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ARCHIVUM MATHEMATICUM (BRNO)Tomus 32 (1996), 281 { 288RELATIONS BETWEEN LINEAR CONNECTIONS ON THETANGENT BUNDLE AND CONNECTIONS ON THE JETBUNDLE OF A FIBRED MANIFOLDJOSEF JANY�SKA AND MARCO MODUGNOTo Ivan Kol�a�r, on the occasion of his 60th birthday.Abstract. All natural operations transforming linear connections on thetangent bundle of a �bred manifold to connections on the 1-jet bundle areclassi�ed. It is proved that such operators form a 2-parameter family (withreal coe�cients).IntroductionThis paper is motivated by the bijective relation between time-preserving linearconnections on space-time with absolute time and a�ne connections on 1-jet bun-dle of space-time, [1], [2], [3]. We would like to know if similar relation holds alsofor a general �bred manifold and so we study all natural operations transforminglinear connections on the tangent bundle of a �bred manifold to connections onthe 1-jet bundle. We prove that such operators form a 2-parameter family (withreal coe�cients) and we give its coordinate and geometric expressions.Our operator are natural in the sense of [4] and [5].All manifolds and mappings are assumed to be smooth.1. Linear connectionsLet p : Y ! X be a �bred manifold with a local �bred coordinate chart(x

�

; x

i ) = (x

A ), � = 1; : : : ; dim X = n , i = 1; : : : ; dim Y � dim X = m , A =1; : : : ; dim Y = n + m .A linear connection � on the bundle �

X

: T X ! X and a linear connection
K on the bundle �

Y

: T Y ! Y can be expressed, respectively, by tangent valued1991 Mathematics Subject Classi�cation. 53C05, 53C15, 58A20.Key words and phrases. tangent bundle, jet bundle, connection, natural operator.This research has been supported by grant No. 201/96/0079 of GA CR, GNFM of CNR,MURST, University of Florence and Contract ERB CHRXCT 930096 of EEC.
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:(1.6)A linear connection K on T Y is said to be projectable on a linear connection �on T X if the following diagram commutes
T T Y uT T p

w� K
T Y u T p

T T X w� �
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RELATIONS BETWEEN LINEAR CONNECTIONS 283Lemma 1.1. Let K be a linear connection on T Y and � a linear connectionon T X . The following three conditions are equivalenti) K is projectable on �.ii) The pair (K ; �) is �bre preserving.iii) In a �bred coordinate chart K
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RELATIONS BETWEEN LINEAR CONNECTIONS 285Remark 3.1. In Galilei relativistic theory [1], [2], [3], the base manifold (time)is assumed to be 1-dimensional and a�ne. A linear connection on space{time issaid to be time{preserving if it is projectable on the canonical 
at connectionon the base. (3.4) then implies that the relation between time{preserving linearconnections on space{time and a�ne connections on its 1-jet bundle is bijective.But for dimX > 1 and the 
at connection on an a�ne base manifold this relationis not one-to-one.4. CurvatureThe curvatures of a linear connection K on T Y and of a connection � on J 1 Yare, respectively, the 2{forms
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RELATIONS BETWEEN LINEAR CONNECTIONS 287Theorem 5.1. All natural operations transforming a linear connection K on
T Y into connections on J 1 Y form the following 2{parameter family
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