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ASYMPTOTIC PROPERTIES OF THE SOLUTIONS
OF THE SECOND ORDER DIFFERENCE EQUATION

MALGORZATA MIGDA, JANUSZ MIGDA

ABSTRACT. Asymptotic properties of the solutions of the second order nonlinear
difference equation (with perturbed arguments) of the form

A27371 = an@(l’n+k)

are studied.

In this paper we are concerned with the difference equation
(E) A%z, = anp(®ngr), n=12..., k=0,1,2,...
where A is the forward difference operator, i.e.,
Ay, = Tpa1 — 2, Az, = A(Azy,),

(an) is a sequence of real numbers and ¢ is a real function. Throughout this paper
N denotes the set of positive integers, R denotes the set of real numbers.

Some qualitative properties of the solutions of second order nonlinear differ-
ence equations have been investigated in many papers, for instance, in [4], [6],
[7]. In this paper the asymptotic behaviour of solutions will be considered. The
results obtained here (Theorems 1,2,3) generalize some results of A.Drozdowicz

and J.Popenda [2], [3].

We first mention a useful lemma.

oQ oQ
Lemma. Assume the series > n|a,| is convergent and v, = ) a;. Then the
n=1 j=n
oQ
series Y 1y, Is absolutely convergent and
n=1
oQ oQ

E rnzg na,, .
n n=1

=1

1991 Mathematics Subject Classification: 39A10.
Key words and phrases: difference equation, asymptotic behaviour.
Received November 1, 1997.



468 M. MIGDA, J. MIGDA

Proof. Since the series Y na, is absolutely convergent we have
n=1
ar + (ag + az) + (a3 + az + az) + (a4 + as +ag + aq) - - =
=(a1+ar+az+...)+(as+az+as+ ... )+ (a3 +as+as+...)+- =
=ri+ro+rs+.... O

(o]
Theorem 1. If the series Y nla,| is convergent and ¢ : R — R is a continuous
n=1
function then for every ¢ € R and for all k € N there exists a solution (z,) of the
equation (E) such that

limz, =c.

Proof. Let ¢ € R and choose a real number a > 0. Then there exists a constant
M > 0 such that

(1) o) < M for every t€[c—a,c+al.

Let us denote

(2) 7°n22|aj| for neN.
j=n

oQ
Using Lemma one can see that the series > r, is convergent. Let us denote
n=1

oQ

(3) Qn:er for neN.

j=1

There exists an index m € N such that Mg, < a for every n > m. Let £, denote
the Banach space of all real bounded sequences equipped with sup norm. Let

T={2€ly: 1= =2p=c and |z, —c|< Mp, for n>m}.

Obviously, T" is a convex and closed subset of the space £o,. Let € > 0. It 1s easy
to construct a finite e-net for the set 7. Hence T is compact.
If # € T then #, € [c —a,c+ a] for each n € N. Hence |p(z,)] < M for every
xeTl, neN.
(o]
Let z € T. Since |¢(x,)| < M for every n € N, the series > ajo(x;1x) is
=1

J
absolutely convergent. Denoting

(4) U, = Z aje(ziyn), neN
j=n
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by (2) we have

(5) |UH|SZ|GJ|M:M7QH~

j=n

oQ oQ

Since the series ) |r;| is convergent, the series ) |u;| is convergent, too. Now,
j=1 j=1

we define the sequence A(x) by

c for n<m,
c—|—z;>°:nuj for n>m.

A = |
If n > m then

|A(x)(n) —c

Zu] <Z|“J|

By (3), (5) we have
A) ) — el € MYy = Mo

Hence A(z) € T for every # € T, and we get amap a: T — T.

Let # € T, ¢ > 0. The function ¢ is uniformly continuous on the interval
[c — a,c+ a]. Hence there exists a constant 6 > 0 such that if ¢,s € [c — a, ¢+ ]
and [t — s| < § then |p(t) — ¢(s)| < e. Let z € T and let ||z — z|| < §. Then
|2, — zn| < 0 for every n € N. Hence

(6) lo(xn) — @(zn)| < e foreach neN.

Let us denote
(7) Z ajp(zj4x), for neN.
]:n

Using (4) and (7) we get

[A(z) = Al = sup > uj- Zvy < Z |uj = vy
nzm |,

] =n

By (6) one yields

o o0
luj —vil = D ap(wign) = > aip(zipr)| <
i=j =

(o)
<Y lail le(@ign) — (zigr)] < EZ |ai| = er;.

=Jj
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Hence

oQ

1A@) = AN < 3 elril = 2om.
j=m
This shows that A is a continuous map.
By Schauder’s theorem there exists z € T such that A(z) = z. Then z, =
¢+ > v; for all n > m. Hence

j=n
(o) (o)
Az, =c+ Z vj—c—Zvj:—vn.
j=n+1 j=n
Therefore
(o) (o)
A= —tpgr4vn=— Y aip(zpn) + D aj(245) = tnp(2ngr)
j=n+1 j=n

for every n > m.
00 7
Since the series " v; is convergent and z, = ¢+ > nftyv; we get limz, = c.
i=1 j=n
For every sequence (z,) the following equality holds

2
Az, = LTn42 — 2$n+1 + zn .

Hence
Znt2 — 22n41 + 2n = an@(Zntk)

for every n > m. Therefore

(8) Zp = 22n+1 + angp(zn+k) — Zn+42

for each n > m. Using (8) one can change successively all the terms
Zm—1,Zm—2, - - ., 21 of the sequence (z,) to obtain a solution (z,) of the equation
(E) such that limz, = c. a

oQ

Theorem 2. Assume that k = 0, the series > n|ay,| is convergent and ¢ : R —> R
n=1

is a continuous function such that

* for every «,x € R there exists a constant 1t € R such that

t—ap(t)=x.
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Then for every ¢ € R there exists a solution (x,) of the equation (E) with limz, =
c.

Proof. If ¢ € R then, as in Theorem 1, we can show that there exist m € N and
a sequence (x,) such that

limz, = ¢ and A%z, = anp(n)

for every n > m.
The equation (E) can be rewritten in the form

LTn42 — 2$n+1 + 0 = angp(xn) .

Hence

Tp — anp(®n) = Tpngo — 20n41 -
Using (*) we can calculate successively all the terms -1, Zm—3, ..., 21 to obtain
a solution (#,) of the equation (E) which satisfy the condition limz, = c. d

Remark 1. It is easy to show that if ¢ : R — R is a continuous and bounded
function or if it is a polynomial of degree 2k + 1, & € N then ¢ satisfies the
condition (*).

(o]
Theorem 3. It the series Y. n|ay,| is convergent and ¢ : R — R is a bounded
n=1
and uniformly continuous function then for every ¢ € R and for any k =0,1,2, ...
there exists a solution (z,) of the equation (E) which possesses the asymptotic
behaviour

zp =cn+o(l).

Proof. Let ¢ € R. Let us choose a constant M > 0 such that |¢(¢)| < M for each
t € R. Similarly as in the proof of Theorem 1 for n € N we denote ry, 0, by (2),

(3)

Let £ be the space of all sequences  : N — R and let

T={eecly |y < Mp, forall neN},
S={zel:|ey—nc|< Mg, forall neN}.

We define the map F' : T'— S by
F(z)(n) =nc+a,.
Obviously, the formula d(z, z) — sup{|zy, — 25| : n € N} defines a metric on the

set S such that F' is an isometry of the set 7" onto S. The set T, similarly as in
the proof of Theorem 1, is a compact and convex subset of the space £,,. The
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space S is homeomorphic to T'. Hence by Schauder’s theorem every continuous

map A : S — S has a fixed point.
For z € S and n € N we define u, by (4) and

A(x)(n) = ne+ Zuj )

Then

|A(x)(n) — ne| = Zu] <Z|u]|<Mgn

for every n € N. Hence A(z) € S and we get amap A : S = S. Let # € S,
¢ > 0. Since the function ¢ is uniformly continuous there exists a § > 0 such that
if [t —s| < d then |p(t) — ¢(s)| < e. If z € S and d(z, z) < § then |z, — z,| < ¢ for
every n € N. Hence |p(2n) — ¢(2n)| < ¢ for every n € N.

Taking w,, v, from (4), (7) we get

d(A(x), A(z)) = sgp Zuj Zv] < Z luj — v;].

] =n

Since

o o0
uj —vj| = Zaiso(xu,k) - Zai80(2i+k) <
= i=j

(o]
<Y lail lp(@ipr) — ¢(zigr)] < EZ |ai| = erj
i=j

=Jj

1t follows that

A(A(@), AG) < Y elrs| = 201

This shows that A s a continuous map. Hence there exists a sequence = € .S such
that A(xz) = #. Then for every n € N we have

(o]
r, = nc-+ E V5 .
j=n
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Hence
Az, =(n+1)c+ Z vj—nc—Zvj =c—v,.
j=n+1 ji=n
Therefore

2
A%xp =c—vpy1 —c+ vy =

(o) (o)
=— Y ajp(ign) + Y ajp(win) = anp(@ntr)
j=n+1 j=n

(o]
for each n € N. Hence z is a solution of the equation (E). Since the series > v;

j=1
is convergent, we obtain the asymptotic relation

zp =cn+o(l). 0

(o]
Theorem 4. Suppose that > |an| < oo and that ¢ : R — R is a bounded
n=1
function. If (x,) is a solution of the equation (E) then the sequence (x,/n) is
convergent in R.

Proof. Assume that |p(t)] < M for every t € R. If m > n then

m—1 m—1
Az, — Az, = Z Azxj = Z aje(in) -
j=n j=n
Hence
m—1
Az — Ap| <MY aj] .
j=n

Therefore, the sequence (Awz,,) is convergent. By virtue of Stolz’s theorem (see [1],
Theorem 1.7.9), limz,/n = lim Az,. a

Example. The sequence z,, = 3" which is a solution of the equation A’z, =
#l‘m—z possesses the property lima, /n = co. Hence we see the assumption of
the boundedness of the function ¢ in Theorem 4 can not be omitted.



474 M. MIGDA, J. MIGDA

Theorem 5. If ¢ : R — [¢,00) is a nondecreasing function, € > 0, a, > 0 for
(o]

every n € N, Y. a, = oo, k € N then every solution (z,) of the equation (E)
n=1
possesses the asymptotic behaviour

limaz,/n=oco.

Proof. Suppose that (z,) is a solution of the equation (E). Since app(zntx) >0
for every n € N, (Ax,) is an increasing sequence. By assumption we have ¢(z,) >
¢ for every n € N. Summation of (E) over n gives

n—1 n—1
Z Azl‘j = Z ajgo(xj+k) .
j=1 j=1
Hence
n—1 n—1
Az, = Azy + Z ajp(zjyn) > Az + ¢ Z a; .
j=1 j=1

(o)
Since Y a, = 0o there exists m € N such that

n=1

n—1
Ax1+62aj>0 forall n>m.
j=1

Therefore Az, > 0 for each n > m. Hence the sequence (z,) is increasing for
n > m. Suppose n > m. Then

n—1 m—1 n—1
Az, = Az + Za]go (zj48) > Azy + Z ajp(xipn) + Z a;e(itn)
j=1 j=1 j=m
m—1 n—1
1+ Z a;o(xjn) + P(Tmtr) Z aj .
j=1 j=m

It follows that lim Az, = co. By virtue of Stolz’s theorem

limz,/n =limAgz, . 0
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Example. Let

(t)_{O for ¢ <0
v = t? for t>0°

Then the sequence x, = 27" is a solution of the equation
Az, = 2"_2g0(xn)

such that lima,/n = 0. All assumptions of the Theorem 5 are satisfied except
€ > 0. Hence we can see that in Theorem 5 we cannot put ¢ = 0.

The proofs of the following two theorems are similar to the proof of Theorem 5
and they will be omitted.

Theorem 6. If ¢ : R — (—o0, —¢] is nonincreasing, a, < 0 for every n € N,
> ap, = —oo, k € N then every solution (z,) of the equation (E) fulfills the
n=1

condition

. limaz,/n=oco. .

Theorem 7. Assume Y |an| = o0. If a function ¢ : R — [, 00) is nondecreasing

n=1
and a, < 0 for alln € N or ¢ : R = (—00,¢] Iis nonincreasing and a, > 0 for
every n € N then every solution (z,) of the equation (E) fulfills the condition

lima, /n=—0c0. .
Remark 2. Theorem 2 of this paper (in the case a, > 0 for any n € N and
p(c) # 0) is similar to Theorem 2 of [2]. Theorem 3 (in the case when ¢ is a

periodic function and k¥ = 0, ¢ = 1) have been proved by A.Drozdowicz and J.
Popenda (see [3] Theorem 4.1).

Remark 3. Tt is easy to see that the result of Theorem 3 can be extended to the
delay difference equation

(D) Az, = anp(Tn_k), ke N.

Moreover if we assume ¢(R) = R and a,, # 0 for every n € N then the result of

Theorem 1 can also be extended to the equation (D).
Remark 4. If we assume that the series > n™~la, is absolutely convergent, for
some fixed m € N, m > 2, then the results of Theorems 1, 2 and probably also of

Theorem 3 can be generalized to the case of the higher order difference equation

ATpp = anp(Tnik) -

Details concerning this will appear in [5].
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