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ON TORSION GORENSTEIN INJECTIVE MODULES

OKYEON Y1

ABSTRACT. In this paper, we define Gorenstein injective rings, Gorenstein
injective modules and their envelopes. The main topic of this paper is to
show that if D is a Gorenstein integral domain and M is a left D-module,
then the torsion submodule ¢GM of Gorenstein injective envelope GM of M is
also Gorenstein injective. We can also show that if M is a torsion D-module
of a Gorenstein injective integral domain D, then the Gorenstein injective
envelope GM of M is torsion.

1. GORENSTEIN INJECTIVE MODULES AND ENVELOPES

Definition 1. (Iwanaga [5]) A ring is said to be Gorenstein if it is left and right
Noetherian and if it has a finite injective dimension as a module over itself both
on the left and on the right. If R is Gorenstein and n 0 is an upper bound for
those two dimensions, then R is said to be n-Gorenstein.

Proposition 1. (Iwanaga [6]) If R is n-Gorenstein and if M is a left R-module
the followings are equivalent:

(1) proj.dimpM < ;
2
3) inj.dimpM <

(2) proj.dimpM n;
(3)
(4) inj.dimgM  n;
(5)
(6)

bl

5) flat.dimpM <
6) flat.dimgM n.

Examples of Gorenstein rings :
(1) /(n) for n = 0 is 0-Gorenstein.
(2) A Noetherian commutative ring of finite global dimension n is n-Gorenstein.
(3) If R is n-Gorenstein, then R[z]is (n + 1)-Gorenstein.

1991 Mathematics Subject Classification: Primary: 13C12; Secondary: 13C11.
Key words and phrases: Nilpotent, Gorenstein Injective Modules.
Received May 13, 1997.



446 OKYEON YI

(4) Tf R is n-Gorenstein, then for any & 1, My (R) (the & k& matrices over
R) is n-Gorenstein.

(5) If kis afield and f  k[x1, @], then if f =0 and f is not a constant,
klz1, yxn]/(f) is (n 1)-Gorenstein.

For any ring R, denotes the class of left R-modules of finite projective dimension.

Definition 2. For a Gorenstein ring R, K is Gorenstein injective if and only if
Eztt(L, K) = 0 whenever proj.dimL < . Gorenstein injective right R-modules
are defined analogously.

Proposition 2. If R is Gorenstein ring, K is a Gorenstein injective left R-module

and F/ K 1s an injective cover of K, then F K is surjective and is also an
-cover of K. Furthermore ker(F K) is Gorenstein injective.
Proof. Proposition 4.3 [4]. O

Definition 3. If N is a left R-module then a complex
Eq Ey N 0

is called an injective resolvent of N if all the F;’s are injective and if for any injective
module E the functor Hom(FE, ) makes the complex exact. We note this is
equivalent to Ejy N, By ker(Fy N), and Fj;14 ker(E; FEi_1)
for i 1 being injective precovers. If in fact these are all injective covers, we call
this a minimal injective resolvent of N and write E; = E;(N).

If we consider a minimal injective resolvent and a minimal injective resolution
of N, say

Ei(N) Eo(N) N 0
(M 0 N EO(N) EY(N)

then pasting together along N we get a complex
Ei(N)  Eo(N)  E°(N)

Definition 4. The complex above is said to be the complete minimal injective
resolution of N.

Proposition 3. The left R-module N is Gorenstein injective if and only if
0= Ext;(Q,N) = Ext'(Q,N) = Exto(Q,N) = Ext (Q, N),

for allz 1 and for modules ) which have finite injective or projective dimension.

Proof. This is just the usual dimension shifting argument. d
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Proposition 4. The left R-module N is Gorenstein injective if and only if the
complex

Ey(N)  Eo(N) E°(N) E'(N)
is exact and remains exact when Hom(Z, ) is applied to it for any injective
module E.

Proof. Since this complex can be used to compute Exto( ,N), WO( , N,
Ewxt;( ,N)fori 1 we see that exactness is equivalent to the vanishing of these
functors when applied to projective modules. The hypothesis guarantees they
vanish when applied to injective modules.

Corollary 1. N is Gorenstein injective if and only if 1ts minimal injective resol-
vent

Ei(N) Eo(N) N 0
is exact and if Fxt'(E, N) =0 for alli 1 and injective left R-module E.

Proof. This is just a reformation of the preceeding result. a

Proposition 5. If0 A N B 01is exact sequence of left R-module such
that

0 Hom(E,A) Hom(E,N) Hom(E,B) 0
is exact for all injective modules E then if A and B are Gorenstein injective, so is

N.

Proof. Use the extended long exact sequence associated with

O A N B 0. U

Definition 5. A left R-module N is said to be reduced if it has no injective
submodules other than 0.

Given a left R-module N let
Ey(N)  Eo(N) E°(N) E'(N)

be its complete minimal injective resolution. Let C; = ker(E;(N)  E;—1(N)) for
i 1,Co=ker(Eg(N) E°N)) and Ct = k’er(Ei(N) EH'l(N) fori 0.

Proposition 6. If N is a reduced, Gorenstein injective left R-module, then the
complex is the complete minimal injective resolution of any of the terms C; and
C" for i 0. And each C; and C" is reduced and Gorenstein injective.

Proof. This is true for C° = N by hypothesis. If we can argue that it is true for
Cy and C', then by repeating the argument we can get it true for any of C;’s and
CPs. We first argue for C1. We have 0 N E°(N) C! 0 is exact. Also
Ezt'(E, N) = 0 for any injective module ' so EY(N)  C' is an arrow injective
precover. If E (' is an injective submodule, then
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E°(N) cl
can be completed to a commutative diagram. But then f(E)(|N =0,s0 f(E) =0
and hence £ = 0. So C! is reduced. If E°(N) C' were not a cover, then
ker(E°(N)  C') = N would contain a non-zero injective module, contradicting
the fact that N is reduced. Hence ( ) is the complete minimal injective resolution
of C''. Proposition 4 shows that C'! is Gorenstein injective. The proof for Cj is
similar. d
Iff: M N is a linear map then it is easy to see that the following are
equivalent:

(1) f can be factorized through some injective module F;
(2) f can be factorized by M E°(M);
(3) f can be factorized by Ey(N) N.

Then we have

Corollary 2. If N is a reduced Gorenstein injective left R-module and 0 K
Ey(N) N 0 is exact, then the set of f  End(N) which can be factorized
through an injective module form a two-sided ideal of End(N) contained in the
jacobson radical of End(N). If A End(N) is this ideal and B End(K), is the
corresponding ideal for K, then End(N/A) = End(K/B).

Proof. A is clearly a two-sided ideal. Suppose f : N N can be factorized
N 7 Ey(N) ® N. Then

0 K Ey(N) N 0
id d+ g¢ id+ f
0 K Ey(N) N 0
1s commutative. Since K FEo(N) is an injective envelope, id 4+ g¢ is an iso-

morphism, and hence so id ¢d + f. We see that any map K K 1s part of a
commutative diagram

0 K Eo(N) N 0

0 K Eo(N) N 0

and similarly for any map N N. It is a simple matter of chasing diagrams to
check that this (not one to one) correspondence between maps K K and maps
N N induces an isomorphism End(K/B) = End(N/A). O
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Using the notation above we have

Corollary 3. If N is a reduced Gorenstein injective module and 0 N N
E°(N) C 0 is exact, then if End(C) is the set of ¢ End(C') that can

be factorized through injective modules then

End(N)/A = End(C)/

Proof. Similar to that of the above Corollary. |

Proposition 7. If 0 A N B 0is an exact sequence of left R-module,
then if A and N are Gorenstein injective then so is B. If N and B are Gorenstein
injective, then A is Gorenstein injective if and only if Fxt!(E, A) = 0 for all
injective left R-modules E. If A and B are Gorenstein injective, then so 1s N.

Proof. For the first claim we note that since A is Gorenstein injective Ext!(E, A) =
0 for all injective module E. Hence
0 Hom(E,A) Hom(E,N) Hom(E,B) 0

is exact for such £ and so we can appeal to the long exact sequence. The proof of
the remaining claims is similar. d

Corollary 4. If N; and N, are Gorenstein injective then so is Ny Ns.
Proposition 8. A reduced Gorenstein injective module N = 0 has infinite injec-

tive and projective dimension.

Proof. If any C? = 0 for ¢ 0, then all the terms of the complete minimal

injective resolution of C; will be 0, hence C° = N will be 0. Hence inj. dim
N = . Since is a minimal injective resolution of C; for ¢ 0, we see that
ExtitY(N,C;) = Ext'(N,Cp). Since 0 Co  Eo(N) N 0 doesn’t split,
Ezt!(N,Co) = 0. So proj. dim N i+ 1 for all 4. d

Proposition 9. If R is an n-Gorenstein ring and a left R-module K is Gorenstein
injective if and only if K is an n-th cosyzygy, 1.e., there is an exact sequence

0 M E° o £r K 0

of injective resolution of M.

Proof. Given such an exact sequence of modules over the n-Gorenstein ring

R, let proj. dim gL < . Then by Proposition 1, proj. dim L n. Hence
Ext'(L,K) = Ext"tY(L, M) = 0. Hence K is Gorenstein injective. Conversely,
suppose K is Gorenstein injective. Let E K be an injective cover of K. If

K = ker(E K) then K is Gorenstein injective by Proposition 2. Then if
E K is an injective cover of K, we have the exact sequence £ EF K 0.

d
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Proposition 10. If R is a Gorenstein ring, then every left R-module M has a
Gorenstein injective envelope GM (or we denote G(M) if it is necessary).

Proof. Theorem 6.1 [4]. O

2. TORSION (GORENSTEIN INJECTIVE MODULES

Definition 6. The torsion submodule ¢t A of a module A is defined by

tA= a Ara=0for some non-zeror R

Remark. If R is not a domain, then {A might not be a submodule. If D is an
integral domain and M is a torsion D-module, then the injective envelope E(M)
of M is torsion.

Theorem 1. If D is a Gorenstein integral domain and M is a left D-module,
then the torsion submodule tGM of the Gorenstein injective envelope GM of M
is Gorenstein injective.

Proof. Since D is integral domain, {GM is a submodule of GM. Since D is
Gorenstein, say n-Gorenstein for some n, then by the Proposition 9, GM is an
n-th cosyzygy for some N. So there is an exact sequence

o N E° R J ol I Y SR

where E’s are injective modules. Consider d"~1(tGM) = the inverse image of

tGM of d*~1 = (d”_l)_l(tGM). Let I be a nonzero ideal of D and consider the
diagram:

d=1(1GM)

En—l
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Since E™~! is injective there exists g : D E»=1 such that ¢ ; = f. Let x be
a nonzero element in I, then g(z) = f(x) d"~1(tGM), i.e., (d""1g)(x) tGM.
So there exists @ = 0 in D such that a[(d"~!g)(x)] = az [(d""'g)(1)] = 0 with
ar = 0. So (d"~tg)(1) tGM and g(1) d*~1(tGM). So g(D) F(tGM)
since for all @« D, g(a) = ag(l) tGM. So

>

d=1(1GM)

So d”»~1(tGM) is an injective D-module. Now consider the sequence

Y UTeM 0

o N B g o T el

where d"~1 is a restricted map. Obviously E°, B, ,E”_Z,F(tGM) are in-
jective modules and the sequence is exact at N, E9, B!, ,E"=2 and W(tGM).
And since imd"=2  kerd"™', imd"=%  kerd "' and if z ker(dln_l), then
d"=1(r) = dln_l(x) =0 tGM. Sozx F(tGM). So the sequence is exact at
F(tGM). Hence, by the Propositon 9, tGM is Gorenstein injective. |

Theorem 2. If D is a Gorenstein injective integral domain and M is a torsion
D-module then the Gorenstein injective envelope GM of M is also torsion.

Proof. Consider the diagram:

M — 0 GM)

M ¢ . Gaum

Let = tM. Then there exists a nonzero r D such that r& = 0. Then
r o ¢(x) =¢(re) =¢(0) =0,s80 ¢(x) tGMie,¢ :tM tGM. So we get
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M O G@tM)

1 .."~,.tGM M
.
M tGM
J
¢
GM

with the bottom parallelogram commutative. Since tGM is Gorenstein injective
there exists a map f: G(tM) tG M such that

M 0 G(tM)
1 ..."~,.tGM ¢ M f
. v
Py
M tGM
J
¢
GM

the upper triangle is commutative. Since M is torsion tM = M. So G(tM) =
G(M) and we get the following diagram.
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M P GUM)=GM

1 .."~,.tGM ¢ M f
- v
o
M tGM
J
¢
GM

where j is an inclusion map. Since j f ia an automorphism of GM, j is a
surjection. Hence j is an isomorphism between tG' M and G(M). Therefore GM =
G(M) is torsion. O

Theorem 3. Let I be a directed quasi-ordered set. Suppose there are morphisms
of direct systems over 1

t s

C;, 0

A2a¢; Bla,l/); 7

such that

t;

0 A; B; *' 0

is exact for each ¢ 1. Then there is an exact sequence of modules

0  lim4; ' limB; ° limC; 0.
— — —

Proof. We prove that £ is monic. Assume z limA; and fx = 0 in limB;. Let
— -
us set limA; = ( A;)/S and set A; @ A; A; the #*® injection. Let us set
-
limB; = ( B;)/T and set y; : B; B; the " injection. Thus, z = A\ja; + S
-

and tx = p;t;a; + 1. Since tz = 0, there is some j ¢ with ¢§tiai = (. Since f is
a morphism between direct systems, we have tjqb; a; = 0. But ¢; is monic, whence
(/)é»ai =0, and this gives z = A\ja; +.5 = 0. O

Theorem 4. The following are equivalent for a ring R:
(1) R is left Noetherian,
(2) every direct limit(directed index set) of injective modules is injective,

(3) every sum of injective modules is injective.

Proof. Theorem 4.10 [7] O
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Theorem 5. Let R be an n-Gorenstein ring and (G;) be a directed system of
Gorenstein injective R-modules. Then lim(; is Gorenstein injective.
—

Proof. Since each (G; is Gorenstein injective, there exists an exact sequence &;

0 N EY E} Ept Gi 0.

K3

This sequence can be constructed functorially. By Theorem 3

0 limp;,  lLmE} limE!™ limG; 0
— — — —

is also exact for each i. Since the ring R is Gorenstein each limE? is injective
—

module by the Theorem 4. So by the Theorem 9 lim{; is Gorenstein injective. O
—
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