` be the space of all sequences x : N ! R and letT = fx 2 `1 : jxnj � M%n for all n 2 Ng ;S = fx 2 ` : jxn � ncj � M%n for all n 2 Ng :We de�ne the map F : T ! S byF (x)(n) = nc+ xn :Obviously, the formula d(x; z) � supfjxn � znj : n 2 Ng de�nes a metric on theset S such that F is an isometry of the set T onto S. The set T , similarly as inthe proof of Theorem 1, is a compact and convex subset of the space `1. The



472 M. MIGDA, J. MIGDAspace S is homeomorphic to T . Hence by Schauder's theorem every continuousmap A : S ! S has a �xed point.For x 2 S and n 2 N we de�ne un by (4) andA(x)(n) = nc+ 1Xj=nuj :Then jA(x)(n)� ncj = ������ 1Xj=nuj������ � 1Xj=n jujj � M%nfor every n 2 N . Hence A(x) 2 S and we get a map A : S ! S. Let x 2 S," > 0. Since the function ' is uniformly continuous there exists a � > 0 such thatif jt� sj < � then j'(t)�'(s)j < ". If z 2 S and d(x; z) < � then jxn� znj < � forevery n 2 N . Hence j'(xn)� '(zn)j < " for every n 2 N .Taking un; vn from (4), (7) we getd(A(x); A(z)) = supn ������ 1Xj=nuj � 1Xj=nvj������ � 1Xj=1 juj � vjj :Since juj � vj j = ������ 1Xi=j ai'(xi+k)� 1Xi=j ai'(zi+k)������ �� 1Xi=j jaij j'(xi+k) � '(zi+k)j � " 1Xi=j jaij = "rj ;it follows that d(A(x); A(z)) � 1Xj=1 "jrjj = "%1 :This shows that A s a continuous map. Hence there exists a sequence x 2 S suchthat A(x) = x. Then for every n 2 N we havexn = nc+ 1Xj=n vj :



473Hence �xn = (n+ 1)c+ 1Xj=n+1 vj � nc� 1Xj=nvj = c� vn :Therefore �2xn = c� vn+1 � c+ vn == � 1Xj=n+1 aj'(xj+k) + 1Xj=n aj'(xj+k) = an'(xn+k)for each n 2 N . Hence x is a solution of the equation (E). Since the series 1Pj=1 vjis convergent, we obtain the asymptotic relationxn = cn + o(1) : �Theorem 4. Suppose that 1Pn=1 janj < 1 and that ' : R ! R is a boundedfunction. If (xn) is a solution of the equation (E) then the sequence (xn=n) isconvergent in R.Proof. Assume that j'(t)j < M for every t 2 R. If m > n then�xm ��xn = m�1Xj=n �2xj = m�1Xj=n aj'(xj+k) :Hence j�xm ��xnj �M m�1Xj=n jajj :Therefore, the sequence (�xn) is convergent. By virtue of Stolz's theorem (see [1],Theorem 1.7.9), limxn=n = lim�xn. �Example. The sequence xn = 3n which is a solution of the equation �2xn =43n+4xn+2 possesses the property limxn=n = 1. Hence we see the assumption ofthe boundedness of the function ' in Theorem 4 can not be omitted.



474 M. MIGDA, J. MIGDATheorem 5. If ' : R ! [";1) is a nondecreasing function, " > 0, an > 0 forevery n 2 N , 1Pn=1 an = 1, k 2 N then every solution (xn) of the equation (E)possesses the asymptotic behaviourlimxn=n =1 :Proof. Suppose that (xn) is a solution of the equation (E). Since an'(xn+k) > 0for every n 2 N , (�xn) is an increasing sequence. By assumption we have '(xn) �" for every n 2 N . Summation of (E) over n givesn�1Xj=1�2xj = n�1Xj=1 aj'(xj+k) :Hence �xn = �x1 + n�1Xj=1 aj'(xj+k) � �x1 + " n�1Xj=1 aj :Since 1Pn=1 an =1 there exists m 2 N such that�x1 + " n�1Xj=1 aj > 0 for all n � m:Therefore �xn > 0 for each n � m. Hence the sequence (xn) is increasing forn � m. Suppose n � m. Then�xn = �x1 + n�1Xj=1 aj'(xj+k) � �x1 + m�1Xj=1 aj'(xj+k) + n�1Xj=m aj'(xj+k) �� �x1 + m�1Xj=1 aj'(xj+k) + '(xm+k) n�1Xj=m aj :It follows that lim�xn =1. By virtue of Stolz's theoremlimxn=n = lim�xn : �



475Example. Let '(t) = � 0 for t � 0t2 for t > 0 :Then the sequence xn = 2�n is a solution of the equation�2xn = 2n�2'(xn)such that limxn=n = 0. All assumptions of the Theorem 5 are satis�ed except" > 0. Hence we can see that in Theorem 5 we cannot put " = 0.The proofs of the following two theorems are similar to the proof of Theorem 5and they will be omitted.Theorem 6. If ' : R ! (�1;�"] is nonincreasing, an < 0 for every n 2 N ,1Pn=1an = �1, k 2 N then every solution (xn) of the equation (E) ful�lls thecondition limxn=n =1 : �Theorem 7. Assume 1Pn=1 janj =1. If a function ' : R! [";1) is nondecreasingand an < 0 for all n 2 N or ' : R ! (�1; "] is nonincreasing and an > 0 forevery n 2 N then every solution (xn) of the equation (E) ful�lls the conditionlimxn=n = �1 : �Remark 2. Theorem 2 of this paper (in the case an � 0 for any n 2 N and'(c) 6= 0) is similar to Theorem 2 of [2]. Theorem 3 (in the case when ' is aperiodic function and k = 0, c = 1) have been proved by A.Drozdowicz and J.Popenda (see [3] Theorem 4.1).Remark 3. It is easy to see that the result of Theorem 3 can be extended to thedelay di�erence equation(D) �2xn = an'(xn�k); k 2 N :Moreover if we assume '(R) = R and an 6= 0 for every n 2 N then the result ofTheorem 1 can also be extended to the equation (D).Remark 4. If we assume that the series Pnm�1an is absolutely convergent, forsome �xed m 2 N , m � 2, then the results of Theorems 1, 2 and probably also ofTheorem 3 can be generalized to the case of the higher order di�erence equation�mxn = an'(xn+k) :Details concerning this will appear in [5].
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