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HIGHER ORDER CONTACT OF REAL CURVES
IN A REAL HYPERQUADRIC
PART II

YUuLl VILLARROEL

ABSTRACT. Let ® be an Hermitian quadratic form, of maximal rank and
index (n,1), defined over a complex (n+1) vector space V. Consider the real
hyperquadric defined in the complex projective space PV by

Q ={[c]€ P"V, &(s) = 0}.

Let G be the subgroup of the special linear group which leaves ) invariant and
D the (2n)— distribution defined by the Cauchy Riemann structure induced
over . We study the real regular curves of constant type in Q, tangent to D,
finding a complete system of analytic invariants for two curves to be locally
equivalent under transformations of G'.

The real hypersurfaces of real codimension one, are the boundaries of domains
in a complex manifold. Among the non-degenerate real hypersurfaces in C?*!
the simplest and most important are the real hyperquadrics. S. Chern and J.
Moser show how the geometry of a general non-degenerate real hypersurface can
be considered as a generalization of a real hyperquadric [4].

The concept of Frenet frame for holomorphic curves in complex projective spaces
played an important role in the classical theory of the equidistribution of these
curves [5]. In [16], we use contact theory to study the real curves in the hyper-
quadric,

Q={[cJePrC”, @(¢) =0}

transversal to the distribution D, and find the Frenet frames for these curves.

The purpose of the present article 1s to study the real curves, of constant type
in the hyperquadric @, tangent to the distribution D, finding a complete system
of analytic invariants for two curves to be locally equivalent under transformation
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of the group GG. Moreover we find the Frenet frames for these curves. Using
contact theory and the action of the group on each contact manifold of order &, a
transversal section to the orbits of maximal dimension, can be naturally obtained.

It 1s interesting to observe that in the study of the Frenet frame of regular curves
of constant type tangent to the distribution 1D, we obtain three visibly differents
cases, namely: n = 2,4 <n <6,y n>7. For n = 2, we obtain a real invariant
of order b5, in contrast with the curves transverse to the distribution, which have
two real invariants of order 3 and 4 [16].

1. The higher order contact in the hyperquadric

Let @ be the Hermitian quadratic form over a (n 4 1)— vector space V
D) =+ -C¢"), Cev,
and G C SL(n+ 1,C) be the subgroup which leaves ® invariant. The Lie algebra

G of GG is given by

© e oo -
0 i | =0
G=<KtelT.G: (= : (gg) : ;o trd =0,
6ot —ily .
@i L il 0 o, b5 €N

Denote by w, the canonical form over G with components wf respect to the usual
basis . Let @ be the (2n + 1)-dimensional real hyperquadric [5], defined in the
complex projective space P"V by the equation

Q={[cJe PV, () =0}

The group G acts on P"V by ¢.[¢(] = [¢.¢], and the quadric @ is invariant by the
action of G on P"V, moreover, (G acts transitively on ). Then, given pg € @}, the
map

Vg e G gpo€Q,
defines an isomorphism: G/G° ~ Q. The isotropy group G° at pg = [(1,0,---,0)],

isG'={g€G: g5 =0,1<a<n}and its Lie algebra G° is given by

0o 0
0 _ Ly o
G =qleg:t=1| o (3
N R

In the following we will agree that small Greek indices o, 7, run from 1 to n — 1,
the indices ay run from k to n — 1, unless otherwise specified, and we will use the
summation convention.
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The forms w§ which vanish on T,GY, allow us to define a basis {&§} of 15.Q
as follows. Given v € T, @, let

(1.1) w5 (U) = wg (ve), where veG, and T.0 (v) = 0.
Proposition 1.1. The Lie algebra G° acts on 15, Q as follows:
(L) €G” X Ty Q@ Le, L&(0)=—dwl|c(le,ve), withveG, T.y°(ve) =1,

and its expression in coordinates Is

Loy = 0] + (=08 +)as - ilor 1<a, y<n-1,
Lol = — 2RelO7 v #£ .
Proof. See [16]. O

We observe that the subspace D,, C T,,@ defined by &f = 0 is invariant by
GO, since GY transforms wf in a multiple of itself, and G° is connected.

The transitivity of the action of G on @, allow us to define a (2n)-dimensional
distribution over @), as follows

D:peQQvr— (l5)«(Dp,), where g€ G and ly(po) = g.po =p-

To study the real curves in (), 1t is natural to consider two cases: the curves
transversal to the distribution D at all its points, and the curves tangent to D at
all points. In [16] we consider the first case, using contact theory. In this paper we
will study the second case. We will use the following theorem about Lie groups.

Theorem 1.1. Let (G be a Lie group that acts on a smooth manifold M and G
its Lie algebra. Let x(M) denote the smooth (C*) vector fields on M, and let F
be the map:

d
F:G— x(M), {— Fy, with Fy(z) = E|t:0(exp (t).z) ,

then we have:

a) The integral curve y(x) of the field Fy, at the point ® € M, is contained in
the orbit G(z) of x.

b) The action of GG on M is transitive if and only if for any x € M, and for any
v € Ty M, there exists { € G such that Fy(x) = v. a
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1. THE CONTACT ELEMENTS TANGENT TO D

Let ¢7¢) be the manifold of contact element of order s, and dimension 1 at
q € @, and C*Q the manifold of all contact elements €3¢, with ¢ € @ .

For k < s we consider the canonical projection 7 : C*Q — C*Q given by Ol —
C’gf, with T C @ a l-dimensional submanifold [6, 12, 15, 17].

Denote by ¢*, i'* the canonical immersion i°:q €T — C°T € C*°Q.

i O € CHIQ s OLrC°T € C1CPQ,

The action G x (*Q — C*@Q  is given by g.CyI' = (g g.T.
Let H' be the fiber of the contact elements of order 1 tangent to D, which
project onto pg, 1. e.,

H={X'eC, Q: anX =0},

where w§| X! denotes the restriction of & to the 1-dimensional subspace defined
by the contact element X*.
Consider the open set %, V* C H!, 1 < a < n — 1, defined as follows,

Ut = {X'eH (845N £0),
yro(X'eH': (8 -TPIX' A0
the coordinates in U %, (respectively V<), are defined as in [13],
U0 X = b ag | X
X = A,
where, v # ag, and @] = @] + 77. (respectively ag|X' = b29g| XL, @&J|X! =
Agug |X1)
Proposition 2.1. Given £ € G°, we have

Cag® = Re(£3s — ) ug® — Im(£38 — )  v5° + 30 Re(€), wy),
(2.1) €950 = Im(£20 — €3)  a® + Re(£20 —€3) &5° + 3 Im(€, w)),
lwd = (L0 —10)  &° + > fw].
Proof. Applying Proposition 1.1 we have
(RSN = Rellgn— @) g0 — Im(ta —48) B8 + B0 Re(6,]),
(T = ity — @) GG + Re(e — @) 50 + 5 Im(G,e).,

simplify we obtain the result. a

Denote by C''Q all the contact elements of order 1, tangent to D, and express
X € U™ in coordinates as

X = (/\éa ’/\84—1’1784’/\844-1’.” ’/\61—1)’
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Proposition 2.2. Let F? : G° — x(U%), Fy(X) = %|t:0(exp (t6).X), then we
have:

Forn > 2,
n—1 9
PO = 3 a0 03)) 37 b+ (6 = It + 185 00
yEQ

where f(0,0) = ¢(0,0) = 0.
Forn =2, F)(X)=(3Iml)(1+b})%) 5x]x.
Proof. For simplicity, consider the case ag = 1.
Given £ € G% and X = (b}, A2, .-+, AI™H) € UL, let r(t) = exp(tf). X, which is
expressed in coordinates as
r(t) = (bé(t)’ /\g(t)’ T ’/\g_l(t))’
where
Tolr(t) = bpuglr(t), @flr(t) = Afaglr(t),

deriving with respect to ¢ and evaluating at { = 0, we have

db}
0|t 0= Lo} X —bleal| X,

d/\o‘
-9 |t 0 =LOY|X = \SLad|X .

Applying Proposition 2.1 and substituting coordinates we have the result. a

Proposition 2.3. The group G acts transitively on clQ.

Proof. Since the action of G on @ is transitive, it is sufficient to prove that the
action of GY on U/® is transitive.

Now given X € U, by Proposition 2.2 we can choose {1, -+ ,{,_1 € GY, such
that FZO1 (X), -, onn_l(X) generate TxU* Then by theorem 1.1. we have that
GO acts transitively on /. a

Proposition 2.4. Let X} € C’Z}élQ be given by X = (0,---,0), ie,
1~)0|X1 = @3|X1 =0, 170|X1 #0,

then
i) the Lie algebra G' of the isotropy group G C G of X} is given by
Gl=1{0eG” . Im(t; —£))=t5=---=(,_, =0}, ie.,
L R
0 im0 - 0 W —
1_ _ 0 1 . o 6 _ —
G =<L= 0 0 (E%) . ;o g+ Lla=0, trf=0,,
0 0 0o .- 0 —£3

ii) dimG! = dimG°® — (2n — 3)



366 Y. VILLARROEL

iii) For n = 2,
Rely () 6§
Gh=<1t= 0 0 i
0 0 —Rel

Proof. By Proposition 2.2., we have

FUX)=0 & Im{j—6)=(=={_,=0. O

Let 0! = G.X} be the orbit of the action of G on C'Q which contains Xt
Then, the map

Yt G = O givenby  Wl(g) =g.X¢8
induces a diffeomorphism @' ~ G/G'. The forms

1 o 1 0 1
Uy, Wp , W1 — ImwOawocy

vanishing on G, define linearly independent real forms which can be projected
onto TXé(’)l, using a similar argument as in (1.1). The projected forms, denoted

by

define a basis of T)*(l(’)l.

Let H? be the fiber of the contact elements of order 2 which project onto X{.
Denote by i : C?Q — C'(C'Q) the canonical immersion and

T C'Q = Q, wytCHC'Q) = C'Q,
the canonical projections. Then [17 ]
i) = (XTeC2Q:  GUINT = XT =GN =0, allX?#0),
Consider coordinates in H? defined as
X2 = (b1 Az, An),

where
(@1 — Im@Y)|X? = ibjag | X2 GL|IX? = Abap| X2
Let C~'2Q be the contact elements of order 2, tangent to D, which project onto
clQ.
Proposition 2.5. Let F'': G! — x(H?) be defined as

d
le(Xz) = E|t:0(exp (tﬁ).Xz) ,
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then, for n = 2,
le(Xz) = (—Imﬁ(f + bReﬁg)%D(Z , where 7§ = bay , g = 0.
Forn > 2,
FHX?) = 2Imf) + b}Reﬁg)%|X2 +

n—1
4 (=094 (62 — €2 + Refd)\) +Z£M1 0

259N X5+

o (= (-0 1+Re€0)A1 D DA AP NI XG

Proof. For n =2. Given £ € G', we have

=0 _
20— NG 4 Ao@d + g + Al

~0
~ Wy —
039 =022

Consider in TeGgD the basis,

then

1 I
COYED =M 4+ Xy = Zd(ag OO (X,€) = Imf?, La)(FHy =0,

CAY(Fy) = i(A1 — Ao) = Retll,  £03(F2) = A3 = Im(3,
and we have
055 = Rel)v§ + Im&as + Imlyo3 .
Since mX? = X}, we obtain  §}|X? = &2|X? = 0. Hence
If £€ Gt and  r(t) = exptl.X? we have
db
dt

For n > 2 with a similar procedure we obtain the result. a

—i=0 = —Imt} — bRely

Corollary 1. The group G acts transitively on C2Q.

Proof. Using the map F'' : G — y(#?), the proposition 2.5 , and Theorem 1.1.
O

Corollary 2. The Lie algebra of the element )N(g is given as follows:
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In the case n = 2,

Reﬁg Reﬁ? Eg

G?=<rt= 0 0 —iRel} . O

In the case n > 2, 0 0 —Rel}

0B Rel? 0 - 0 £

0 mfl 0 -~ 0 iRely -

g2: { = 0 a 1 ,£a+£g:0, tr{ =0 ;

0 0 05 0 6

0 0 0 -~ 0 =0
For n > 2, using a similar argument as in (1.1) the forms

w wd — Imwl, w Imw?, 0 ,

can be projected onto T'g- O? and define a basis of T)*EQ(’)Z.
0 0

Let #? = {X? € C3Q : 73(X?) = XZ2}. We identify #? with its image by
i:C%Q — CHC?Q).
We consider coordinates in H3 defined as
Im&? X3 =00ad|x?, &2x® =X\0al|x?,
and write X3 = (b7, A3, -+ A2 _ ).

Proposition 2.6. Let F2:G? — X(?-l?’) be defined as in Theorem 1.1 then:
Forn =2,

0
FPR ) = b Ret) | X
1

Forn > 2,

FZ?’(X?’):—I)?R@ES%M?’ + (Im(€) — 2\ — ZWAO /\0|X3—|—
1 2

X7

0 7 1 0
4+ (Im(£) — 1 ZE A mo »

Proof. Similarly to Proposition 2.5. |

Corollary 1. For n = 2 we have

i. The group G? acts transitively on
Ho = {X? e H? : Imwl(X?) £ 0},

and

0 Rel} 0

0 0 —iRel

0 0 0

Gi={r=
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Corollary 2. If b9(X3) = 0 then G = G? and G.X} is a singular orbit in é’g’Q
Corollary 3. For n > 2 we have
My MG M HS CHY

defined as

Hy ={X? e H? b} (X?) #0, Ao #0, for any as},
Ao, = 0},
=0, A%, #0 foranyas},
Hy ={XP e H? bY(X3) £0, A =0},

then H3 contain the orbits of maximal dimension and 7:[8’ contain the orbits of
minimal dimension.

The following Proposition gives, for n > 2, a real differential invariant of order
39,7, 10], defined by a transversal section to the orbits of maximal dimension on
C3Q.

For the case n = 2, the orbits of the action of G? are lines given by the axes b}. A
transversal section of these orbits is given by

P={X?cH}: Im\=1}.
Proposition 2.7. If X7 € 7-28’, then the orbit O° = G.X3 is given by

0% = (X e H L 00(X%) = BY(XD); D ING, (XD P =07, p° = N, (X))

Proof. We will prove the statement for n = 4, and similarly for n > 4. Denote Ig
the matrix defined by

15 = (73) = 3L},
consider a basis of fields defined as:
Eg2 = dIf +ilf — 31132 + 41,
Egf =il§ +4lf, Jg =15+ 15,
Jo=10 - 17, JO =10 412

By Proposition 2.6, F;’D = —b?%p(?’. Then, to study the distribution D3 on
0 1

H3, generated by the fields
{FP(X?), (€@,

it 18 enough to consider the components in the coordinates

0

ﬂb{&;, 2§a2§n—1
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We identify the tangent to the fiber with the corresponding real dimensional
space, 1.e.
AG = ag +ibg — (agz,b3),

and we have

Fgg (X3) = (0,403, iA3) < (0,469, -3, 4a9, af),
Fgg (X?) = (0,83, 4iAg) > (0, =03, —4b3, a5, 4a3),
F3,(X%) = (0,08, -X9) & (0,3, —ab, 03, ~19).
F, (%) = 0.8, o 6,18, 0368

we observe that the vectors defined by
(2.2) Fio Foa P2, 2

are perpendicular to the vector with components given by X3. Moreover, for
al # 0 (respectively % # 0), it is possible to find a 4 x 4 matrix inside the matrix
defined by (2.2). Then, the integral submanifold of the distribution D3 generated
by Fz?;a is given by

O = (X* ey STPNUXIP =2, 8 =)D, p—Zw X3P
2 O

A transversal section to the orbits of the action of G® on H3 is given by

3 _ 3 3. R@Ag(Xg)>0, ImAg(XS):O
10—{)( R (X =1, A0 (X3) =0,

We will consider coordinate p3 > 0 in I3 given by
HIXC = pead|X®
This real invariant of C3Q), correspond with the point where the orbit of X3 meets
.
An important observation is that the isotropy algebra of X?a does not depend

on ps. Then a curve I' C @, tangent to D, with C®T C C3Q, is a curve of
constant type [7]. The isotropy group of X?a € I3 is given by

ilmf  Rel? 0 e 0 0
0 ilmf 0 e 0 —iRel?
2 _ 0 1 : .
G'=<(tl= 0 0 (i[mﬁg) 0 , in the case n > 2;
0 0 0 e 0 iImfl
R 0 Relf 0
Gl=<{t=1|0 0 —iRel 5 ER 3, in the case n=2. U
0 0 0
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3. Action of GG on the k, (k > 4), order contact elements

Let X3 = X;’a, and @3 = G.X3. The map ¢?:g€ G g.X3 € 03, allows
us to project the forms which vanish on G3,on TXg 03, Moreover the real form

dps, given by the function ps, define a basis of T)*(afg’.
o

If C:'?’Q denotes the contact elements of order 3 tangent to D, which project
onto @7, then we have

Txg’GSQ = Txg’@S @ Txg’IS 5

and we can define a basis of T;(g,CN'?’Q extending the forms, as follows

wilTxs P =0,  dps|Txs0° =0.
Let H* = {X* € C*Q: wi(X?*) = X3}, be defined in coordinates as follows
(wo —wi)|X* = (ag +ib3)ig, @i, = Ao g -

If G3 denotes the Lie algebra of the isotropy group of X?a then, using the fact that
the isotropy algebra G3 is independent of p3, we prove £.dps = 0.

Similarly to paragraph 2, and using induction we obtain the transversal section
I* of the orbits of maximal dimension, defined as:

In case n = 2, we have:

i) G® acts transitively on H*.

0 0 £
G'=10 0 0 |, HeR,
00 0

ii) G* acts transitively on H® and G* = (0).

For n > 2,
I4.
~0 _ ~2 =1 _ 1~
Wop —wy = ITlg, dps = pP3lp,
~2 =1
w3 = paug, pa>0.
15.
~0 _ ~3 =1 1~1 1 _ =1
wo—wg = zr;,ulo, dry = T%u?, dps = p3up,
wy = psty, dps = palg
16.
~0 =1 1~1 1 21 2 3~1
w, = peuy, dms = Tug, drp = Tiup, dps = paug,
~3 _ ~4 =1 _ 1~ 1T 2~
("’3_("’211 = Z7'6Uloa dps psto, dpy Pilly,
Wy = pelp-
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I For 4 <n <6
— —_ )
~0 o ~1 1 _ ,2~1 2 _ 31 2 _ _3~1 3 4~1
4Imwg = 1/7u01, dug = u?u?, d7’51 = Tgu?, d% = T%u?, dps= p3ug,
wi—ws = iUy, dre = Tgup, dps = piug, dpy = piup,
Re@? = pruf .
I’ For n > 7 I
) )
~k—2 _ . ~1 A &S | { 4T -1
wi_%_zrkuo, drk_l_rlﬁlluo, dpg,_y = py g,
~k=2_ o~ I ~1
Rew,"{ =prty, dp,_;=ps_ug.

Given X* € I the Lie algebra of the isotropy group of order k is given by:
In case n = 2:

i) G® acts transitively on H*.

0 0
gi=100 0|, fLewn,
00 0

ii) G* acts transitively on H® and G* = (0).

For n > 2,
iAS Tdaya 0 0 iAS Idsxs 0 0
G* = 0 (Eg) 0 ] . G = 0 (Eg) 0 ,
0 0 iAS 0 0 iAS
For k > 5:

R [ 0ldkxk 0 0
Gt =

0 (&) 0]; forn=6, G°=(0), forn>7, G"'=(0).
0 0 0

It is important to distinguish the case n = 2, where we have the following:
4. Equivalence of regular curves in @

In this paragraph we give the structure equations for a regular curve in ¢, and
necessary and sufficient conditions for the equivalence of two regular curves.

Let T’ be a curve in ) tangent to the distribution D at all its points, viewed as
a connected 1-dimensional submanifold. Given p € I', denote by C*T' the contact
element of order &k of I' at p, and GOC;;F the isotropy group by the induced action
of G on C*Q. We say that p is a regular point if:
For 2 <n <35, dimGOCSF =0, forn=6 dimGOCSF =0.

For n > 7, dimGOCn_lf =0,
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If p is regular and k& is the smallest order of contact with GockF = 0, we say that
p

p 1s a regular point of order k.

Now if p is a regular point of order k then all the points in a neighborhood of
p are regular of order k. We can see this, using the following results about Lie
Groups [1].

Proposition 3.1. Let G be a Lie group acting on a smooth manifold M. For
p € M, let G, be the isotropy group of p and d(p) the dimension of GG,. Then,
given pg € M, there exists a neighborhood V' of py in M, such that d(p) < d(po)
forallpe V.

We will say that a curve I' C @ 1s regular if all its points are regular.

Let I* be the transversal section defined in paragraph 3., and A = G.I*. Then
we have the following,

Theorem 3.1. Let I' C @ be a curve, and p € I'. Then T is regular of order k
in p if and only ifC'Z’fF e A

Proof. See [16] . O

Theorem 3.2. Let h : I* x G — A be defined as h(X,g) = g.X. Then h has
maximal rank.

Proof. The manifold /¥ is transversal to the orbits of the action of G on A. Then,
if X € I* we have,

Tx A= Txfk D ITxOx , where Ox = G.X .
Now given g € G
Tl (Tx A) = Tl (Tx I*) & Tl,(Tx Ox) = Ty xgI* & T, x Ox ,

moreover
TyxI"NTyxOx =Tl,(Tx I* N TxOx)=0.
Then, dim(Tl,(TxA)) = dimA and  h has maximal rank. d

Corollary 3.1. Given X € A there exists Xo € I¥, go € G and neighborhoods
UCA UcCIF, BCGofX, Xy and gy respectively such that

hluxs : U x B— U is a diffeomorphism .

Then, there exist smooth sections 5 :UY = U C I¥, ¢ :U — B C G, such that

(3.1) (hloxs)™ = (n,0).

Remarks.

1. IfT':J € R — Q is a regular curve of order k, then C*I' C A. Also given
X = C’Z’fF the section o allows us to define an immersion & = o o C*T, of the curve
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I'in G. Then we can transport the invariant forms wg defined on G to the curve
I, as follows

(Z)g = 5'*(.0% .

2. Given X € I* the forms w3, which vanish on G*. Were projected onto
Tx« OF using the map ¢ : ¢ € G — g.X* € OF.

For v € TxxOxx we have defined (Z)g(v) = wg(V), where V € T.G and
T+ (V) = v. The forms wg can be extended, to the space Txx (G.IF).

3. Let T' € @ be a regular curve of order k, and p € I' a regular point of order
k. Then, for ¢ € T there are ¢ € G and X* € I*, such that C’gf = g.X*. The

0_70
wy—wy
21

left invariants forms & which vanish on G* ( with the exception of ), were

defined on I'(0) € 7,Q) as

FH(0) = 55 (G emaC* T(0).

We can transport the form Imw§g to the curve I', using the section o. Then we

define
U*Imwg(F'(t)) =it ()T wi(T' (1)), ma(t) €R.

4. The Structure equations
Let
€a :G_>Cn+1a given by 6a(90,"',gn):ga,

where g = (95) = (9o, -, gn). Then, we have de, = nge@.
IfT:J — @ is aregular curve tangent to 1D, we say that I' is parametrized by arc
length if u} (I (t)) = 1, for t € J. A parametrization of I' by arc length is given by

Given a regular curve parametrized by arc length | we have,

for n = 2:
deg = dseq
dey = dseg + idses
des = wvsdeg + idse; ,
*I ~ 2
where v = 220

*
O'UD

For 3 < n < 6 the structure equations are given by the matrix,
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wsds ds +ids ids
ids  14ds
pads i05ds  —pads
pads
i66d8 —65d8
+iveds

psds  +iprds —peds

psds  ds  —ipsds

where, 5, Ty, po are the invariants of the orbits defined in paragraph and,

o* Im@?
U*ﬂéu’ 6421/5_7—4’ 6042604—1_7—oc~

Vg =

For n > 7 the structure equations are given by the matrix,

ivrds ds ids
ids ivrds
pads id4ds —pds
p4d5 . .
—pn-1ds
Pn—1ds ipn_1ds —v,_1ds
Vp_1ds teds
ds iwvrds
where
U*Imd)g_2 a*d)g_2 _ ot Imad
Tk = O‘*ﬂé Vpn—1= O‘*ﬂé Tn = O‘*ﬂé

(54:1/7—7'4 (5055 :6045—1_7—045 62—3(57—2(5a4

Remark. In D, we have a complex structure defined by the operator

IT:ve Dpy—~ive Dy,
and the Levi form defined by  (a(v,v))? = Zﬂ(v)wg(v).

For regular curves tangent to 1) we have
wg:o, wé:ué, QSPYSn_l

The following Theorem about Lie groups, and the structure equations defined
above, allow us to prove the following Theorem of equivalence of curves.

n

Theorem 3.3. Let G be a n-dimensional Lie group and w',--- ,w" a basis of

right invariants forms of G. Let 51,52 € G be two m-dimensional connected
submanifolds, with n < m. Then, there exists an element g € G such that
Ry(S1) = So if and only if there exists a diffeomorphism  : S1 — S3, which
preserves the formsw!, ¥*(wi|sy) = wi|Ss.
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Proof. See [7].

Theorem 3.4. LetI'" T'? C Q be two regular curves of order k, transverses to D,
parametrized by length arc. Let py € T'', py € T2, Then there exists an element
g € G such that locally, l,(I'") = ', g.p1 = p» if and only if there exists a local
diffeomorphism

Iy — Iy, such that 7%01/’:7;’ ﬂ‘lfo1/):ﬂ§“

where 72, pul, ol V), j=1,2, are the invariants associated to I'7.

Proof. Let &',6? be the local sections of T'',T'? respectively in &, defined
by the local diffeomorphism given in (3.1). These sections define two connected
submanifolds fl, r?2e G, and T'' T'? are locally equivalent if and only if fl, I'? are
locally equivalent, by the following commutative diagram

1 -k 1
J.o e 5 ok X G

| [
2L e D oo DG
Using Theorem 3.3, we have that T* = ¢! 0 i* o 4!, and T2 = 620 if 042, are
equivalents if and only if there exists a local diffeomorphism % which preserves
the forms w®. Since the curves are parametrized by arc length, we have using
the structure equations that the forms are preserved if and only if the invariants
Tg;,u‘g(,p];(, 1/&, j = 1,2, are preserved. (I

REFERENCES

[1] Bredon, G.E., Introduction to Compact Transformations groups, Academic. Press, New
York (1972).
[2] Cartan, E., Sur la géométrie pseudo-conforme des hypersurfaces de deuz variables com-
plexes, 1. II, Ouvres 11, 2, 1231-1304; ibid 11I1,2, 1217-1238.
[3] Cartan, E., Théorie des groupes finis el la géométrie différentielle traitées par la Methode
du repére mobile, Gauthier-Villars, Paris, (1937).
[4] Chern, S.S., Moser, J.K., Real hypersurfaces in compler manifolds, Acta mathematica
133(1975), 219-271.
[5] Chern, S.S., Cowen, J., M., Frenet frames along holomorphic curves, Topics in Differential
Geometry, 1972-1973, 191-203. Dekker, New York, 1974.
[6] Ehresmann, C., Les prolongements d’un space fibré diferéntiable, C.R. Acad. Sci. Paris,
240(1955), 1755-1757.
[7] Green, M.L., The moving frame, Differential invariants and rigity theorems for curves in
homogeneous spaces, Duke Math. Journal, Vol 45, No.4 (1978), 735-779.
[8] Griffiths, P., On Cartan’s method of Lie groups and moving frames as applied to existence
and uniqueness questions in differential geometry, Duke Math. J. 41(1974), 775-814.
[9] Hermann, R., Equivalence invariants for submanifolds of Homogeneous Spaces, Math.
Annalen 158(1965)7 284-289.
[10] Hermann, R., Ezistence in the large of parallelism homomorphisms, Trans. Am. Math.
Soc. 108, 170-183 (1963).
[11] Jensen, G. R., Higher Order Contact of Submanifolds of Homogeneous Spaces, Lectures
notes in Math. Vol. 610, Springer-Verlag, New York (1977).



HIGHER ORDER CONTACT OF REAL CURVES 377

[12] Jensen, G.R., Deformation of submanifolds of homogeneous spaces, J. of Diff. Geometry,
16(1981), 213-246.

[13] Kolaf, 1., Canonical forms on the prolongations of principle fibre bundles, Rev. Roum.
Math. Pures et Appl., Bucarest, Tome XVI, No.7 (1971), 1091-1106.

[14] Rodrigues, A. M., Contact and equivalence of submanifolds of homogeneous spaces, aspects
of Math. and its Applications, Elsevier Science Publishers B.V. (1986).

[15] Villarroel, Y., Differential Geometry and Applications, Proc. Conf. Brno (1996), 207-214.

[16] Villarroel, Y., Higher order contact of real curves in a real hyperquadric, Archivum math-
ematicum, Tomus 32(1996), 57-73.

DEPARTAMENTO DE MATEMATICA, FACULTAD DE CIENCIAS
UNIVERSIDAD CENTRAL DE VENEZUELA

Caracas, VENEZUELA

FE-mail: YVILLARRGEULER.CIENS.UCV.VE



		webmaster@dml.cz
	2012-05-10T12:43:48+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




