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ARCHIVUM MATHEMATICUM (BRNO)Tomus 34 (1998), 361 { 377HIGHER ORDER CONTACT OF REAL CURVESIN A REAL HYPERQUADRICPART IIYuli VillarroelAbstract. Let � be an Hermitian quadratic form, of maximal rank andindex (n;1), de�ned over a complex (n+1) vector space V . Consider the realhyperquadric de�ned in the complex projective space PnV byQ = f[& ] 2 PnV; �(&) = 0g:LetG be the subgroupof the special linear group which leavesQ invariant andD the (2n)� distribution de�ned by the Cauchy Riemann structure inducedover Q. We study the real regular curves of constant type in Q, tangent to D,�nding a complete system of analytic invariants for two curves to be locallyequivalent under transformations of G.The real hypersurfaces of real codimension one, are the boundaries of domainsin a complex manifold. Among the non-degenerate real hypersurfaces in Cn+1the simplest and most important are the real hyperquadrics. S. Chern and J.Moser show how the geometry of a general non-degenerate real hypersurface canbe considered as a generalization of a real hyperquadric [4].The concept of Frenet frame for holomorphic curves in complex projective spacesplayed an important role in the classical theory of the equidistribution of thesecurves [5]. In [16], we use contact theory to study the real curves in the hyper-quadric, Q = f[�] 2 PnCn; �(�) = 0g;transversal to the distribution D, and �nd the Frenet frames for these curves.The purpose of the present article is to study the real curves, of constant typein the hyperquadric Q, tangent to the distribution D, �nding a complete systemof analytic invariants for two curves to be locally equivalent under transformation1991 Mathematics Subject Classi�cation: Primary 53C15, Secondary 53B25.Key words and phrases: geometric structures on manifolds, local submanifolds, contacttheory, actions of groups.Supported by C.D.C.H. Universidad Central de Venezuela.Received March 24, 1997.



362 Y. VILLARROELof the group G. Moreover we �nd the Frenet frames for these curves. Usingcontact theory and the action of the group on each contact manifold of order k, atransversal section to the orbits of maximal dimension, can be naturally obtained.It is interesting to observe that in the study of the Frenet frame of regular curvesof constant type tangent to the distribution D, we obtain three visibly di�erentscases, namely: n = 2, 4 � n � 6, y n � 7. For n = 2, we obtain a real invariantof order 5, in contrast with the curves transverse to the distribution, which havetwo real invariants of order 3 and 4 [16].1. The higher order contact in the hyperquadricLet � be the Hermitian quadratic form over a (n+ 1)� vector space V�(�) = ���� + i(�n�0 � �n�0); � 2 V ;and G � SL(n+ 1; C) be the subgroup which leaves � invariant. The Lie algebraG of G is given byG = 8>>>>>><>>>>>>:` 2 TeG : ` = 8>>>>>>>>>>>>>>>>>: `00 `01 : : : `0n�1 `0n`10 �i`01... (`�� ) ...`n�10 �i`0n�1`n0 i`1O : : : i`0n�1 �`00 9>>>>>>>>>>>>>>>>>; ; `�� + `�� = 0;tr` = 0;`0n; `n0 2 < 9>>>>>>=>>>>>>; :Denote by !, the canonical form over G with components !�
 respect to the usualbasis . Let Q be the (2n + 1)-dimensional real hyperquadric [5], de�ned in thecomplex projective space PnV by the equationQ = f[�] 2 PnV; �(�) = 0g:The group G acts on PnV by g:[�] = [g:�], and the quadric Q is invariant by theaction of G on PnV , moreover, G acts transitively on Q. Then, given p0 2 Q, themap  0 : g 2 G 7�! g:p0 2 Q;de�nes an isomorphism: G=Go ' Q. The isotropy group G0 at p0 = [(1; 0; � � � ; 0)],is G0 = fg 2 G : g�0 = 0; 1 � � � ng and its Lie algebra G0 is given byG0 =8><>:` 2 G : ` = 8>>>>>>>>: `00 : : : `0n0 (`�� ) ...0 0 �`00 9>>>>>>>>;9>=>; :In the following we will agree that small Greek indices �, 
, run from 1 to n� 1,the indices �k run from k to n� 1, unless otherwise speci�ed, and we will use thesummation convention.



HIGHER ORDER CONTACT OF REAL CURVES 363The forms !�0 which vanish on TeG0, allow us to de�ne a basis f~!�0 g of T �p0Qas follows. Given ~v 2 Tp0Q, let(1:1) ~!�0 (~v) = !�0e(ve); where v 2 G; and Te 0e(v) = ~v:Proposition 1.1. The Lie algebra G0 acts on T �p0Q as follows:(`; ~!) 2 G0 � T �p0Q 7! `:~!; `:~!(~v) = �d!je(`e; ve); with v 2 G; Te 0(ve) = ~v;and its expression in coordinates is`:~!�0 = `
�~!
0 + (�`00 + `��)~!�0 � i`0�~!n0 1 � �; 
 � n� 1;`:~!n0 = � 2Re`0n~!n0 
 6= � :Proof. See [16]. �We observe that the subspace Dp0 � Tp0Q de�ned by ~!n0 = 0 is invariant byG0, since G0 transforms !n0 in a multiple of itself, and G0 is connected.The transitivity of the action of G on Q, allow us to de�ne a (2n)-dimensionaldistribution over Q, as followsD : p 2 Q 7�! (lg)�(Dp0 ); where g 2 G and lg(p0) = g:p0 = p:To study the real curves in Q, it is natural to consider two cases: the curvestransversal to the distribution D at all its points, and the curves tangent to D atall points. In [16] we consider the �rst case, using contact theory. In this paper wewill study the second case. We will use the following theorem about Lie groups.Theorem 1.1. Let G be a Lie group that acts on a smooth manifold M and Gits Lie algebra. Let �(M ) denote the smooth (C1) vector �elds on M , and let Fbe the map:F : G �! �(M ); ` 7�! F`; with F`(x) = ddt jt=o(exp (t`):x) ;then we have:a) The integral curve y(x) of the �eld F`, at the point x 2 M , is contained inthe orbit G(x) of x.b) The action of G on M is transitive if and only if for any x 2M , and for anyv 2 TxM , there exists ` 2 G such that F`(x) = v. �



364 Y. VILLARROEL1. The contact elements tangent to DLet CsqQ be the manifold of contact element of order s, and dimension 1 atq 2 Q, and CsQ the manifold of all contact elements CsqQ, with q 2 Q .For k � s we consider the canonical projection �sk : CsQ! CkQ given by Csq� 7!Ckq �, with � � Q a 1-dimensional submanifold [6, 12, 15, 17].Denote by is, i1;s the canonical immersion is : q 2 � 7! Cs� 2 CsQ:i1;s : Cs+1q � 2 Cs+1Q 7! C1Csq�Cs� 2 C1CsQ;The action G�CsQ! CsQ is given by g:Csq� = Csg:qg:�:Let H1 be the �ber of the contact elements of order 1 tangent to D, whichproject onto p0, i. e., H1 = fX1 2 C1p0Q : ~!n0 jX = 0g;where ~w�0 jX1 denotes the restriction of ~!�0 to the 1-dimensional subspace de�nedby the contact element X1.Consider the open set U�, V� � H1, 1 � � � n� 1, de�ned as follows,U� = fX1 2 H1 : (~!�0 + ~!�0 )jX1 6= 0g;V� = fX1 2 H1 : (~!�0 � ~!�0 )jX1 6= 0g;the coordinates in U�, (respectively V�), are de�ned as in [13],~v�00 jX1 = b�0 ~u�00 jX1;~!
0 jX1 = �
0 ~u�0 jX1;where, 
 6= �0, and ~!
0 = ~u
0 + ~v
0 : (respectively ~u�0 jX1 = b�~v�0 jX1; ~!
0 jX1 =�
0~v�0 jX1:)Proposition 2.1. Given ` 2 G0, we have(2:1) `:~u�00 = Re(`�0�0 � `00) ~u�00 � Im(`�0�0 � `00) ~v�00 + PRe(`
�0!
0 );`:~v�00 = Im(`�0�0 � `00) ~u�00 + Re(`�0�0 � `00) ~v�00 + P Im(`
�0!
0 );`:!�0 = (`�0�0 � `00) ~!�00 + P `
�!
0 :Proof. Applying Proposition 1.1 we have`:(!�00 +!�002 ) = Re(`�0�0 � `00) ~u�00 � Im(`�0�0 � `00) ~v�00 + PRe(`
�0!
0 );`:(!�00 �!�002i ) = iIm(`�0�0 � `00) ~u�00 + Re(`�0�0 � `00) ~v�00 + P Im(`
�0!
0 ) ;simplify we obtain the result. �Denote by ~C1Q all the contact elements of order 1, tangent to D, and expressX 2 U� in coordinates asX = (�10; � � � ; ���10 ; b�0 ; ��+10 ; � � � ; �n�10 );



HIGHER ORDER CONTACT OF REAL CURVES 365Proposition 2.2. Let F 0 : G0 ! �(U�); F`(X) = ddt jt=o(exp (t`):X), then wehave:For n > 2,F 0̀(X) = n�1X
 6=�(`�
 + g(b�0 ; �
0)) @�
0 jX + (`00 � Im`�� + f(b�0 ; �
0)) @b�0 jX :where f(0; 0) = g(0; 0) = 0.For n = 2, F 0̀(X) = (3Im`00(1 + b10)2) @@b10 jX :Proof. For simplicity, consider the case �0 = 1.Given ` 2 G0, and X = (b10; �20; � � � ; �n�10 ) 2 U1; let r(t) = exp(t`):X, which isexpressed in coordinates asr(t) = (b10(t); �20(t); � � � ; �n�10 (t));where ~v10jr(t) = b10~u10jr(t); ~!�0 jr(t) = ��0 ~u10jr(t) ;deriving with respect to t and evaluating at t = 0, we havedb10dt jt=0 = `:~v10jX � b10`:~u10jX ;d��0dt jt=0 = `:~!�0 jX � ��0 `:~u10jX :Applying Proposition 2.1 and substituting coordinates we have the result. �Proposition 2.3. The group G acts transitively on ~C1Q.Proof. Since the action of G on Q is transitive, it is su�cient to prove that theaction of G0 on U� is transitive.Now given X 2 U�, by Proposition 2.2 we can choose `1; � � � ; `n�1 2 G0, suchthat F 0̀1(X), � � � , F 0̀n�1 (X) generate TXU� Then by theorem 1.1. we have thatG0 acts transitively on U�. �Proposition 2.4. Let X10 2 C1;1p0 Q be given by X10 = (0; � � � ; 0), i.e.,~v10jX1 = ~!�0 jX1 = 0; ~u10jX1 6= 0 ;theni) the Lie algebra G1 of the isotropy group G1 � G0 of X10 is given byG1 = f` 2 G0 : Im(`11 � `00) = `12 = � � � = `1n�1 = 0g; i:e:;G1 = 8>><>>:` =8>>>>>>>>>>: `00 `01 `02 � � � `0n�1 `0n0 iIm`00 0 � � � 0 i`010 0 (`�� ) :0 0 0 � � � 0 �`00 9>>>>>>>>>>; ; `�� + `�� = 0; tr` = 09>>=>>; ;ii) dimG1 = dimG0 � (2n� 3)



366 Y. VILLARROELiii) For n = 2, G1 = 8<:` = 8>>>>>>: Re`00 `01 `020 0 i`010 0 �Re`00 9>>>>>>;9=; :Proof. By Proposition 2.2., we haveF 0̀(X10 ) = 0 , Im(`11 � `00) = `12 = � � � = `1n�1 = 0 : �Let O1 = G:X10 be the orbit of the action of G on ~C1Q which contains X10 .Then, the map  1 : G!O1; given by  1(g) = g:X10induces a di�eomorphism O1 ' G=G1. The formsu10; !�0 ; !11 � Im!00 ; !1�2;vanishing on G1, de�ne linearly independent real forms which can be projectedonto TX10O1, using a similar argument as in (1.1). The projected forms, denotedby ~u10; ~!�0 ; ~!11 � Im~!00 ; ~!1�2;de�ne a basis of T �X10O1.Let H2 be the �ber of the contact elements of order 2 which project onto X10 .Denote by i : C2Q! C1(C1Q) the canonical immersion and�10 : C1Q! Q; �1;10 : C1(C1Q)! C1Q;the canonical projections. Then [17 ]i(H2) = fX2 2 C2p0Q : ~!n0 jX2 = ~v10jX2 = ~!�20 jX2 = 0; ~u10jX2 6= 0g;Consider coordinates in H2 de�ned asX2 = (b11; �12; � � � ; �1n�1);where (~!11 � Im~!00)jX2 = ib11~u10jX2; ~!1�jX2 = �1�~u10jX2:Let ~C2Q be the contact elements of order 2, tangent to D, which project onto~C1Q.Proposition 2.5. Let F 1 : G1 ! �(H2) be de�ned asF 1̀(X2) = ddt jt=o(exp (t`):X2) ;



HIGHER ORDER CONTACT OF REAL CURVES 367then, for n = 2,F 1̀(X2) = (�Im`01 + bRe`00) @@b jX2 ;where ~v00 = b~u10 ; ~v10 = 0 :For n > 2,F 1̀(X2) = (2Im`01 + b11Re`00) @@b11 jX2 ++ (�`02 + (`11 � `22 +Re`00)�12 + n�1X
=3 `
2�1
) @@�12 jX20 ++ � � �+ (�`0n�1 + (`11 � `n�1n�1 +Re`00)�1n�1 +Pn�2
=2 `
n�1�1
) @@�1n�1 jX20 :Proof. For n = 2. Given ` 2 G1, we have`:~v00 = `: ~!00 � ~!002i = �1~!10 + �2~!10 + �3~!20 + �4~v00 ;Consider in TeG0p0 the basis,E10 = 8>>>>>: 0 0 01 0 00 i 0 9>>>>>; ; E20 = 8>>>>>: 0 0 00 0 01 0 0 9>>>>>; ;F 10 = 8>>>>>: 0 0 0i 0 00 1 0 9>>>>>; ; F 11 = 8>>>>>: i 0 00 �2i 00 0 i 9>>>>>; ;theǹ :~v00(E10) = �1 + �2 = 12id(~!00 � ~!00)(X; `) = Im`01; `:~v00(F 11 ) = 0 ;`:~v00(F 10 ) = i(�1 � �2) = Re`01; `:~v00(E20) = �3 = Im`02 ;and we have `:~v00 = Re`01~v10 + Im`01~u10 + Im`02~!20 :Since �X2 = X10 , we obtain ~v10 jX2 = ~!20jX2 = 0. HenceIf ` 2 G1, and r(t) = exp t`:X2, we havedbdt jt=0 = �Im`01 � bRe`00 ;For n > 2 with a similar procedure we obtain the result. �Corollary 1. The group G acts transitively on ~C2Q.Proof. Using the map F 1 : G1 ! �(H2), the proposition 2.5 , and Theorem 1.1.�Corollary 2. The Lie algebra of the element ~X20 is given as follows:



368 Y. VILLARROELIn the case n = 2, ~G2 = 8<:` = 8>>>>>: Re`00 Re`01 `020 0 �iRe`010 0 �Re`00 9>>>>>;9=; : �In the case n > 2,G2 =8>><>>:` = 8>>>>>>>>>>: `00 Re`01 0 � � � 0 `0n0 iIm`00 0 � � � 0 iRe`010 0 `�� 00 0 0 � � � 0 �`00 9>>>>>>>>>>; ; `�� + `�� = 0; tr` = 09>>=>>; ;For n > 2, using a similar argument as in (1.1), the forms!�0 ; !01 � Im!00; !1�2 ; Im!01; !0�2 ;can be projected onto T ~X20 ~O2 and de�ne a basis of T �~X20 ~O2.Let H3 = fX3 2 C3Q : �32(X3) = ~X20g. We identify H3 with its image byi : C3Q! C1(C2Q).We consider coordinates in H3 de�ned asIm~!01 jX3 = b01~u10jX3 ; ~!0�jX3 = �0�~u10jX3 ;and write X3 = (b01; �02; � � � ; �0n�1).Proposition 2.6. Let F3 : G2 ! X (H3) be de�ned as in Theorem 1.1 then:For n = 2, F 3̀(b01; �01) = �b10Re`00 @@b01 jX3For n > 2,F 3̀(X3) = �b01Re`00 @@b01 jX3 + (Im(`00 � `22)�02 � n�1X
=3 `
2�0
 ) @@�02 jX3 ++ � � �+ (Im(`00 � `n�1n�1)�0n�1 � n�2X
=2 `
n�1�0
 ) @@�0n�1 jX3 :Proof. Similarly to Proposition 2.5. �Corollary 1. For n = 2 we havei. The group G2 acts transitively onH30 = fX3 2 H3 : Im!01(X3) 6= 0g;and G3 = 8<:` = 8>>>>>: 0 Re`01 `020 0 �iRe`010 0 0 9>>>>>;9=; :



HIGHER ORDER CONTACT OF REAL CURVES 369Corollary 2. If b01(X3) = 0 then G3 = G2 and G:X30 is a singular orbit in ~C30Q.Corollary 3. For n > 2 we haveH30; Ĥ30;H31;H32 � H30de�ned asH30 = fX3 2 H3 : b01(X3) 6= 0; �0�2 6= 0; for any �2g;Ĥ30 = fX3 2 H3 : b01(X3) = �0�2 = 0g;H31 = fX3 2 H3 : b01(X3) = 0; �0�2 6= 0 for any �2g;H32 = fX3 2 H3 : b01(X3) 6= 0; �0�2 = 0g;then H30 contain the orbits of maximal dimension and Ĥ30 contain the orbits ofminimal dimension.The following Proposition gives, for n > 2, a real di�erential invariant of order3 [9, 7, 10], de�ned by a transversal section to the orbits of maximal dimension on~C3Q.For the case n = 2, the orbits of the action of G2 are lines given by the axes b01. Atransversal section of these orbits is given byI3 = fX3 2 H30 : Im�01 = 1g :Proposition 2.7. If X30 2 ~H30, then the orbit ~O3 = G:X30 is given by~O3 = fX3 2 ~H3 : b01(X3) = b01(X30 ); X j�0�2(X3)j2 = �2; �2 =X j�0�2(X30 )j2g:Proof.We will prove the statement for n = 4, and similarly for n > 4. Denote I��the matrix de�ned by I�� = (j�� ) = �1��1� ;consider a basis of �elds de�ned as:E�2�2 = iI00 + iI11 � 3iI�2�2 + iInn ;E�� = iI�� + iI�� ; J�� = I�� + I�� ;J00 = I00 � Inn ; J0� = I0� + iI�n :By Proposition 2.6, F 3J00 = �b01 @@b01 jX3. Then, to study the distribution D3 onH3, generated by the �elds fF 3̀(X3); ` 2 G3g ;it is enough to consider the components in the coordinates@@�0�2 jX3 ; 2 � �2 � n� 1 :



370 Y. VILLARROELWe identify the tangent to the �ber with the corresponding real dimensionalspace, i.e. ��� = a�� + ib�� ! (a�� ; b��) ;and we haveF 3E22 (X3) = (0; 4i�02; i�03)$ (0; 4b02;�b03; 4a02; a03);F 3E33 (X3) = (0; i�02; 4i�03)$ (0;�b02;�4b03; a02; 4a03);F 3J23 (X3) = (0; �03;��02)$ (0; a03;�a02; b32;�b02);F 3E32 (X3) = (0; i�03; i�02)$ (0;�b03;�b02; a03; a02);we observe that the vectors de�ned by(2:2) F 3E22 ; F 3E33 ; F 3J23 ; F 3E32 ;are perpendicular to the vector with components given by X3. Moreover, fora0� 6= 0 (respectively b0� 6= 0), it is possible to �nd a 4� 4 matrix inside the matrixde�ned by (2:2). Then, the integral submanifold of the distribution D3 generatedby F 3̀j , is given byO3 = fX3 2 H30 : n�1X2 j�0�(X3)j2 = �2 ; b01 = b01(X30 ); �2 = n�1X2 j�1�(X30 )j2:�A transversal section to the orbits of the action of G3 on H30 is given byI30 = �X3 2 H3 : Re�02(X30 ) > 0 ; Im�02(X3) = 0Im�01(X3) = 1 ; �0�3(X3) = 0 ; � :We will consider coordinate �3 > 0 in I30 given by~!02jX3 = �3~u10jX3 :This real invariant of C3Q, correspond with the point where the orbit of X3 meetsI3.An important observation is that the isotropy algebra of X3�3 does not dependon �3. Then a curve � � Q, tangent to D, with C3� � ~C3Q, is a curve ofconstant type [7]. The isotropy group of X3�3 2 I3 is given byG2 = 8>><>>:` = 8>>>>>>>>>: iIm`00 Re`01 0 � � � 0 `0n0 iIm`00 0 � � � 0 �iRe`010 0 (iIm`�� ) 00 0 0 � � � 0 iIm`00 9>>>>>>>>>;9>>=>>; ; in the case n > 2 ;~G2 = 8<:` =8>>>>>: 0 Re`01 `020 0 �iRe`010 0 0 9>>>>>; ; `02 2 <9=; ; in the case n=2 : �



HIGHER ORDER CONTACT OF REAL CURVES 3713. Action of G on the k, (k � 4), order contact elementsLet X30 = X3�3 , and O3 = G:X30 . The map  3 : g 2 G 7! g:X30 2 O3; allowsus to project the forms which vanish on G3,on TX30O3. Moreover the real formd�3; given by the function �3, de�ne a basis of T �X30 I3.If ~C3Q denotes the contact elements of order 3 tangent to D, which projectonto ~O2, then we have TX30 ~C3Q = TX30 ~O3 � TX30 I3 ;and we can de�ne a basis of T �X30 ~C3Q extending the forms, as follows!�� jTX30 I3 = 0 ; d�3jTX30 ~O3 = 0 :Let H4 = fX4 2 C4Q : �42(X4) = X30g, be de�ned in coordinates as follows(!00 � !22)jX4 = (a00 + ib22)~u10 ; ~!2�3 = �2�3 ~u10 :If G3 denotes the Lie algebra of the isotropy group of X3�3 then, using the fact thatthe isotropy algebra G3 is independent of �3, we prove `:d�3 = 0.Similarly to paragraph 2, and using induction we obtain the transversal sectionIk of the orbits of maximal dimension, de�ned as:In case n = 2, we have:i) G3 acts transitively on H4.G4 = 8>>>>>: 0 0 `020 0 00 0 0 9>>>>>; ; `02 2 < ;ii) G4 acts transitively on H5 and G5 = (0):For n > 2,I4 : ~!00 � ~!22 = i�4~u10 ; d�3 = �13~u10 ;~!23 = �4~u10 ; �4 > 0 :I5 : ~!00 � ~!33 = i�5~u10 ; d�4 = �14 ~u10 ; d�13 = �23~u10 ;~!34 = �5~u10 ; d�4 = �14~u10 :I6 : ~!0n = �6~u10 ; d�5 = �15 ~u10 ; d�14 = �24 ~u10 ; d�23 = �33~u10 ;~!33 � ~!44 = i�6~u10 ; d�5 = �15~u10 ; d�14 = �24~u10 ;~!45 = �6~u10 :



372 Y. VILLARROELI7 : For 4 � n � 6;Im~!00 = �7~u10 ; d�16 = �26~u10 ; d�25 = �35 ~u10 ; d�24 = �34 ~u10 ; d�33= �43~u10 ;~!44 � ~!55 = i�7~u10 ; d�6 = �16 ~u10 ; d�15 = �25~u10 ; d�24 = �34~u10;Re~!56 = �7~u10 :I7 : For n � 7; I7 :,~!k�2k�2= i�k~u10 ; d� lk�l= � l+1k�1~u10 ; d�lk�1 = �l+1k�1~u10 ;Re~!k�2k�1= �k~u10 ; d�lk�l= �l+1k�l~u10 :Given Xk 2 Ik, the Lie algebra of the isotropy group of order k is given by:In case n = 2:i) G3 acts transitively on H4.G4 = 8>>>>>: 0 0 `020 0 00 0 0 9>>>>>; ; `02 2 < ;ii) G4 acts transitively on H5 and G5 = (0):For n > 2,G4 = 8>>>>>: iA00Id4�4 0 `000 (`�� ) 00 0 iA00 9>>>>>; ; G5 =8>>>>>: iA00Id5�5 0 00 (`�� ) 00 0 iA00 9>>>>>; ;For k > 5 :Gk = 8>>>>>: 0Idk�k 0 00 (`�� ) 00 0 0 9>>>>>; ; for n = 6; G6 = (0); for n � 7; Gn�1 = (0) :It is important to distinguish the case n = 2, where we have the following:4. Equivalence of regular curves in QIn this paragraph we give the structure equations for a regular curve in Q, andnecessary and su�cient conditions for the equivalence of two regular curves.Let � be a curve in Q tangent to the distribution D at all its points, viewed asa connected 1-dimensional submanifold. Given p 2 �, denote by Ckp� the contactelement of order k of � at p, and G0Ckp� the isotropy group by the induced actionof G on CkQ. We say that p is a regular point if:For 2 � n � 5, dimG0C5p� = 0, for n = 6 dimG0C6p� = 0.For n � 7, dimG0Cn�1p � = 0,



HIGHER ORDER CONTACT OF REAL CURVES 373If p is regular and k is the smallest order of contact with G0Ckp� = 0, we say thatp is a regular point of order k.Now if p is a regular point of order k then all the points in a neighborhood ofp are regular of order k. We can see this, using the following results about LieGroups [1].Proposition 3.1. Let G be a Lie group acting on a smooth manifold M . Forp 2 M , let Gp be the isotropy group of p and d(p) the dimension of Gp. Then,given p0 2M , there exists a neighborhood V of p0 in M , such that d(p) � d(p0)for all p 2 V .We will say that a curve � � Q is regular if all its points are regular.Let Ik be the transversal section de�ned in paragraph 3., and A = G:Ik. Thenwe have the following,Theorem 3.1. Let � � Q be a curve, and p 2 �. Then � is regular of order kin p if and only if Ckp� 2 A.Proof. See [16] . �Theorem 3.2. Let h : Ik � G ! A be de�ned as h(X; g) = g:X. Then h hasmaximal rank.Proof. The manifold Ik is transversal to the orbits of the action of G on A. Then,if X 2 Ik we have,TXA = TXIk � TXOX ; where OX = G:X :Now given g 2 GTlg(TXA) = T lg(TXIk) � T lg(TXOX) = Tg:XgIk � Tg:XOX ;moreover Tg:XIk \ Tg:XOX = T lg(TXIk \ TXOX ) = 0 :Then, dim(T lg(TXA)) = dimA and h has maximal rank. �Corollary 3.1. Given X 2 A there exists X0 2 Ik, g0 2 G and neighborhoodsU � A; U � Ik, B � G of X, X0 and g0 respectively such thathjU�B : U � B �! U is a di�eomorphism :Then, there exist smooth sections � : U ! U � Ik; � : U ! B � G, such that(3:1) (hjU�B)�1 = (�; �) :Remarks.1. If � : J 2 < ! Q is a regular curve of order k, then Ck� � A. Also givenX = Ckp� the section � allows us to de�ne an immersion ~� = � �Ck�, of the curve



374 Y. VILLARROEL� in G. Then we can transport the invariant forms !�� de�ned on G to the curve�, as follows ~!�� = ~��!�� :2. Given X 2 Ik the forms !�� , which vanish on Gk. Were projected ontoTXkOk using the map �k : g 2 G 7�! g:Xk 2 Ok.For v 2 TXkOXk we have de�ned ~!�� (v) = !�� (V ), where V 2 TeG andT j(V ) = v. The forms ~!�� can be extended, to the space TXk (G:Ik).3. Let � 2 Q be a regular curve of order k, and p 2 � a regular point of orderk. Then, for q 2 � there are g 2 G and Xk 2 Ik, such that Ckq � = g:Xk. Theleft invariants forms ~!�� which vanish on Gk ( with the exception of !00�!002i ), werede�ned on �0(0) 2 TpQ as~!�� (�0(t)) = ~!�� ( ddt jt=0Ck�1�(t)) :We can transport the form Im!�� to the curve �, using the section ~�. Then wede�ne ��Im!00(�0(t)) = i�n(t)~��!n0 (�0(t)); �n(t) 2 < :4. The Structure equationsLet e� : G! Cn+1; given by e�(g0; � � � ; gn) = g� ;where g = (g�� ) = (g0; � � � ; gn). Then, we have de� =P!�� e�:If � : J ! Q is a regular curve tangent to D, we say that � is parametrized by arclength if u10(�0(t)) = 1, for t 2 J . A parametrization of � by arc length is given bys(t) = Z tt0 u10(�0(t))dt :Given a regular curve parametrized by arc length , we have,for n = 2: de0 = dse1de1 = dse0 + idse2de2 = �5de0 + idse1 ;where �5 = ��Im~!20�� ~u10 .For 3 � n � 6 the structure equations are given by the matrix,



HIGHER ORDER CONTACT OF REAL CURVES 3758>>>>>>>>>>>>>>>>>>>>>>>>>: i�5ds ds +ids idsids i�4ds�3ds i�5ds ��4ds�4ds i�6ds ��5ds +i�6ds�5ds +i�7ds ��6ds�5ds ds �i�3ds 9>>>>>>>>>>>>>>>>>>>>>>>>>;where, �5, ��, �� are the invariants of the orbits de�ned in paragraph and,�6 = ��Im~!00�� ~u10 , �4 = �5 � �4, �� = ���1 � ��:For n � 7 the structure equations are given by the matrix,8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>: i�7ds ds idsids i�7ds�3ds i�4ds ��ds�4ds � �� � �� � ��n�1ds�n�1ds i�n�1ds ��n�1ds�n�1ds i�dsds i�7ds 9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;where �k = ��Im~!k�20��~u10 �n�1 = ��~!n�20��~u10 �n = ��Im~!00��~u10�4 = �7 � �4 ��5 = ��5�1 � ��5 � = �3�7 �P ��4 :Remark. In Dp0 we have a complex structure de�ned by the operatorI : v 2 Dp0 7! iv 2 Dp0 ;and the Levi form de�ned by (�(v; v))2 =P!
0 (v)!
0 (v).For regular curves tangent to D we have!
0 = 0; !10 = u10; 2 � 
 � n� 1 :The following Theorem about Lie groups, and the structure equations de�nedabove, allow us to prove the following Theorem of equivalence of curves.Theorem 3.3. Let G be a n-dimensional Lie group and !1; � � � ; !n a basis ofright invariants forms of G. Let S1; S2 2 G be two m-dimensional connectedsubmanifolds, with n < m. Then, there exists an element g 2 G such thatRg(S1) = S2 if and only if there exists a di�eomorphism  : S1 ! S2, whichpreserves the forms !j ,  �(!jjs1) = !jjS2.



376 Y. VILLARROELProof. See [7].Theorem 3.4. Let �1;�2 � Q be two regular curves of order k, transverses to D,parametrized by length arc. Let p1 2 �1, p2 2 �2. Then there exists an elementg 2 G such that locally, lg(�1) = �2, g:p1 = p2 if and only if there exists a localdi�eomorphism : �1 ! �2; such that �1� �  = �2�; �1� �  = �2�;�1� �  = �2�; �1� �  = �2�;where � j�; �j�; �j�; �j�; j = 1; 2; are the invariants associated to �j.Proof. Let ~�1; ~�2 be the local sections of �1;�2 respectively in G, de�nedby the local di�eomorphism given in (3.1). These sections de�ne two connectedsubmanifolds ~�1; ~�2 2 G, and �1;�2 are locally equivalent if and only if ~�1; ~�2 arelocally equivalent, by the following commutative diagramJ1 
1�! �1 � Q ik�! CkQ �1�! G??ylg ??ylgJ2 
2�! �2 � Q ik�! CkQ �2�! G :Using Theorem 3.3, we have that ~�1 = �1 � ik � 
1, and ~�2 = �2 � ik � 
2, areequivalents if and only if there exists a local di�eomorphism  which preservesthe forms !�. Since the curves are parametrized by arc length, we have usingthe structure equations that the forms are preserved if and only if the invariants� j�; �j�; �j�; �j�; j = 1; 2; are preserved. �References[1] Bredon, G.E., Introduction to Compact Transformations groups, Academic. Press, NewYork (1972).[2] Cartan, E., Sur la g�eom�etrie pseudo-conforme des hypersurfaces de deux variables com-plexes, I. II, Ouvres II, 2, 1231-1304; ibid III,2, 1217-1238.[3] Cartan, E., Th�eorie des groupes �nis el la g�eom�etrie di��erentielle trait�ees par la Methodedu rep�ere mobile, Gauthier-Villars, Paris, (1937).[4] Chern, S.S., Moser, J. K., Real hypersurfaces in complex manifolds, Acta mathematica133(1975), 219-271.[5] Chern, S.S., Cowen, J.,M., Frenet frames along holomorphic curves, Topics in Di�erentialGeometry, 1972-1973, 191-203. Dekker, New York, 1974.[6] Ehresmann, C., Les prolongements d'un space �br�e difer�entiable, C.R. Acad. Sci. Paris,240(1955), 1755-1757.[7] Green, M. L., The moving frame, Di�erential invariants and rigity theorems for curves inhomogeneous spaces, Duke Math. Journal, Vol 45, No.4 (1978), 735-779.[8] Gri�ths, P., On Cartan's method of Lie groups and moving frames as applied to existenceand uniqueness questions in di�erential geometry, Duke Math. J. 41(1974), 775-814.[9] Hermann, R., Equivalence invariants for submanifolds of Homogeneous Spaces, Math.Annalen 158(1965), 284-289.[10] Hermann, R., Existence in the large of parallelism homomorphisms, Trans. Am. Math.Soc. 108, 170-183 (1963).[11] Jensen, G. R., Higher Order Contact of Submanifolds of Homogeneous Spaces, Lecturesnotes in Math. Vol. 610, Springer-Verlag, New York (1977).
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