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ARCHIVUM MATHEMATICUM (BRNO)Tomus 34 (1998), 445 { 454ON TORSION GORENSTEIN INJECTIVE MODULESOkyeon YiAbstract. In this paper, we de�ne Gorenstein injective rings, Gorensteininjective modules and their envelopes. The main topic of this paper is toshow that if D is a Gorenstein integral domain and M is a left D-module,then the torsion submodule tGM of Gorenstein injective envelopeGM ofM isalso Gorenstein injective. We can also show that if M is a torsion D-moduleof a Gorenstein injective integral domain D, then the Gorenstein injectiveenvelope GM of M is torsion.1. Gorenstein injective modules and envelopesDe�nition 1. (Iwanaga [5]) A ring is said to be Gorenstein if it is left and rightNoetherian and if it has a �nite injective dimension as a module over itself bothon the left and on the right. If R is Gorenstein and n � 0 is an upper bound forthose two dimensions, then R is said to be n-Gorenstein.Proposition 1. (Iwanaga [6]) If R is n-Gorenstein and if M is a left R-modulethe followings are equivalent:(1) proj:dimRM < 1 ;(2) proj:dimRM � n;(3) inj:dimRM < 1 ;(4) inj:dimRM � n;(5) flat:dimRM < 1 ;(6) flat:dimRM � n.Examples of Gorenstein rings :(1) Z =(n) for n 6= 0 is 0-Gorenstein.(2) A Noetherian commutative ring of �nite global dimensionn is n-Gorenstein.(3) If R is n-Gorenstein, then R[x] is (n+ 1)-Gorenstein.1991 Mathematics Subject Classi�cation : Primary: 13C12; Secondary: 13C11.Key words and phrases: Nilpotent, Gorenstein Injective Modules.Received May 13, 1997.



446 OKYEON YI(4) If R is n-Gorenstein, then for any k � 1, Mk(R) (the k � k matrices overR) is n-Gorenstein.(5) If k is a �eld and f 2 k[x1; � � � ; xn], then if f 6= 0 and f is not a constant,k[x1; � � � ; xn]=(f) is (n � 1)-Gorenstein.For any ring R, L denotes the class of left R-modules of �nite projective dimension.De�nition 2. For a Gorenstein ring R, K is Gorenstein injective if and only ifExt1(L;K) = 0 whenever proj:dimL < 1 . Gorenstein injective right R-modulesare de�ned analogously.Proposition 2. If R is Gorenstein ring, K is a Gorenstein injective left R-moduleand E � ! K is an injective cover of K, then E � ! K is surjective and is also an
L -cover of K. Furthermore ker(E � ! K) is Gorenstein injective.Proof. Proposition 4.3 [4]. �De�nition 3. If N is a left R-module then a complex

� � � � ! E1 � ! E0 � ! N � ! 0is called an injective resolvent ofN if all theEi's are injective and if for any injectivemodule E the functor Hom(E; � ) makes the complex exact. We note this isequivalent to E0 � ! N , E1 � ! ker(E0 � ! N ), and Ei+1 � ! ker(Ei � ! Ei�1)for i � 1 being injective precovers. If in fact these are all injective covers, we callthis a minimal injective resolvent of N and write Ei = Ei(N ).If we consider a minimal injective resolvent and a minimal injective resolutionof N , say
� � � � ! E1(N ) � ! E0(N ) � ! N � ! 00 � ! N � ! E0(N ) � ! E1(N ) � ! � � �

(1)then pasting together along N we get a complex
� � � � ! E1(N ) � ! E0(N ) � ! E0(N ) � ! � � �De�nition 4. The complex above is said to be the complete minimal injectiveresolution of N .Proposition 3. The left R-module N is Gorenstein injective if and only if0 = Exti(Q;N ) = Exti(Q;N ) = Ext0(Q;N ) = Ext0(Q;N ) ;for all i � 1 and for modules Q which have �nite injective or projective dimension.Proof. This is just the usual dimension shifting argument. �



ON TORSION GORENSTEIN INJECTIVE MODULES 447Proposition 4. The left R-module N is Gorenstein injective if and only if thecomplex
� � � ! E1(N ) ! E0(N ) ! E0(N ) ! E1(N ) ! � � �is exact and remains exact when Hom(E; � ) is applied to it for any injectivemodule E.Proof. Since this complex can be used to compute Ext0(� ; N ), Ext0(� ; N ),Exti(� ; N ) for i � 1 we see that exactness is equivalent to the vanishing of thesefunctors when applied to projective modules. The hypothesis guarantees theyvanish when applied to injective modules.Corollary 1. N is Gorenstein injective if and only if its minimal injective resol-vent

� � � ! E1(N ) ! E0(N ) ! N ! 0is exact and if Exti(E;N ) = 0 for all i � 1 and injective left R-module E.Proof. This is just a reformation of the preceeding result. �Proposition 5. If 0 ! A ! N ! B ! 0 is exact sequence of left R-module suchthat 0 ! Hom(E;A) ! Hom(E;N ) ! Hom(E;B) ! 0is exact for all injective modules E then if A and B are Gorenstein injective, so isN .Proof. Use the extended long exact sequence associated with0 � ! A � ! N � ! B � ! 0 : �De�nition 5. A left R-module N is said to be reduced if it has no injectivesubmodules other than 0.Given a left R-module N , let
� � � � ! E1(N ) ! E0(N ) ! E0(N ) ! E1(N ) ! � � �be its complete minimal injective resolution. Let Ci = ker(Ei(N ) ! Ei�1(N )) fori � 1, C0 = ker(E0(N ) ! E0(N )) and Ci = ker(Ei(N ) ! Ei+1(N ) for i � 0.Proposition 6. If N is a reduced, Gorenstein injective left R-module, then thecomplex � is the complete minimal injective resolution of any of the terms Ci andCi for i � 0. And each Ci and Ci is reduced and Gorenstein injective.Proof. This is true for C0 = N by hypothesis. If we can argue that it is true forC0 and C1, then by repeating the argument we can get it true for any of Ci's andCi's. We �rst argue for C1. We have 0 ! N ! E0(N ) ! C1

! 0 is exact. AlsoExt1(E;N ) = 0 for any injective module E so E0(N ) ! C1 is an arrow injectiveprecover. If E � C1 is an injective submodule, then



448 OKYEON YIEf ?@@@@@RE0(N ) - C1can be completed to a commutative diagram. But then f(E)TN = 0, so f(E) = 0and hence E = 0. So C1 is reduced. If E0(N ) ! C1 were not a cover, thenker(E0(N ) ! C1) = N would contain a non-zero injective module, contradictingthe fact that N is reduced. Hence (� ) is the complete minimal injective resolutionof C1. Proposition 4 shows that C1 is Gorenstein injective. The proof for C0 issimilar. �If f : M ! N is a linear map then it is easy to see that the following areequivalent:(1) f can be factorized through some injective module E;(2) f can be factorized by M ! E0(M );(3) f can be factorized by E0(N ) ! N .Then we haveCorollary 2. If N is a reduced Gorenstein injective left R-module and 0 ! K !E0(N ) ! N ! 0 is exact, then the set of f 2 End(N ) which can be factorizedthrough an injective module form a two-sided ideal of End(N ) contained in thejacobson radical of End(N ). If A � End(N ) is this ideal and B � End(K), is thecorresponding ideal for K, then End(N=A) �= End(K=B).Proof. A is clearly a two-sided ideal. Suppose f : N ! N can be factorizedN g
! E0(N ) �

! N . Then0 � ! K � ! E0(N ) � ! N � ! 0
# id # id+ g� # id+ f0 � ! K � ! E0(N ) � ! N � ! 0is commutative. Since K ! E0(N ) is an injective envelope, id + g� is an iso-morphism, and hence so id id + f . We see that any map K ! K is part of acommutative diagram0 � ! K � ! E0(N ) � ! N � ! 0

# # #0 � ! K � ! E0(N ) � ! N � ! 0and similarly for any map N ! N . It is a simple matter of chasing diagrams tocheck that this (not one to one) correspondence between maps K ! K and mapsN ! N induces an isomorphism End(K=B) �= End(N=A). �



ON TORSION GORENSTEIN INJECTIVE MODULES 449Using the notation above we haveCorollary 3. If N is a reduced Gorenstein injective module and 0 ! N ! N !E0(N ) ! C ! 0 is exact, then if D � End(C) is the set of g 2 End(C) that canbe factorized through injective modules thenEnd(N )=A �= End(C)=D :Proof. Similar to that of the above Corollary. �Proposition 7. If 0 ! A ! N ! B ! 0 is an exact sequence of left R-module,then if A and N are Gorenstein injective then so is B. If N and B are Gorensteininjective, then A is Gorenstein injective if and only if Ext1(E;A) = 0 for allinjective left R-modules E. If A and B are Gorenstein injective, then so is N .Proof. For the �rst claimwe note that since A is Gorenstein injectiveExt1(E;A) =0 for all injective module E. Hence0 ! Hom(E;A) ! Hom(E;N ) ! Hom(E;B) ! 0is exact for such E and so we can appeal to the long exact sequence. The proof ofthe remaining claims is similar. �Corollary 4. If N1 and N2 are Gorenstein injective then so is N1 � N2.Proposition 8. A reduced Gorenstein injective module N 6= 0 has in�nite injec-tive and projective dimension.Proof. If any Ci = 0 for i � 0, then all the terms of the complete minimalinjective resolution of Ci will be 0, hence C0 = N will be 0. Hence inj. dimN = 1 . Since � is a minimal injective resolution of Ci for i � 0, we see thatExti+1(N;Ci) = Ext1(N;C0). Since 0 ! C0 ! E0(N ) ! N ! 0 doesn't split,Ext1(N;C0) 6= 0. So proj. dim N � i + 1 for all i. �Proposition 9. If R is an n-Gorenstein ring and a left R-moduleK is Gorensteininjective if and only if K is an n-th cosyzygy, i.e., there is an exact sequence0 � ! M � ! E0
� ! E1

� ! � � � � ! En
� ! K � ! 0of injective resolution of M .Proof. Given such an exact sequence of modules over the n-Gorenstein ringR, let proj. dim RL < 1 . Then by Proposition 1, proj. dim L � n. HenceExt1(L;K) = Extn+1(L;M ) = 0. Hence K is Gorenstein injective. Conversely,suppose K is Gorenstein injective. Let E ! K be an injective cover of K. If�K = ker(E ! K) then �K is Gorenstein injective by Proposition 2. Then if�E !

�K is an injective cover of �K, we have the exact sequence �E ! E ! K ! 0.�



450 OKYEON YIProposition 10. If R is a Gorenstein ring, then every left R-module M has aGorenstein injective envelope GM (or we denote G(M) if it is necessary).Proof. Theorem 6.1 [4]. �2. Torsion Gorenstein injective modulesDe�nition 6. The torsion submodule tA of a module A is de�ned bytA = f a 2 Aj ra = 0 for some non-zero r 2 RgRemark. If R is not a domain, then tA might not be a submodule. If D is anintegral domain and M is a torsion D-module, then the injective envelope E(M )of M is torsion.Theorem 1. If D is a Gorenstein integral domain and M is a left D-module,then the torsion submodule tGM of the Gorenstein injective envelope GM of Mis Gorenstein injective.Proof. Since D is integral domain, tGM is a submodule of GM . Since D isGorenstein, say n-Gorenstein for some n, then by the Proposition 9, GM is ann-th cosyzygy for some N . So there is an exact sequence0 � ! N � ! E0
� ! E1

� ! � � � � ! En�1 dn�1
� ! GM � ! 0where Ei's are injective modules. Consider dn�1(tGM ) = the inverse image oftGM of dn�1 = (dn�1)�1(tGM ). Let I be a nonzero ideal of D and consider thediagram: 0 - I - Df ?dn�1(tGM )?En�1



ON TORSION GORENSTEIN INJECTIVE MODULES 451Since En�1 is injective there exists g : D � ! En�1 such that g j I = f . Let x bea nonzero element in I, then g(x) = f(x) 2 dn�1(tGM ), i.e., (dn�1g)(x) 2 tGM .So there exists � 6= 0 in D such that �[(dn�1g)(x)] = �x � [(dn�1g)(1)] = 0 with�x 6= 0. So (dn�1g)(1) 2 tGM and g(1) 2 dn�1(tGM ). So g(D) � dn�1(tGM )since for all � 2 D, g(�) = �g(1) 2 tGM . So0 - I - D?f pppppppppppppppppppppppp	 gdn�1(tGM )So dn�1(tGM ) is an injective D-module. Now consider the sequence0 � ! N � ! E0
� ! E1

� ! � � � � ! En�2 dn�2
� ! dn�1(tGM ) d0n�1

� ! tGM � ! 0where d0n�1 is a restricted map. Obviously E0; E1; � � � ; En�2; dn�1(tGM ) are in-jective modules and the sequence is exact at N;E0; E1; � � � ; En�2, and dn�1(tGM ).And since imdn�2 � kerdn�1, imdn�2 � kerd0n�1 and if x 2 ker(d0n�1), thendn�1(x) = d0n�1(x) = 0 2 tGM . So x 2 dn�1(tGM ). So the sequence is exact atdn�1(tGM ). Hence, by the Propositon 9, tGM is Gorenstein injective. �Theorem 2. If D is a Gorenstein injective integral domain and M is a torsionD-module then the Gorenstein injective envelope GM of M is also torsion.Proof. Consider the diagram: tM �t -G(tM )?iM � - GMLet x 2 tM . Then there exists a nonzero r 2 D such that rx = 0. Thenr � �(x) = �(rx) = �(0) = 0, so �(x) 2 tGM i.e., � � i : tM � ! tGM . So we get



452 OKYEON YItM �t - G(tM )?i p p p p p p p p p p p p p p p p p p p p p p p pRtGM j �j tMM tGM@@@@@@R� ?jGMwith the bottom parallelogram commutative. Since tGM is Gorenstein injectivethere exists a map f : G(tM ) � ! tGM such thattM �t- G(tM )?i p p p p p p p p p p p p p p p p p p p p p p p pRtGM j �j tM ppppppppppppppp?fM tGM@@@@@@R� ?jGMthe upper triangle is commutative. Since M is torsion tM = M . So G(tM ) =G(M ) and we get the following diagram.



ON TORSION GORENSTEIN INJECTIVE MODULES 453tM �t- G(tM ) = GM?i p p p p p p p p p p p p p p p p p p p p p p p pRtGM j �j tM ppppppppppppppp?fM tGM@@@@@@R� ?jGMwhere j is an inclusion map. Since j � f ia an automorphism of GM , j is asurjection. Hence j is an isomorphism between tGM and G(M ). Therefore GM =G(M ) is torsion. �Theorem 3. Let I be a directed quasi-ordered set. Suppose there are morphismsof direct systems over I
f Ai; �ij g

t
� ! f Bi;  ij g

s
� ! f Ci; �ij gsuch that 0 � ! Ai ti

� ! Bi si
� ! Ci � ! 0is exact for each i 2 I. Then there is an exact sequence of modules0 � ! lim! Ai �t

� ! lim! Bi �s
� ! lim! Ci � ! 0 :Proof. We prove that �t is monic. Assume x 2 lim! Ai and �tx = 0 in lim! Bi. Letus set lim! Ai = (� Ai)=S and set �i : Ai � ! � Ai the ith injection. Let us setlim! Bi = (� Bi)=T and set �i : Bi � ! � Bi the ith injection. Thus, x = �iai + Sand �tx = �itiai + T . Since �tx = 0, there is some j � i with  ijtiai = 0. Since t isa morphism between direct systems, we have tj�ijai = 0. But tj is monic, whence�ijai = 0, and this gives x = �iai + S = 0. �Theorem 4. The following are equivalent for a ring R:(1) R is left Noetherian,(2) every direct limit(directed index set) of injective modules is injective,(3) every sum of injective modules is injective.Proof. Theorem 4.10 [7] �



454 OKYEON YITheorem 5. Let R be an n-Gorenstein ring and (Gi) be a directed system ofGorenstein injective R-modules. Then lim! Gi is Gorenstein injective.Proof. Since each Gi is Gorenstein injective, there exists an exact sequence �i0 � ! Ni � ! E0i � ! E1i � ! � � � � ! En�1i � ! Gi � ! 0 :This sequence can be constructed functorially. By Theorem 30 � ! lim! Ni � ! lim! E0i � ! � � � � ! lim! En�1i � ! lim! Gi � ! 0is also exact for each i. Since the ring R is Gorenstein each lim! Eji is injectivemodule by the Theorem 4. So by the Theorem 9 lim! Gi is Gorenstein injective. �References[1] Bass, H., On the ubiquity of Gorenstein rings, Math. Z. 82(1963), 8-28.[2] Enochs, E., Injective and 
at covers, envelopes and resolvents, Israel J of Math. 39(1981),189-209.[3] Enochs, E., Jenda, O.M.G., Gorenstein injective and projective modules, Math. Z.220(1995), 611-633.[4] Enochs, E., Jenda, O., Xu, J., Covers and envelopes over Gorenstein rings (to appear inTsukuba J. Math.)[5] Yasuo Iwanaga, On rings with �nite self-injective dimension, Comm. Algebra, 7(4), (1979),393-414.[6] Yasuo Iwanaga, On rings with �nite self-injective dimension II, Tsukuba J. Math. 4(1980),107-113.[7] Rotman, J., An introduction to homological algebra, Academic Press Inc., New York, 1979.Department of Mathematics, Korea University136-701, Seoul, KOREAE-email: oyyi00@semi.korea.ac.kr
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