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OSCILLATORY AND ASYMPTOTIC BEHAVIOUR
OF PERTURBED QUASILINEAR SECOND
ORDER DIFFERENCE EQUATIONS

E. THANDAPANI AND L. RAMUPPILLAI

ABSTRACT. This paper deals with oscillatory and asymptotic behaviour of solutions
of second order quasilinear difference equation of the form

(B)  A(ap—1]|Ayn—1|*" Ayn—1) + F(n,yn) = G(n,yn, Ayn), 71 € N(ng)

where o > 0. Some sufficient conditions for all solutions of (E) to be oscillatory
are obtained. Asymptotic behaviour of nonoscillatory solutions of (E) are also
considered.

1. INTRODUCTION

Recently, there has been a lot of interest in the study of oscillation and nonoscil-
lation of second order difference equations see, for example [1-4, 6, 7-13] and the
references contained therein. Following this trend in this paper, we shall consider
the perturbed quasilinear difference equation

(1) A(an—1|Ayn—1|a_1Ayn—1) + F(TL, yn) == G(na Yn, Ayn)a

where n € N(ng) = {no,ng+ 1,...}, (no is a fixed nonnegative integer), A is
the forward difference operator defined by Ay, = yn+1 — Yn, {an} is a positive
real sequence and a > 0. Moreover, F' and G are real valued functions with
Yn : N(ng) = R, F: N(ng) x R — R and G : N(ng) x R? = R.

By a solution of (1) we mean a real sequence {y, } satisfying (1) for n € N(ng).
A nontrivial solution {yy, } is said to be oscillatory if it is neither eventually positive
nor eventually negative, and nonoscillatory otherwise.

The purpose of this paper is to establish some new results on the oscillatory and
asymptotic behaviour of solutions of (E). The results obtained here differ greatly
from those in [6, 7, 8, 11, 12, 13] and other known literature.

1991 Mathematics Subject Classification: 39A10.
Key words and phrases: perturbed quasilinear difference equation, oscillatory solution.
Received June 19, 1997.



456 E. THANDAPANI, L. RAMUPPILLAT

Throughout this paper we shall assume that there exist real sequences {g¢y,},
{pn} and a function f: R — R such that

(c1) wf(u) >0 for all u # 0;
(c2) flu) — f(v) = g(u,v)(u —v) for u,v #0,

where g 1s a nonnegative function; and

F(n,u) G(n,u,v)
o = W)

2. ASYMPTOTIC BEHAVIOUR OF NONOSCILLATORY SOLUTIONS

< pp for u,v £ 0.

(cs)

In this section, we assume that

oQ

(2) (¢ — pj) = 0.

Jj=no

Theorem 1. Let condition (c1) — (c3) and (2) hold, then any nonoscillatory
solution of (1) must belong to one of the following two types:

Me:yn —c#0 for n— oo,
My :y, =0 for n— oo.

Proof. Let {y,} be a nonoscillatory solution of (1), then {y,} is eventually pos-
itive or negative. Thus from (1), we have

1| Ayn—1|* T AYnm1 A(n—1]|Ayn-1|* T Ayno)
F(Yn-1) B f(yn)
_an—1]| Ay 1 [* T (AYn-1)*9(Yn, Y1)
(3) f(yn—l)f(yn)
an—1|AYn—1]* " (Ayn_1)29(Yn, Yn-1)
< o=l = Fn1) Fln)
< —(gn — pn)-

A

Summing (3) from ng + 1 to n, we get

an|Ayn |“TTAY, g | AYng |* T Ayn, "
4 < - (Js _ps .
@) S ST flum) )

If {yn} is eventually positive, then there exists ny € N(ng) such that y, > 0 for
n € N(ny). Then from (4) and (1), we get

Ay, <0 for ne N(ny).
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Hence {y,} is monotonic decreasing, and lim y, = ¢ > 0, where ¢ is constant.
n—od -

The proof for the case y,, i1s eventually negative is similar.
Thus, any nonoscillatory solution of (1) must belong to either M. or My. This
completes the proof of the theorem. a

Remark 1. In the above theorem, we impose no condition on {a,} such as
oQ

is convergent or divergent.

n=ng+1 a,ll/a
oo . .
Remark 2. If 7 I convergent or divergent and F(n,y,) = ¢nf(yn)
n=no+1 an &

and G(n,u,v) = 0 for n € N(ng), then the possible asymptotic behaviour of
nonoscillatory solutions of equation (1) are given in Lemma 1 of [10] and Lemma
1 of [9] respectively.

Remark 3. If o = 1, then Theorem 1 reduces to Theorem 1 of [2].
Theorem 2. Let conditions (c1) - (c3) and (2) hold.

a) If f(u) = |u|“sgnu, then a necessary condition for equation (1) to have a
nonoscillatory solution {y,} € M. is that
(5) — (¢i — pi) < o0
an .
n=ni+1 t=ni1+1

where ny € N(ng) is sufficiently large.

b) If f(u) = |u|™sgnu for 0 < m < «, (m > «) then a necessary condition
for equation (1) to have a nonoscillatory solution {y,} € M. or Mo({yn} €
My) is also (5).

Proof. (a) Let {y,} be a nonoscillatory solution of (1) which belongs to M.. If
¢ > 0, then {y,} is eventually positive. From the proof of Theorem 1, we have
that Ay, is eventually negative and from (2), there exists ny € N(ng) such that
yn > 0, Ay, < 0 and

(qo—po) >0 for neN(ny).
i=no+1

Summing (3) from ny + 1 to n, it follows that

n

an|Ayn|“ T Ayn _ an, [Ay, |*T Ay,

Yy Yr,

(qx — pr)
k=ni+1

< - (qr — pr)
k=ni+1



458 E. THANDAPANI, L. RAMUPPILLAT

that is,
1/«

1 " Ay,

. (9 — pr) < - :

n k=ni+1 Yn
Summing the above inequality from n; 4+ 1 to n we have

n 1 k /e n
Y —Us+1 Yni+1 — €
— (¢ — pi) < g ;
k=ni+1 A i=ni1+1 k=ni+1 Yk ¢

from which letting n — oo, we obtain (5).
(b) Tf 0 < m < a, let {y,} be a solution of (1) which belongs to My or M., as
shown in the proof of case (a), we can obtain

1/«
Ay, 1 "
e S o (9 — pr)
Yn " h=ni+1

Summing the above inequality from n; 4+ 1 to n, we have

n 1 k 1/a n y y Ynitl (g
E— Yk+1
— (g =pi) < Sga < e
ag . s
k=n;+1 i=ni+1 k=n;+1 Yi Ynt1
1L -z =
= 1_m yn1+1 - yn+1 )
(a3
from which letting n — oo and noting that 0 < m < a and lim y, = 0 or
n—od
lim y, = ¢ > 0, we obtain (5).
n—od
If {y, } is eventually negative, similarly, we can show that (5) holds. Thus the
proof of Theorem 2 1s complete. a

Remark. If o« = 1, then Theorem 2 reduces to Theorem 2 of [2].

Example. Consider the difference equation

A(Qn(oc+2))|Ayn_1|a—1Ayn_1) + yn (b(n, yn) + gn)
) = b, 021,

where & > 0 and b(n, y,) is any function of n and y, and 6, =3 - (2)". Choosing
F(Yn) = yn we have

F(n,yn)
f(yn)
G(n, Yn, Ayn)

f(yn)
a nonoscillatory solution {y,} of (8) must belong either to M. or My. In fact

=b(n,yn) +0p = b(n,yn) +3(2") = ¢n

and = b(n, yn) = pn. All conditions of Theorem 1 hold, and hence

{yn} = o € My 1s one such solution.
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3. OSCILLATION OF SOLUTIONS

In this section we will establish some oscillation criteria for equation (1).

Theorem 3. Let f(u) = |u|*sgnu and the condition (c3) holds. Assume that
function H(n,s) satisfies

H(n,n)=0 for n > ng € N(ng),
H(n,s) >0 for n>s>mny and
AyH(n,s) <0 for n>s>mng where

AyH(n,s) = H(n,s+1)— H(n,s).

Suppose there exists a real valued function h(n, s) such that

—AsH(n,s) = h(n, s)[H(n,s)]*/? for all n>s>ng

1
where § = ot . If for sufficiently large ny € N(ng) such that for n € N(n)
) gn—pn >0,
- 1
(10) e =0
_ a’”

n=ng+1 “n—-1

and
n—1 a+1
i 1 h(n, s)

11 | _ H s — Ds) — Qg ’ =
(11) msup Ze (n8)(gs = ps) =1 7 00

s=ng

then all solutions of equation (1) are oscillatory.

Proof. Let {y,} be a nonoscillatory solution of equation (1). Without loss of
generality we may assume that y, > 0 for n > Ny € N(ng). From condition (9)
and the equation (1), we get

A(an—1]Ayn_1|*"tAy,_1) <0, n > No
and hence a,_1|Ay,_1]|* 1Ay, _1 is nonincreasing. We claim that
an—1|Ayn_1|* " Ayt > 0.
If an_1|Ayn_1|* 1 Ay,_1 <0, then there exists an integer N3 € N(ng) such that
an—1|Ayn_1* " Ayt < an, 1] Ayn, -1 Ay, 1 <0

for n > Nj.
Since

an—1|Ayn—1|a_1Ayn—1 = _an—l(_Ayn—l)a )
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we have
—tp_1(—AYn—1)® < —an, —1(—Ayn, —1)“
or
1/«
an. _q (Ayn, -1
Ayn—1<—N1 1(1/a - ), n>Nj.
an—l

Summing the above inequality from N; 41 to n and letting n — oo, we obtain, in
view of condition (10), y, — —o0, a contradiction. Hence there exists an integer
No € N(ng) such that ap_1|Ayn_1|*"tAy,_1 > 0 or Ay,_1 > 0 for all n > Ny.
Define

an—l(Ayn—l)a

Iy =, for n> Ny.

yn—l

Then
n— A n— YAys_
(12) Az, S_(QH_pn)_ ? 1( 3{)( 1) Yn-1 for n> Ny.
yn—ly%

By the mean value theorem
(13) Ayt =at® ! Ay,
where yp_1 < t, < yn. Using (13) in (12), we get

n— A n—1) a_lA n—
(14) AZn < _(QH _pn) - ad 1( Y 1) yn—l Y ! fOI' n Z NO .

Yn_1Yn

Now using monotonic nature of {y, } and {a,(Ay,)*}, in (14), we obtain

az1+1/oc
Az, g—(qn—pn)—qu1 forall n> Ng.
Ap_1
Then, for all n > N > ng
n—1 n—1 B
af(n,s)z,
H(n,s)(qs —ps) = H(n,N)zny — — AyH(n,8)zs41 + %
s=N s=N As_1
n—1
H
=H(n,N)zy — h(n, S)Hl/ﬁ(n, $)zs41 + %ﬁzs)zf{_l
s=N as_q
n—1
H
=H(n,N)zy — h(n, S)Hl/ﬁ(n, $)zs41 + % zf_l_l
s=N As_1
N h(n,s) a+1 . n—1 h(n,s) a+1
Qs — As_1 .
a+1 ! a+1 !

s=N
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Hence, for all n > N > Ny, we have

n—1 a+1
h(n,s
Hs)ae =) — e S <, W)ay
n—1 a+1
aH(n,s) h(n, s)
- hin, s)H'P (n, 5)ze41 + e Z?+1 T +1 et
s=N s—1
Since § > 0, we have
H(n,s) h(n, s) atl
h i X ali(n,s) s J 1 >0
)z + SR sl TR e
for all n > s > Ng. This implies that for all n > Ny
n—1 a+1
h(n, s)
q s T VMs) T UWs—
(n8) (g5 = ps) — s 2
s=Ng
SH(naNO) ZNo
§H(n,no) ZNo
Therefore,
n—1 a+1
h(n, s)
[H(nas) (QS_ps) — as—1 a+1
Ng—-1 a+1
h(n, s)
= q s — Ps)— Qs
— (nas) (q P ) a 1 o +1
n—1 a+1
h(n,s
+ H(n,s) (QS_ps) —as—1 ( )
a—+1
s=Ng
No—1
<H(n,no) (qs — ps) + H(n,no) 2n,
No—1
=H (n,no) (g5 — ps) + 2N,
for all n > Ny. This gives
n—1 a+1
) h(n, s)
1 Tr/ N q s T Ms) T Us— :
WP gy, e TR e SR
No—1
< ((Js - Ps) + zZn,
which contradicts (13). This completes the proof of the theorem. a

In the following theorems, we obtain oscillation criterion for equation (1) by
using a generalized Riccati transformation due to Yu [14].
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Theorem 4. Let o = 1 and the conditions (c1) — (c3), (9) and (10), satisfies with
g(u,v) > A >0 for u,v # 0. Let H(n,s) be such that H(n,n) =0 for n € N(ng),
H(n,s) >0 forn >s € N(ng) and AyH (n, s) is nonpositive for alln > s € N(ng).
Suppose there exists a real valued function h(n,s) with

—AsH(n,s) = h(n,s) H(n,s) forall n>se& N(ng).

, .. , 1
If there exists a real positive sequence {®,,} with &, < — and

2X

n—1
1 a;%,

H(n,s)¥, — w3,

lim sup h*(n,s) = oo

n—o0 H(n, nO) s=ng

P,
142X (n — ng) Py,

where ®,, = and

\Ijn = q)n (QH _pn) + Aanq)rzH_l - A(an—lq)n)

then all solutions of equation (1) are oscillatory.

Proof. Let {y,} be a nonoscillatory solution of equation (1). Without loss of
generality we may assume that y, > 0 for n > Ny € N(ng). From the proof
of Theorem 3 and from equation (1), we have Ay,_1 > 0 and {an_1Ayn_1} is
nonincreasing for all n > N1 > Ny + 1. Define

NERPAN T
zn = O, %—I—an_l@n for n> Nj.
f(yn) -
Then
anAyn A(an—lAyn—l)
Fyn-1) ! )

_ anAYng(Yn, Ya—1)Ayn A
T fn) T olni®a)

nZNl

In view of condition (cz) and from the monotonic nature of {y, } and {a,_1Ay,_1},
we obtain

Az, < +1+1 +®0 — (¢ —pa) - — 3 ++11 — Pt 4 Aan_1P,)
A @
—— v, L2
Up q)721+1 Frl
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Hence for all n > N > Nj, we have

n—1 n—1
AH(t
H(n,s)¥, < H(n, N)Un — — AsH(n,s) 2541 + %@szfﬂ
s=N s=N P51
n—1 A ®
=H(n,N)¥y — h(n,s) H(n,s)zs41 + — ——H(n, s)zsz_l_l
s=N s s+l
_ 2
n—1
ADH(n, 1 h(n,s)®,414/a;
= H(n,N)¥y — #254.1-1-—%
s=N asq)s‘l'l 2 v Aq)s
n—1
+i h*(n,s)®? a,
o o, '
Then, for alln > N > N;
n—1
1 a,®2  h%(n,
H(n,$)¥, - — %’j(m) < H(n,N)¥y
s=N
_ 2
B n-1 /\q)sH(n’S)z 4 1 h(n, s)®s41+/as
x a, @2, T2 VD,

This implies that for every n > Ny

n—1
1 as®2,,h?%(n,s)
H g, — st VT < H(n, Ny)Y
(n’s) ) D, > (n’ 1) N1
s=N1
< H(n, Ni)[¥n, |

< H(n,no)|¥a, |-

The rest of the proof is similar to that of Theorem 3 and hence the details are
omitted. d

To prove the next result, we need the following well-known inequality which is
due to Hardy, Littlewood and Polya [5, Theorem 41].

Lemma 5. If X and Y are nonnegative, then
X+ (B-1)YP—pxXYPt>0  g>1,
where equality holds if and only if X =Y.

Theorem 6. Let conditions (c1) — (c3) with g(u,v) > 0 for u,v # 0, and condition
(9) and (10) hold. If there exists a positive (nondecreasing for o # 1) real sequence
{cn} such that

(15) cr(qr — pr) = o0
k=ni+1
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and
o _(Aecn_ a+1
(16 “etlB0o)T o

k=ni+1 cf (¢s — ps) “
s=k

then all solutions of equation (1) are oscillatory.

Proof. Suppose there exists a nonoscillatory solution {y,}. Without loss of gen-
erality, we may assume that y, > 0 for n € N(ng). From the proof of Theorem 3,
we have

(17) Ayn_l >0 and a”—l(Ayn—l)a S anl(Ayrn)a =M.

for all n > ny € N(ng).
Similar to (4), we have
an—l(Ayn—l)a
f(yn)

Summing the last inequality from n € N(ny), to N + 1 and letting N — oo, we
have

A < —(gn —pn) for n>n.

. an(Ayn)®  ap—1(Ayp_1)® e
0< lim < — gs — Ds) -
ST ST e )
Thus
(18) 1 - (g5 —ps) < (Ayn_l)a, for n € N(ny).
On-1  _ - f(yn)
Now,
A n-16n-1(Ayn_1)* G0, yn, Axn) — F(n, yn)
=cp
f(yn—l) f(yn)
. Cnan—l(Ayn—l)oH—lg(ynayn—l) + an—l(Ayn—l)aAcn—l
f(yn)f(yn—l) f(yn—l)
a+1 o
S _ Cn(Qn _pn) _ ACnan—l(Ayn—l) an—l(Ayn—l) Acn—l
f(yn)f(yn—l) f(yn—l)
ap—1f* (Yn /\Cn A n— atl
:—Cn(QH_pn)_ o (y ) ( - a_1|_)1
f(yn—l) f(yn)
alcn,_1 atl o a+1 o
~ (Ag_1)*Acy g ot P e s e F(yn)
[ (yn) aA¥ey aXep F(Yn-1)

Since by lemma

ACn(Ayn—l)OC-I—l (Ayn—l)aAcn—l + ocL-I—lAC”_1 o >0
flyn)ot? fe(yn) acy -
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for all n > ny . Then we have

(19 .
" 1Cr A o o Cpy— LACn_ « a 1
A ap—1C 1( Y, 1) S—Cn(qn—pn)-i- 1 a+1aa 1 I (3/)
f(yn—l) arcey f(yn—l)
o otl a? o
= (g — po) 4 iAo (Agn)” S ()
e aX¥ep (AYn-1)*" f(yn-1)
= s a1 (Aga 1))
= _Cn(QH _pn)+ o (B @ .
aXeq TFlum) J(Yni-1)
Using (17), (18) in (19), we obtain
n-1Cn—1(A¥n-1)“ Map_1(Acy— atl
o) o wtetlBetl g, ) 4 egSiea)
not (@ _ (f]s—Ps)
o atl
where M = ——atl Summing (20) from ny + 1 to n, we have
aA® f(Yn,-1)
ancn(Ayn)a anlcnl(Aynl)a !
< - ek (qr — pr)
f(yn) f(yny) R
T
k=ni1+l cCg (qz' —pz’) “
i=k

Letting n — oo and noting (15) and (16), we get

. ancn(Ayn)®

im ——————— = —

n—0o Flyn)

which is a contradiction. This completes the proof of the theorem. a

Remark. When o = 1 and f(u) = « Theorem 6 reduces to Theorem 4 of B. Liu

and J. Yan [2].

Example. Consider the difference equation

: ~2y,
n = A n 2

T = i T 1)1+6( ¥n)”

(1) A Ay Ay, ne N(1)
where o > 0, 0 < § < 1. Letcn:n,q(n):ﬁandpnzo,nEN(l)and
f(Yn) = Yn, then we find that all conditions of Theorem 6 are satisfied. Hence all
solutions of (21) are oscillatory. In fact {y,} = {(—=1)"} is such a solution. We
believe that the conclusion is not deducible from the oscillation criteria in [2, 3, 7,
8, 12, 13] and other known results.
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